Technical, Economical and Social Assessment of Photovoltaics in the Frame of the Net-Metering Law for the Province of Salta, Argentina
Abstract
:1. Introduction
1.1. Renewable Energy Promotion Framework in the Province of Salta
1.2. State of the Art of Photovoltaic Potential Evaluation
2. Methodology
2.1. Participatory Consultation
2.1.1. Survey: Renewable Energy in Salta
- General knowledge of RE plan and laws.
- Knowledge of RE sources, and technologies and opinion about the possibility of promoting them in Salta.
- Promotion of RE in Salta. Key to achieving greater promotion and main restrictive aspects.
- Applicability of the net-metering law: General interest. Reasons to promote or reject an RE project at home or own business.
- General personal data: localization, educational level, occupation, age, and gender.
2.1.2. Workshop: Contributions to Promote Renewable Energies in Salta: Actions, Projects and Proposals
2.2. Definition of Case Studies
2.3. Technical Assessment
2.4. Economic Assessment
3. Results
3.1. Social Perceptions
3.1.1. Survey
- Environmental protection and sustainability using RE as clean energies.
- Climate change mitigation.
- Diversification of the energy matrix.
- Independence of fossil fuels and energy resources imports.
- Technological and regional development.
- Use of local natural resources.
- Access to energy in isolated places.
- Improving the quality of life.
- Dissemination, information, and awareness.
- Economic incentives, such as tax breaks, subsidies, investments, receivables, and other benefits as well as public policies,
- Political interest, management support, guarantees continuity applications in rural education, industry and electrical infrastructure matrix,
- Other issues including education (different levels), research, technological development, and environmental issues.
3.1.2. Workshop
3.2. Technical Potential
3.3. Economic Assessment
4. Conclusions and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ARS | Argentinian pesos |
RE | Renewable Energy |
PV | Photovoltaic |
LSA-SAF | Land Surface Analysis Satellite Application Facility |
LCOE | Levelized Cost of Electricity |
ECMWF | European Centre for Medium-Range Weather Forecasts |
NPV | Net Present Value |
IRR | Internal Return Rate |
SSRD | Surface Solar Radiation Downwards |
K | Kelvin |
J·m−2 | Joule per square meter |
W | Watt |
kWh | Kilowatt Hour |
kWp | Kilowatt peak |
a | Year |
USD | Dollars of the United States |
Appendix A
Case Study | Location (see Figure 2) | Description | Demand (kWh·per·month) |
---|---|---|---|
Residential a | 1 La Almudena Neighborhood | Single Family House | 0 ≤ 192 |
Residential b | 2 Huayco Neighborhood | Single Family House | >192 and ≤500 |
Residential c | 1 La Almudena Neighborhood | Single Family House | >500 and ≤700 |
Residential d | 1 La Almudena Neighborhood | Single Family House | >700 and ≤1400 |
Residential e | 1 La Almudena Neighborhood | Single Family House | >1400 |
Building a average | 3 Monoblock Salta | Apartment | >192 and ≤500 |
Building a total | 3 Monoblock Salta | Apartments Building | 13,000 to 19,000 |
Building b average | 4 Downtown Building | Apartment | >500 and ≤700 |
Building b total | 4 Downtown Building | Apartments Building | 8000 to 13,000 |
Commercial and Industry a | 5 Industry Park | Commercial Businesses | 2000 to 18,000 |
Commercial and Industry b | 5 Industry Park | Productive Industry | 28,000 to 59,000 |
Commercial and Industry c | 5 Industry Park | Shopping Center | 10,500 to 198,000 |
University | 6 National University of Salta | University with 6 faculties and 20,000 students | 103,000 to 244,000 |
Justice Building | 7 Justice Building | Building that concentrates all judicial activity of the Province Salta | 200,000 to 380,000 |
Parameter | Value | Units |
---|---|---|
Panel efficiency | 15 | % |
Temperature correction factor | −0.45 | %/K |
Reduction factor due to installation type (for roof-top PV) | 0.035 | K/(W/m2) |
Inverter and cable losses | 14 | % |
Component | PV1 | PV2 | PV3 |
---|---|---|---|
Panels | 14,737 | 17,625 | 18,831 |
Inverter | 5263 | 8423 | 7124 |
Structure | 6316 | 4283 | 5086 |
Installation (labor) | 2631 | 3033 | 3104 |
Total | 28,948 | 33,364 | 34,146 |
Case Study (Residential) | Cost·per·kWh | Subsidy per·kWh | Case Study (non-Residential) | Cost·per·kWh | Subsidy per·kWh |
---|---|---|---|---|---|
Residential a | 0.0712 | 0.0299 | Building b total | 0.0724 | 0.0251 |
Residential b | 0.0657 | 0.0299 | Building a total | 0.0724 | 0.0251 |
Residential c | 0.0684 | 0.0262 | Commercial and Industrial a | 0.0649 | 0.0339 |
Residential d | 0.0673 | 0.0227 | Commercial and Industrial b | 0.0563 | 0.0252 |
Residential e | 0.0716 | 0.0153 | Commercial and Industrial c | 0.0833 | 0.0252 |
Building a average | 0.0657 | 0.0299 | University | 0.0779 | 0.0252 |
Building b average | 0.0684 | 0.0262 | Justice Building | 0.0779 | 0.0252 |
References
- Ramachandra, T.V. RIEP: Regional integrated energy plan. Renew. Sustain. Energy Rev. 2009, 13, 285–317. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Z. Sustainable development of rural energy and its appraising system in China. Renew. Sustain. Energy Rev. 2002, 6, 395–404. [Google Scholar] [CrossRef]
- Hauber, J.; Ruppert-Winkel, C. Moving towards Energy Self-Sufficiency Based on Renewables: Comparative Case Studies on the Emergence of Regional Processes of Socio-Technical Change in Germany. Sustainability 2012, 4, 491–530. [Google Scholar] [CrossRef]
- Senado y Cámara de Diputados la Nación Argentina Ley 26190 de Diciembre 6 de 2006: Regimen de Fomento Nacional Para el uso de Fuentes Renovables de Energia Destinada a la Produccion de Energia Electrica; Boletín Oficial de la República Argentina: Buenos Aires, Argentina, 2006. (In Spanish)
- Secretaría de Energía—República Argentina Balance Energéticos Nacional (BEN). Available online: http://www.energia.gov.ar/contenidos/verpagina.php?idpagina=3366 (accessed on 15 December 2015).
