The Environmental Biorefinery: Using Microalgae to Remediate Wastewater, a Win-Win Paradigm
Abstract
:1. Complementarity between the Wastewater Treatment and the Microalgae Industries
1.1. Microalgae Industry: A Need for Wastewater
1.2. Microalgae, an Opportunity for the Wastewater Treatment Industry
2. Current Knowledge on Microalgae to Treat Wastewaters
2.1. Urban Wastewater Treatment
2.2. Industrial or Agricultural Wastewater Treatment
2.3. Specific Pollutant Degradation: Types and Mechanisms
3. Seeding Approaches for Efficient Bioconversion of Nutrients and Pollutants in Wastewater
4. Process Options
4.1. Cultivation
4.1.1. Open Ponds and High-Rate Algal Ponds (HRAP)
4.1.2. Photobioreactors
4.1.3. Attached Microalgae Cultivation
4.2. Harvesting the Biomass: Concentration and Dewatering
4.2.1. First Step: Harvesting of the Biomass by Coagulation-Flocculation
4.2.2. Second Step: Dewatering by Centrifugation or Filtration
4.2.3. Biomass Valorization
5. Future Research and Development Needs
5.1. High-Throughput Screening Methodology
5.2. Artificial Specifically Designed Consortium
5.3. Process Intensification
5.4. Contaminations Control and Consortium Protection
5.5. Synthetic Wastewater
6. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
AOX | Adsorbable Organic Halogen |
BOD | Biological Oxygen Demand |
COD | Chemical Oxygen Demand |
EDC | Endocrine Disrupting Compound |
HRAP | High-rate algal pond |
HRT | Hydraulic Retention Time |
HTL | Hydrothermal Liquefaction |
PBR | Photobioreactor |
PAH | Polycyclic Aromatic Hydrocarbon |
PFCA | Perfluorinated Carboxylic Acid |
PPCP | Pharmaceutical and Personal Care Product |
TKN | Total Kjeldahl Nitrogen |
TN | Total Nitrogen |
TOC | Total Organic Carbon |
TP | Total Phosphorus |
WWTP | Wastewater Treatment Plant |
References
- Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr. Opin. Biotechnol. 2013, 24, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Milledge, J. Commercial application of microalgae other than as biofuels: A brief review. Rev. Environ. Sci. Biotechnol. 2011, 10, 31–41. [Google Scholar] [CrossRef]
- Delrue, F.; Setier, P.-A.; Sahut, C.; Cournac, L.; Roubaud, A.; Peltier, G. An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresour. Technol. 2012, 111, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Acién, F.G.; Fernández, J.M.; Magán, J.J.; Molina, E. Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol. Adv. 2012, 30, 1344–1353. [Google Scholar] [CrossRef] [PubMed]
- Park, J.B.K.; Craggs, R.J.; Shilton, A.N. Wastewater treatment high rate algal ponds for biofuel production. Bioresour. Technol. 2011, 102, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Pittman, J.K.; Dean, A.P.; Osundeko, O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 2011, 102, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Chaput, G.; Charmanski, K.; Farag, I. Sustainable Production of Microalgae Oil Feedstock Using Municipal Wastewater and CO2 Fertilization. Int. J. Eng. Sci. Technol. 2012, 4, 3489–3499. [Google Scholar]
- Quinn, J.C.; Davis, R. The potentials and challenges of algae based biofuels: A review of the techno-economic, life cycle, and resource assessment modeling. Bioresour. Technol. 2015, 184, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Collet, P.; Hélias, A.; Lardon, L.; Ras, M.; Goy, R.A.; Steyer, J.P. Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour. Technol. 2011, 102, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Gosling, S.N.; Arnell, N.W. A global assessment of the impact of climate change on water scarcity. Clim. Chang. 2013, 1–15. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Guo, T.; Englehardt, J.; Wu, T. Review of cost versus scale: Water and wastewater treatment and reuse processes. Water Sci. Technol. 2015, 69, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbach, R.P.; Escher, B.I.; Fenner, K.; Hofstetter, T.B.; Johnson, C.A.; von Gunten, U.; Wehrli, B. The Challenge of micropollutants in aquatic systems. Science 2006, 313, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Martin Ruel, S.; Choubert, J.M.; Budzinski, H.; Miege, C.; Esperanza, M.; Coquery, M. Occurrence and fate of relevant substances in wastewater treatment plants regarding Water Framework Directive and future legislations. Water Sci. Technol. 2012, 65, 1179–1189. [Google Scholar] [CrossRef] [PubMed]
- Subashchandrabose, S.R.; Ramakrishnan, B.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ. Int. 2013, 51, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, R.; Guieysse, B. Algal–bacterial processes for the treatment of hazardous contaminants: A review. Water Res. 2006, 40, 2799–2815. [Google Scholar] [CrossRef] [PubMed]
- EPA Office of Water. Wastewater Management Fact Sheet, Energy Conservation; EPA 832-F-06-024; U.S. Environmental Protection Agency: Washington, DC, USA, 2006; p. 7.
