A Large Scale Daylighting System Based on a Stepped Thickness Waveguide
Abstract
:1. Introduction
2. Proposed Sunlight Concentrator for Optical Fiber Daylighting System
2.1. Fresnel Lens Array
Fresnel Lens Specifications | |
---|---|
Focal Length | 300 mm |
Size | 200 mm × 1000 mm |
Thickness | 3.5 mm |
Material | PMMA * |
2.2. Stepped Thickness Waveguide
2.3. Plastic Optical Fiber Coupling
Parameters | Normal Core POF | Very Large Core POF |
---|---|---|
Attenuation | 0.45 dB/m | 0.8 dB/m |
Core/Cladding Diameter | 1.960/2.0 mm | 9.960/10 mm |
Refractive Index: Core/Cladding | 1.492/1.402 | 1.492/1.402 |
Minimum Bend Radius | 50 mm | 80 mm |
Spectral Trans. Range | 380–750 nm | 380–750 nm |
3. Concentrator Simulations and Performance
3.1. Optical Efficiency
3.2. Daylighting
Time | Solar Altitude (°) | Sunlight Illuminance (lux) | Luminous Flux on the Surface Concentrator (lm) | Luminous Flux at the Output of Concentrator (lm) | Illumination in the Interior (lm) (Using10 m of 2 mm Diameter POFs) | Illumination in the Interior (lm) (Using 10 m of 10 mm Diameter POFs) |
---|---|---|---|---|---|---|
6 AM | 8 | 20,000 | 20,000 | 11,280 | 4028 | 1790 |
7 AM | 19 | 40,000 | 40,000 | 22,560 | 8057 | 3580 |
8 AM | 31 | 60,000 | 60,000 | 33,840 | 12085 | 5371 |
9 AM | 43 | 80,000 | 80,000 | 45,120 | 16114 | 7161 |
10 AM | 54 | 100,000 | 100,000 | 56,400 | 20142 | 8952 |
11 AM | 65 | 105,000 | 105,000 | 59,220 | 21150 | 9400 |
12 PM | 74 | 110,000 | 110,000 | 62,040 | 22157 | 9847 |
3.3. Tolerance of the System
4. Discussion
Comparison Categories | Proposed System | Himawari System | Parans System | |
---|---|---|---|---|
2 mm Diameter POFs | 10 mm Diameter POFs | |||
Output flux (lm) | 20,142 | 8951 | 4000 | 3540 |
Cost ($) | 7450 | 4200 | 6240 | 5425 |
Fluorescent Lamps | ||
---|---|---|
Selected room area | 50 | m2 |
Selected lumen of illuminance | 500 | lux |
Luminous flux | 25,000 | lm |
Lamps power | 60 | W |
Lamps efficiency | 60 | lm/W |
Luminous flux for each lamp | 3600 | lm |
Number of lamps to light | 7 | |
Working hours | 10 | hours/day |
Working days | 320 | days/year |
kWh per year | 1613 | KWh/year |
Korean average cost per kWh | 0.4 | $/KWh |
Total cost for lighting by fluorescent lamps | 645 | $/year |
Solar Lighting by Proposed System | ||
Average solar irradiation in Seoul | 3.6 | KWh/m2/day |
Electrical power equivalent (lighting purpose) | 7.2 | KWh/m2/day |
Sun light collection area | 1 | m2 |
Overall light transmission efficiency | 20.1 | % |
Collected electrical power per year | 463 | KWh |
Daylighting money savings | 185 | $ |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ullah, I.; Shin, S. Highly concentrated optical fiber-based daylighting systems for multi-floor office buildings. Energy Build. 2014, 72, 246–261. [Google Scholar] [CrossRef]
- Osso, A.; Gottfried, D.; Walsh, T.; Simon, L. Sustainable Building Technical Manual; Public Technol. Inc.: New York, NY, USA, 1996; p. 292. [Google Scholar]
- Martirano, L.A. Smart lighting control to save energy. In Proceedings of the 2011 IEEE 6th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), Prague, Czech, 15–17 September 2011; pp. 132–138.
- Conti, J. Annual Energy Outlook 2012; U.S. Energy Information Administration (EIA): Washington, DC, USA, 2012.
- Han, H.J.; Riffat, S.B.; Lim, S.H.; Oh, S.J. Fiber optic solar lighting: Functional competitiveness and potential. Sol. Energy 2013, 94, 86–101. [Google Scholar] [CrossRef]
- Song, J.; Zhu, Y.; Jin, Z.; Yang, Y. Daylighting system via fibers based on two-stage sun-tracking model. Sol. Energy 2014, 108, 331–339. [Google Scholar] [CrossRef]
- Tsuei, C.-H.; Sun, W.-S.; Kuo, C.-C. Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting. Opt. Express 2010, 18, A640–A653. [Google Scholar] [CrossRef] [PubMed]
- Whang, A.J.-W.; Chen, Y.-Y.; Yang, S.-H.; Pan, P.-H.; Chou, K.-H.; Lee, Y.-C.; Lee, Z.-Y.; Chen, C.-A.; Chen, C.-N. Natural light illumination system. Appl. Opt. 2010, 49, 6789–6801. [Google Scholar] [CrossRef] [PubMed]
- Macrelli, G. Electrochromic windows. Renew. Energy 1998, 15, 306–311. [Google Scholar] [CrossRef]
- Schultz, J.M.; Jensen, K.I.; Kristiansen, F.H. Super insulating aerogel glazing. Sol. Energy Mater. Sol. Cells 2005, 89, 275–285. [Google Scholar] [CrossRef]
- Carter, D.J. Developments in tubular daylight guidance systems. Build. Res. Inf. 2004, 32, 220–234. [Google Scholar] [CrossRef]
- Green building rating systems-draft recommendations for a U.S. rating system. In Proceedings of the U.S. Green Building Council, Bethesda, MD, USA, 13 August 1995.