- Nurdogan, Y.; Oswald, W.J. Enhanced nutrient removal in high-rate ponds. Water Sci. Technol. 1995, 31, 33–43. [Google Scholar] [CrossRef]
- Park, J.B.K.; Craggs, R.J. Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Sci. Technol. 2010, 61, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Min, M.; Wang, L.; Li, Y.; Moher, M.J.; Hu, B.; Zhou, W.; Chen, P.; Ruan, R. Cultivating Chlorella sp. in a Pilot-Scale Photobioreactor Using Centrate Wastewater for Microalgae Biomass Production and Wastewater Nutrient Removal. Appl. Biochem. Biotech. 2011, 165, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Hammouda, A.; Gaber, A.; Abdelraouf, N. Microalgae and Wastewater Treatment. Ecotox Environ. Safe. 1995, 31, 205–210. [Google Scholar] [CrossRef]
- Tian-Yuan, Z.; Yin-Hu, W.; Lin-Lan, Z.; Xiao-Xiong, W.; Hong-Ying, H. Screening heterotrophic microalgal strains by using the Biolog method for biofuel production from organic wastewater. Algal Res. 2014, 6, 175–179. [Google Scholar] [CrossRef]
- Lima, S.A.C.; Raposo, M.F.J.; Castro, P.M.L.; Morais, R.M. Biodegradation of p-chlorophenol by a microalgae consortium. Wat. Res. 2004, 38, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Papazi, A.; Kotzabasis, K. “Rational” Management of Dichlorophenols Biodegradation by the Microalga Scenedesmus obliquus. PLoS ONE 2013, 8. [Google Scholar] [CrossRef]
- Peng, F.-Q.; Ying, G.-G.; Yang, B.; Liu, S.; Lai, H.-J.; Liu, Y.-S.; Chen, Z.-F.; Zhou, G.-J. Biotransformation of progesterone and norgestrel by two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa): Transformation kinetics and products identification. Chemosphere 2014, 95, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, X.; Poon, K.; Wang, Y.; Li, S.; Liu, H.; Lin, S.; Cai, Z. Removal and reductive dechlorination of triclosan by Chlorella pyrenoidosa. Chemosphere 2013, 92, 1498–1505. [Google Scholar] [CrossRef] [PubMed]
- De Godos, I.; Muñoz, R.; Guieysse, B. Tetracycline removal during wastewater treatment in high-rate algal ponds. J. Hazard. Mater. 2012, 229–230, 446–449. [Google Scholar] [CrossRef] [PubMed]
- Sethunathan, N.; Megharaj, M.; Chen, Z.L.; Williams, B.D.; Lewis, G.; Naidu, R. Algal Degradation of a Known Endocrine Disrupting Insecticide, α-Endosulfan, and Its Metabolite, Endosulfan Sulfate, in Liquid Medium and Soil. J. Agric. Food Chem. 2004, 52, 3030–3035. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.S.; Dahms, H.-U.; Won, E.-J.; Lee, J.-S.; Shin, K.-H. Microalgae—A promising tool for heavy metal remediation. Ecotoxicol. Environ. Safe. 2015, 113, 329–352. [Google Scholar] [CrossRef] [PubMed]
- Ke, L.; Luo, L.; Wang, P.; Luan, T.; Tam, N.F.-Y. Effects of metals on biosorption and biodegradation of mixed polycyclic aromatic hydrocarbons by a freshwater green alga Selenastrum capricornutum. Bioresour. Technol. 2010, 101, 6950–6961. [Google Scholar] [CrossRef] [PubMed]
- Arbib, Z.; Ruiz, J.; Álvarez-Díaz, P.; Garrido-Pérez, C.; Perales, J.A. Capability of different microalgae species for phytoremediation processes: Wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Water Res. 2014, 49, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Demirer, G.N.; Chen, S. Two-phase anaerobic digestion of unscreened dairy manure. Process Biochem. 2005, 40, 3542–3549. [Google Scholar] [CrossRef]
- Constantine, T.A. North American Experience with Centrate Treatment Technologies for Ammonia and Nitrogen Removal; Proceedings of the Water Environment Federation; WEFTEC: Dallas, TX, USA, 2006; pp. 5271–5281. [CrossRef]
- Maurer, M.; Schwegler, P.; Larsen, T.A. Nutrients in urine: Energetic aspects of removal and recovery. Water Sci. Technol. 2003, 48, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Marcilhac, C.; Sialve, B.; Pourcher, A.-M.; Ziebal, C.; Bernet, N.; Béline, F. Digestate color and light intensity affect nutrient removal and competition phenomena in a microalgal-bacterial ecosystem. Water Res. 2014, 64, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Franchino, M.; Comino, E.; Bona, F.; Riggio, V.A. Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere 2013, 92, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, K.; Premalatha, M.; Vijayasekaran, M.; Somasundaram, V.T. DEPHY project: Distillery wastewater treatment through anaerobic digestion and phycoremediation—A green industrial approach. Renew. Sustain. Energy Rev. 2014, 37, 634–643. [Google Scholar] [CrossRef]
- Solovchenko, A.; Pogosyan, S.; Chivkunova, O.; Selyakh, I.; Semenova, L.; Voronova, E.; Scherbakov, P.; Konyukhov, I.; Chekanov, C.; Kirpichnikov, M.; et al. Phycoremediation of alcohol distillery wastewater with a novel Chlorella sorokiniana strain cultivated in a photobioreactor monitored on-line via chlorophyll fluorescence. Algal Res. 2014, 6, 234–241. [Google Scholar] [CrossRef]
- Tarlan, E.; Dilek, F.B.; Yetis, U. Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater. Bioresour. Technol. 2002, 84, 1–5. [Google Scholar] [CrossRef]
- Kothari, R.; Prasad, R.; Kumar, V.; Singh, D.P. Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater. Bioresour. Technol. 2013, 144, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Wang, Z.; Wang, X.; Yuan, Z. Cultivation of Chlorella sp. using raw dairy wastewater for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures. Bioresour. Technol. 2015, 192, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.; Nolasco, N.A.; Vasavada, A.; Johnson, M.; Kuehnle, A. Algae-Mediated Valorization of Industrial Waste Streams. Ind. Biotechnol. 2015, 11, 229–234. [Google Scholar] [CrossRef]
- Chinnasamy, S.; Bhatnagar, A.; Hunt, R.W.; Das, K.C. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour. Technol. 2010, 101, 3097–3105. [Google Scholar] [CrossRef] [PubMed]
- Sheoran, A.S.; Bhandari, S. Treatment of Mine Water by a Microbial Mat: Bench-scale Experiments. Mine Water Environ. 2005, 24, 38–42. [Google Scholar] [CrossRef]
- Zhou, W.; Hu, B.; Li, Y.; Min, M.; Mohr, M.; Du, Z.; Chen, P.; Ruan, R. Mass Cultivation of Microalgae on Animal Wastewater: A Sequential Two-Stage Cultivation Process for Energy Crop and Omega-3-Rich Animal Feed Production. Appl. Biochem. Biotechnol. 2012, 168, 348–363. [Google Scholar] [CrossRef] [PubMed]
- Di Caprio, F.; Altimari, P.; Pagnanelli, F. Integrated biomass production and biodegradation of olive mill wastewater by cultivation of Scenedesmus sp. Algal Res. 2015, 9, 306–311. [Google Scholar] [CrossRef]
- Perron, M.C.; Juneau, P. Effect of endocrine disrupters on photosystem II energy fluxes of green algae and cyanobacteria. Environ. Res. 2011, 111, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Perales-Vela, H.V.; Peña-Castro, J.M.; Cañizares-Villanueva, R.O. Heavy metal detoxification in eukaryotic microalgae. Chemosphere 2006, 64, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Perreira, S.A.; Araújo, V.Q.; Reboucas, M.V.; Vieira, F.S.V.; de Almeida, M.V.A.; Chinalia, F.A.; Nascimento, I.A. Toxicity of biodiesel, diesel and biodiesel/diesel blends: Comparative sub-lethal effects of water-soluble fractions to microalgae species. Bull. Environ. Contam. Toxicol. 2012, 88, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Latala, A.; Nędzi, M.; Stepnowski, P. Acute toxicity assessment of perfluorinated carboxylic acids towards the Baltic microalgae. Environ. Toxicol. Pharmacol. 