- Marks, F.M. Letter to the Editors: Lighting for Different Healthcare Settings. Health Environ. Res. Des. J. 2013, 6, 166–168. [Google Scholar] [CrossRef]
- Xie, P.; Lin, H.; Liu, Y.; Li, B. Total internal reflection-based planar waveguide solar concentrator with symmetric air prisms as couplers. Opt. Express 2014, 22, A1389–A1398. [Google Scholar] [CrossRef] [PubMed]
- Karp, J.H.; Tremblay, E.J.; Ford, J.E. Planar micro-optic solar concentrator. Opt. Express 2010, 18, 1122–1133. [Google Scholar] [CrossRef] [PubMed]
- Selimoglu, O.; Turan, R. Exploration of the horizontally staggered light guides for high concentration CPV applications. Opt. Express 2012, 20. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, S.; Thibault, S. Planar waveguide concentrator used with a seasonal tracker. Appl. Opt. 2012, 51. [Google Scholar] [CrossRef] [PubMed]
- Chien, M.-C.; Lung Tung, Y.; Tien, C.-H. Ultracompact backlight-reversed concentration optics. Appl. Opt. 2009, 48, 4142–4148. [Google Scholar] [CrossRef] [PubMed]
- Winston, R.; Gordon, J.M. Planar concentrators near the étendue limit. Opt. Lett. 2005, 30, 2617–2619. [Google Scholar] [CrossRef] [PubMed]
- Karp, J.; Tremblay, E.; Hallas, M.; Ford, J. Orthogonal and secondary concentration in planar micro-optic solar collectors. Opt. Express 2011, 19, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.; Schmidt, G.; Unger, B. Concentrated photovoltaics stepped planar light guide. In Proceedings of the International Optical Design Conference 2010, Jackson Hole, WY, USA, 13–17 June 2010.
- Microsharp Datasheet. Linear Fresenl Lenses. Available online: http://www.microsharp.co.uk/index.php/products/162-linear-fresenl-lenses-.html (accessed on 8 October 2015).
- Jing, L.; Liu, H.; Wang, Y.; Xu, W.; Zhang, H.; Lu, Z. Design and Optimization of Fresnel Lens for High Concentration Photovoltaic System. Int. J. Photoenergy 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Balanis, C.A. Advanced Engineering Electromagnetics; Wiley: New York, NY, USA, 1989; Volume 52. [Google Scholar]
- Plastic Optical Fibers. Available online: http://www.anchoroptics.com/catalog/product.cfm?id=354 (accessed on 8 October 2015).
- Sapia, C. Daylighting in buildings: Developments of sunlight addressing by optical fiber. Sol. Energy 2013, 89, 113–121. [Google Scholar] [CrossRef]
- Mayhoub, M.S. Innovative daylighting systems’ challenges: A critical study. Energy Build. 2014, 80, 394–405. [Google Scholar] [CrossRef]
- Lee, C.; Chou, P.; Chiang, C.; Lin, C. Sun tracking systems: A review. Sensors 2009, 9, 3875–3890. [Google Scholar] [CrossRef] [PubMed]
- Seasonal Tilt Solar Systems. Available online: http://www.solarelectricworks.com/seasonal-tilt-solar-systems/ (accessed on 12 December 2015).
- HIMAWARI Solar Lighting System. Available online: http://www.himawari-net.co.jp/e_page-index01.html (accessed on 12 December 2015).
- PARANS Product Information. Available online: http://www.parans.com/eng/sp3/ (accessed on 14 December 2015).
- Li, T.; Yang, F.; Yuan, C. A novel parabolic trough solar lighting and thermal system for building energy efficiency. In Proceedings of the Automation Science and Engineering (CASE), 2013 IEEE International Conference, Madison, WI, USA, 17–20 August 2013; pp. 657–662.
- Na, S.; Baek, S.; Park, J. Daily global solar radiation estimate in the south korea based on geostationary satellite remote sensing. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 7460–7463.
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, N.H.; Shin, S. A Large Scale Daylighting System Based on a Stepped Thickness Waveguide. Energies 2016, 9, 71. https://doi.org/10.3390/en9020071
Vu NH, Shin S. A Large Scale Daylighting System Based on a Stepped Thickness Waveguide. Energies. 2016; 9(2):71. https://doi.org/10.3390/en9020071
Chicago/Turabian StyleVu, Ngoc Hai, and Seoyong Shin. 2016. "A Large Scale Daylighting System Based on a Stepped Thickness Waveguide" Energies 9, no. 2: 71. https://doi.org/10.3390/en9020071
APA StyleVu, N. H., & Shin, S. (2016). A Large Scale Daylighting System Based on a Stepped Thickness Waveguide. Energies, 9(2), 71. https://doi.org/10.3390/en9020071