2009, 28, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Asselborn, V.; Fernández, C.; Zalocar, Y.; Parodi, E.R. Effects of chlorpyrifos on the growth and ultrastructure of green algae, Ankistrodesmus gracilis. Ecotoxicol. Environ. Safe. 2015, 120, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, M.; Mak, N.K.; Chen, F.; Jiang, Y. Triphenyltin induced growth inhibition and antioxidative responses in the green microalga Scenedesmus quadricauda. Ecotoxicology 2011, 20, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.K.; Hu, R.; Wong, M.H.; Cheung, K.C. Comparative toxicity of hydrophobic contaminants to microalgae and higher plants. Ecotoxicology 2007, 16, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Legaspi, I.A.; Ortega-Clemente, L.A.; Moha-León, J.D.; Ríos-Leal, E.; Curiel-Ramírez Gutiérrez, S.; Rubio-Franchini, I. Effect of the pesticide lindane on the biomass of the microalgae Nannochloris oculata. J. Environ. Sci. Health B 2016, 51, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, W.; Hu, B.; Min, M.; Chen, P.; Ruan, R.R. Integration of Algae Cultivation as Biodiesel Production Feedstock with Municipal Wastewater Treatment: Strains Screening and Significance Evaluation of Environmental Factors. Bioresour. Technol. 2011, 102, 10861–10867. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, A.E.M.; Leite, G.B.; Belhaj, M.A.; Hallenbeck, P.C. Screening microalgae native to Quebec for wastewater treatment and biodiesel production. Bioresour. Technol. 2014, 157, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Pires, J.C.M.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Simões, M. Wastewater treatment to enhance the economic viability of microalgae culture. Environ. Sci. Pollut. R. 2013, 20, 5096–5105. [Google Scholar] [CrossRef] [PubMed]
- Borde, X.; Guieysse, B.; Delgado, O.; Muñoz, R.; Hatti-Kaul, R.; Nugier-Chauvin, C.; Patin, H.; Mattiasson, B. Synergistic relationships in algal–bacterial microcosms for the treatment of aromatic pollutants. Bioresour. Technol. 2003, 86, 293–300. [Google Scholar] [CrossRef]
- Van Den Hende, S.; Vervaeren, H.; Desmet, S.; Boon, N. Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment. New Biotechnol. 2011, 29, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Halfhide, T.; Åkerstrøm, A.; Lekang, O.I.; Gislerød, H.R.; Ergas, S.J. Production of algal biomass, chlorophyll, starch and lipids using aquaculture wastewater under axenic and non-axenic conditions. Algal Res. 2014, 6, 152–159. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, Y.; Ge, F.; Xu, Y.; Tao, N.; Peng, F.; Wong, M. Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis. Chemosphere 2013, 92, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Olguín, E.J.; Mendoza, A.; Gonzalez-Portela, R.E.; Novelo, E. Population dynamics in mixed cultures of Neochloris oleoabundans and native microalgae from water of a polluted river and isolation of a diatom consortium for the production of lipid rich biomass. New Biotechnol. 2013, 30, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Mahaptra, D.M.; Chanakya, H.N.; Ramachandra, T.V. Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater. Bioresour. Technol. 2014, 168, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Halfhide, T.; Dalrymple, O.K.; Wilkie, A.C.; Trimmer, J.; Gillie, B.; Udom, I.; Zhang, Q.; Ergas, S.J. Growth of an Indigenous Algal Consortium on Anaerobically Digested Municipal Sludge Centrate: Photobioreactor Performance and Modeling. Bioenerg. Res. 2015, 8, 249–258. [Google Scholar] [CrossRef]
- Caldwell, D.H. Sewage oxidation pond performance, operation and design. Sew. Works J. 1946, 3, 433–458. Available online: http://www.jstor.org/stable/25030250 (accessed on 12 November 2015). [Google Scholar]
- Picot, B.; Bahlaoui, A.; Moersidik, S.; Baleux, B.; Bontoux, J. Comparison of the Purifying Efficiency of High Rate Algal Pond with Stabilization. Pond. Water Sci. Technol. 1992, 25, 197–206. [Google Scholar]
- Craggs, R.J.; Heubeck, S.; Lundquist, T.J.; Benemann, J.R. Algal biofuels from wastewater treatment high rate algal ponds. Water Sci. Technol. 2011, 63, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.-X.; Li, L.; Martinez, B.; Chen, P.; Ruan, R. Culture of Microalgae Chlamydomonas reinhardtii in Wastewater for Biomass Feedstock Production. Appl. Biochem. Biotechnol. 2010, 160, 9–18. [Google Scholar] [CrossRef]
- Davis, R.; Aden, A.; Pienkos, P.T. Techno-economic analysis of autotrophic microalgae for fuel production. Appl. Energy 2011, 88, 3524–3531. [Google Scholar] [CrossRef]
- Kesaano, M.; Sims, R.C. Algal biofilm based technology for wastewater treatment. Algal Res. 2014, 5, 231–240. [Google Scholar] [CrossRef]
- Wilkie, A.C.; Mulbry, W.W. Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour. Technol. 2002, 84, 81–91. [Google Scholar] [CrossRef]
- Christenson, L.B.; Sims, R.C. Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol. Bioeng. 2012, 109, 1674–1684. [Google Scholar] [CrossRef] [PubMed]
- Blanken, W.; Janssen, M.; Cuaresma, M.; Libor, Z.; Bhaiji, T.; Wijffels, R.H. Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor. Biotechnol. Bioeng. 2014, 111, 2436–2445. [Google Scholar] [CrossRef] [PubMed]
- Brennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energ. Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Millero, F.J.; Lepple, F.K. The density and expansibility of artificial seawater solutions from 0 to 40 °C and 0 to 21‰ chlorinity. Mar. Chem. 1973, 1, 89–104. [Google Scholar] [CrossRef]
- Vandamme, D.; Foubert, I.; Muylaert, K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol. 2013, 31, 233–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandamme, D.; Foubert, I.; Fraeye, I. Flocculation of Chlorella vulgaris induced by high pH: Role of magnesium and calcium and practical implications. Bioresour. Technol. 2012, 105, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhu, Y.; Tao, Y.; Zhang, Y.; Li, A. Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnol. Biofuels 2013, 98. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Lewis, D.; Ashman, P. Harvesting of marine microalgae by electroflocculation: The energetics, plant design, and economics. Appl. Energ. 2013, 108, 45–53. [Google Scholar] [CrossRef]
- Buelna, G.; Bhattarai, K.K.; de la Noue, J.; Taiganides, E.P. Evaluation of various flocculants for the recovery of algal biomass grown on pig-waste. Biol. Waste. 1990, 31, 211–222. [Google Scholar] [CrossRef]
- de Godos, I.; Guzman, H.O.; Soto, R.; García-Encina, P.A.; Becares, E.; Muñoz, R.; Vargas, V.A. Coagulation/flocculation-based removal of algal–bacterial biomass from piggery wastewater treatment. Bioresour. Technol. 2011, 102, 923–927. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Singh Nigam, P.; Murphy, J.D. Mechanism and challenges in commercialisation of algal biofuels. Bioresour. Technol. 2011, 102, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Benemann, J.R.; Kopman, B.L.; Weissman, D.E.; Eisenberg, D.E.; Goebel, R.P. Development of Microalgae Harvesting and High Rate Pond Technologies in California in Algal Biomass; Shelef, G., Soeder, C.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1980; p. 457. [Google Scholar]
- Sturm, B.S.M.; Lamer, S.L. An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl. Energ. 2011, 88, 3499–3506. [Google Scholar] [CrossRef]
- Uduman, N.; Qi, Y.; Danquah, M.K.; Forde, G.M.; Hoadley, A. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. J. Renew. Sustain. Energ. 2010, 2. [Google Scholar] [CrossRef]
- Leach, G.; Oliveira, G.; Morais, R. Spray-drying of Dunaliella salina to produce a β-carotene rich powder. J. Ind. Microbiol. Biotechnol. 1998, 20, 82–85. [Google Scholar] [CrossRef]
- Prakash, J.; Bushparaj, B.; Carlozzi, P.; Torzillo, G.; Montaini, E.; Materassi, R. Microalgal Biomass Drying by a Simple Solar Device. Int. J. Sol. Energy 1997, 18, 303–311. [Google Scholar] [CrossRef]
- Becker, E.W. Micro-algae as a source of protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Mulbry, W.; Westhead, E.K.; Pizarro, C.; Sikora, L. Recycling of manure nutrients: Use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresour. Technol. 2005, 96, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Clarke, W.; Pratt, S. Composting of waste algae: A review. Waste Manag. 2014, 34, 1148–1155. [Google Scholar] [CrossRef] [PubMed]
- Eyras, M.C.; Rostagno, C.M.; Defossé, G.E. Biological Evaluation of Seaweed Composting. Compost Sci. Util. 1998, 6. [Google Scholar] [CrossRef]
- Eriksen, N.T. Production of phycocyanin—A pigment with applications in biology, biotechnology, foods and medicine. Appl. Microbiol. Biotechnol. 2008, 80, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Adarme-Vega, T.C.; Lim, D.K.Y.; Timmins, M.; Vernen, F.; Li, Y.; Schenk, P.M. Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microb. Cell Fact. 2012, 11, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Del Campo, J.A.; García-González, M.; Guerrero, M. Outdoor cultivation of microalgae for carotenoid production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2007, 74, 1163–1174. [Google Scholar] [CrossRef] [PubMed]
- Halim, R.; Danquah, M.K.; Webley, P.A. Extraction of oil from microalgae for biodiesel production: A review. Biotechnol. Adv. 2012, 30, 709–732. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.J.; Lewis, D.M.; Green, F.B. Anaerobic digestion of algae biomass: A review. Algal Res. 2014, 5, 204–214. [Google Scholar] [CrossRef]
- Tian, C.; Li, B.; Liu, Z.; Zhang, Y.; Lu, H. Hydrothermal liquefaction for algal biorefinery: A critical review. Renew. Sustain. Energy Rev. 2014, 38, 933–950. [Google Scholar] [CrossRef]
- Hognon, C.; Delrue, F.; Texier, J.; Grateau, M.; Thiery, S.; Miller, H.; Roubeau, A. Comparison of pyrolysis and hydrothermal liquefaction of Chlamydomonas reinhardtii. Growth studies on the recovered hydrothermal aqueous phase. Biomass Bioenerg. 2015, 73, 23–31. [Google Scholar] [CrossRef]
- Biller, P.; Ross, A.B.; Skill, S.C.; Lea-Langton, A.; Balasundaram, B.; Hall, C.; Riley, R.; Llewellyn, C.A. Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Res. 2012, 1, 70–76. [Google Scholar] [CrossRef]
- Garcia Alba, L.; Torri, C.; Fabbri, D.; Kersten, S.R.A.; Wim Brilman, D.W.F. Microalgae growth on the aqueous phase from hydrothermal liquefaction of the same microalgae. Chem. Eng. J. 2013, 228, 214–223. [Google Scholar] [CrossRef]
- Hognon, C.; Delrue, F.; Boissonnet, G. Energetic and economic evaluation of Chlamydomonas reinhardtii hydrothermal liquefaction and pyrolysis through thermochemical models. Energy 2015, 93, 31–40. [Google Scholar] [CrossRef]
- Bird, M.I.; Wurster, C.M.; De Paula Silva, P.H.; Paul, N.A.; De Nys, R. Algal biochar: Effects and applications. GCB Bioenergy 2012, 4, 61–69. [Google Scholar] [CrossRef]
- Agrafioti, E.; Bouras, G.; Kalderis, D.; Diamadopoulos, E. Biochar production by sewage sludge pyrolysis. J. Anal. Appl. Pyrol. 2013, 101, 72–78. [Google Scholar] [CrossRef]
- Norton, T.A.; Melkonian, M.; Andersen, R.A. Algal biodiversity. Phycologia 1996, 35, 308–326. [Google Scholar] [CrossRef]
- Sharma, N.K.; Rai, A.K. Biodiversity and biogeography of microalgae: Progress and pitfalls. Environ. Rev. 2011, 19, 1–15. [Google Scholar] [CrossRef]
- Sydney, E.B.; da Silva, T.E.; Tokarski, A.; Novak, A.C.; de Carvalho, J.C.; Woiciecohwski, A.L.; Larroche, C.; Soccol, C.R. Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Appl. Energ. 2011, 88, 3291–3294. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, W.; Hu, B.; Min, M.; Chen, P.; Ruan, R.R. Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: Strains screening and significance evaluation of environmental factors. Bioresour. Technol. 2011, 102, 10861–10867. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.; Cho, D.-H.; Ramanan, R.; Oh, H.-M.; Kim, H.-S. PhotoBiobox: A tablet sized, low-cost, high throughput photobioreactor for microalgal screening and culture optimization for growth, lipid content and CO2 sequestration. Biochem. Eng. J. 2015, 103, 193–197. [Google Scholar] [CrossRef]
- Oswald, W.J. Algal Production—Problems, Achievements and Potential in Algae Biomass; Shelef, G., Soeder, C.J., Eds.; Elsevier North/Holland/Biomedical Press: Amsterdam, The Netherland, 1980; pp. 1–8. [Google Scholar]
- Cauchie, H.M.; Hoffmann, L.; Jaspar-Versali, M.F.; Salvia, M.; Thomé, J.P. Daphnia magna Straus living in an aerated sewage lagoon as a source of chitin: Ecological aspects. J. Zool. 1995, 125, 67–78. [Google Scholar]
- Kagami, M.; de Bruin, A.; Ibelings, B.; Van Donk, E. Parasitic chytrids: Their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 2007, 578, 113–129. [Google Scholar] [CrossRef]
- Shi, S.Y.; Liu, Y.D.; Shen, Y.W.; Li, G.B.; Li, D.H. Lysis of Aphanizomenon fols-aquae (Cyanobacteria) by a bacteria Bacilus cereus. Biol. Control 2006, 39, 345–351. [Google Scholar] [CrossRef]
- Wu, Q.X.; Cheng, K.; Yang, J.F.; Chen, J.G.; Zhao, Y.J.; Xu, M. Isolation and characterization of a marine chaetoceros muelleri virus. Oceanol. Limnol. Sin. 2011, 42, 455–459. [Google Scholar]
- Wang, H.; Zhang, W.; Chen, L.; Wang, J.; Liu, T. The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour. Technol. 2013, 128, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Aravantinou, A.F.; Theodorakopoulos, M.A.; Manariotis, I.D. Selection of microalgae for wastewater treatment and potential lipids production. Bioresour. Technol. 2013, 147, 130–134. [Google Scholar] [CrossRef] [PubMed]
Reference | Microalgae Species | Pollutant | Temperature | Culture Volume | Agitation | Light Intensity | Light Mode | Carbon Source | Removal Rate |
---|---|---|---|---|---|---|---|---|---|
[23] | Chlorella vulgaris and Coenochloris pyrenoidosa | p-chlorophenol | 25 °C | 150 mL in 250 mL flasks | 100 RPM | 52.5 µmol·s−1·m−2 | 16 h light/8 h dark | CO2 | 10 mg/L/day |
[24] | Scenedesmus obliquus | 2,3-dichlorophenol | 30 °C | 50 mL bottle | - | 50–60 µmol·s−1·m−2 | 24 h light | glucose | 9 µmol/day |
[24] | Scenedesmus obliquus | 2,4-dichlorophenol | 30 °C | 50 mL bottle | - | 51–60 µmol·s−1·m−2 | 24 h light | glucose | 10 µmol/day |
[24] | Scenedesmus obliquus | 2,5-dichlorophenol | 30 °C | 50 mL bottle | - | 52–60 µmol·s−1·m−2 | 24 h light | glucose | 9 µmol/day |
[24] | Scenedesmus obliquus | 2,6-dichlorophenol | 30 °C | 50 mL bottle | - | 53–60 µmol·s−1·m−2 | 24 h light | glucose | 13 µmol/day |
[24] | Scenedesmus obliquus | 3,4-dichlorophenol | 30 °C | 50 mL bottle | - | 54–60 µmol·s−1·m−2 | 24 h light | glucose | 6 µmol/day |
[24] | Scenedesmus obliquus | 3,5-dichlorophenol | 30 °C | 50 mL bottle | - | 55–60 µmol·s−1·m−2 | 24 h light | glucose | 0 µmol/day |
[25] | Scenedesmus obliquus | progesterone | 25 °C | 150 mL in 250 mL flasks | 150 RPM | 3000 lux | 12 h light/12 h dark | carbonate and CO2 | 0.3 µmol/day |
[25] | Chlorella pyrenoidosa | progesterone | 25 °C | 150 mL in 250 mL flasks | 150 RPM | 3000 lux | 12 h light/12 h dark | carbonate and CO2 | 0.3 µmol/day |
[25] | Scenedesmus obliquus | norgestrel | 25 °C | 150 mL in 250 mL flasks | 150 RPM | 3000 lux | 12 h light/12 h dark | carbonate and CO2 | 0.3 µmol/day |
[25] | Chlorella pyrenoidosa | norgestrel | 25 °C | 150 mL in 250 mL flasks | 150 RPM | 3000 lux | 12 h light/12 h dark | carbonate and CO2 | 0.2 µmol/day |
[26] | Chlorella pyrenoidosa | triclosan | 22 °C | 100 mL in 250 mL flasks | 120 RPM | 4000 lux | 16 h light/8 h dark | acetate | 104 mg/L/h |
[27] | Consortium with Chlorella vulgaris | tetracycline | 10.0–17.5 °C | 14 L fed-batch HRAP | - | 10 W PAR·m−2 | 24h light | atmospheric CO2 | Not calculated but continuous degradation |
[28] | Chlorococcum sp. | α-endosulfan | 22 °C | 5 mL glass test tubes | - | 2000 lux | 24 h light | atmospheric CO2 | 0.135 mg/L/day |
[28] | Scenedesmus sp. | α-endosulfan | 22 °C | 5 mL glass test tubes | - | 2000 lux | 24 h light | atmospheric CO2 | 0.140 mg/L/day |
[29] | Review of 63 bioremediation cases out of 265 microalgae-heavy metal couples (other cases are adsorption experiments on dead cells with or without pretreatment)—pH from 4 to 9 | From 0.02 to 1378 mg/g | |||||||
[30] | Selenastrum capricornutum | PAHs + heavy metals | 22 °C | 100mL in 250 mL flasks | 160 RPM | 40 µmol·s−1·m−2 | 16 h light/8 h dark | atmospheric CO2 | Positive effect of heavy metals on PAHs removal |
Validated Knowledge | Future Challenges |
---|---|
Ability to treat different wastewaters or specific pollutants | Technical feasibility at large-scale (HRT and area needed) Economic feasibility |
Screening several microalgae strains for their degradation of a pollutant or their treatment of a wastewater | High-throughput screening methodology |
Natural consortium for the treatment of a specific wastewater or pollutant | Artificial specifically designed consortium |
HRAPs for the treatment of urban wastewater | Optimized systems with reduced footprint and HRT |
Long-term operation with variation in treatment efficiency | Contaminations control and consortium protection |
Research studies are dependent on the availability of real wastewater | Design a representative and easy-to-make synthetic wastewater |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delrue, F.; Álvarez-Díaz, P.D.; Fon-Sing, S.; Fleury, G.; Sassi, J.-F. The Environmental Biorefinery: Using Microalgae to Remediate Wastewater, a Win-Win Paradigm. Energies 2016, 9, 132. https://doi.org/10.3390/en9030132
Delrue F, Álvarez-Díaz PD, Fon-Sing S, Fleury G, Sassi J-F. The Environmental Biorefinery: Using Microalgae to Remediate Wastewater, a Win-Win Paradigm. Energies. 2016; 9(3):132. https://doi.org/10.3390/en9030132
Chicago/Turabian StyleDelrue, Florian, Pablo David Álvarez-Díaz, Sophie Fon-Sing, Gatien Fleury, and Jean-François Sassi. 2016. "The Environmental Biorefinery: Using Microalgae to Remediate Wastewater, a Win-Win Paradigm" Energies 9, no. 3: 132. https://doi.org/10.3390/en9030132
APA StyleDelrue, F., Álvarez-Díaz, P. D., Fon-Sing, S., Fleury, G., & Sassi, J. -F. (2016). The Environmental Biorefinery: Using Microalgae to Remediate Wastewater, a Win-Win Paradigm. Energies, 9(3), 132. https://doi.org/10.3390/en9030132