- Senado y Cámara de Diputados la Nación Argentina Ley 27191 de Septiembre de 2015: Régimen de Fomento Nacional para el uso de Fuentes Renovables de Energía Destinada a la Producción de Energía Eléctrica; Modificación; Boletín Oficial de la República Argentina: Buenos Aires, Argentina, 2015. (In Spanish)
- Secretaría de Energía de la Provincia de Salta. Cartilla Plan Energias Renovables Salta; Gobierno de la Provincia de Salta: Salta, Argentina, 2014. (In Spanish)
- Binda Galindez, C.; Javi, V. Leyes No 7823 y No 7824 de promoción de las energías renovables en salta: Procesos de redacción y elaboración desde el enfoque de la comunicación intercultural. In Acta de la XXXVIII Reunión de Trabajo de la Asociación Argentina de Energías Renovables y Medio Ambiente; INENCO: Salta, Argentina, 2015; Volume 3, pp. 12.51–12.60. ISBN 978-987-29873-0-5. (In Spanish) [Google Scholar]
- Angelis-Dimakis, A.; Biberacher, M.; Dominguez, J.; Fiorese, G.; Gadocha, S.; Gnansounou, E.; Guariso, G.; Kartalidis, A.; Panichelli, L.; Pinedo, I.; et al. Methods and tools to evaluate the availability of renewable energy sources. Renew. Sustain. Energy Rev. 2011, 15, 1182–1200. [Google Scholar] [CrossRef]
- Biberacher, M. GIS-based modeling approach for energy systems. Int. J. Energy Sect. Manag. 2008, 2, 368–384. [Google Scholar] [CrossRef]
- Calvert, K.; Pearce, J.M.; Mabee, W.E. Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity. Renew. Sustain. Energy Rev. 2013, 18, 416–429. [Google Scholar] [CrossRef]
- Moreno, A.; Gilabert, M.A.; Camacho, F.; Martínez, B. Validation of daily global solar irradiation images from MSG over Spain. Renew. Energy 2013, 60, 332–342. [Google Scholar] [CrossRef]
- Roerink, G.J.; Bojanowski, J.S.; de Wit, A.J.W.; Eerens, H.; Supit, I.; Leo, O.; Boogaard, H.L. Evaluation of MSG-derived global radiation estimates for application in a regional crop model. Agric. For. Meteorol. 2012, 160, 36–47. [Google Scholar] [CrossRef]
- Rigollier, C.; Lefèvre, M.; Wald, L. The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Sol. Energy 2004, 77, 159–169. [Google Scholar] [CrossRef]
- Eissa, Y.; Chiesa, M.; Ghedira, H. Assessment and recalibration of the Heliosat-2 method in global horizontal irradiance modeling over the desert environment of the UAE. Sol. Energy 2012, 86, 1816–1825. [Google Scholar] [CrossRef]
- Espinar, B.; Ramírez, L.; Polo, J.; Zarzalejo, L.F.; Wald, L. Analysis of the influences of uncertainties in input variables on the outcomes of the Heliosat-2 method. Sol. Energy 2009, 83, 1731–1741. [Google Scholar] [CrossRef] [Green Version]
- Geiger, B.; Meurey, C.; Lajas, D.; Franchistéguy, L.; Carrer, D.; Roujean, J.-L. Near real-time provision of downwelling shortwave radiation estimates derived from satellite observations. Meteorol. Appl. 2008, 15, 411–420. [Google Scholar] [CrossRef]
- Ineichen, P.; Barroso, C.S.; Geiger, B.; Hollmann, R.; Marsouin, A.; Mueller, R. Satellite Application Facilities irradiance products: Hourly time step comparison and validation over Europe. Int. J. Remote Sens. 2009, 30, 5549–5571. [Google Scholar] [CrossRef]
- Moradi, I.; Mueller, R.; Alijani, B.; Kamali, G.A. Evaluation of the Heliosat-II method using daily irradiation data for four stations in Iran. Sol. Energy 2009, 83, 150–156. [Google Scholar] [CrossRef]
- Bosch, J.L.; Batlles, F.J.; Zarzalejo, L.F.; López, G. Solar resources estimation combining digital terrain models and satellite images techniques. Renew. Energy 2010, 35, 2853–2861. [Google Scholar] [CrossRef]
- Martínez-Durbán, M.; Zarzalejo, L.F.; Bosch, J.L.; Rosiek, S.; Polo, J.; Batlles, F.J. Estimation of global daily irradiation in complex topography zones using digital elevation models and meteosat images: Comparison of the results. Energy Convers. Manag. 2009, 50, 2233–2238. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hofierka, J.; Kaňuk, J. Assessment of photovoltaic potential in urban areas using open-source solar radiation tools. Renew. Energy 2009, 34, 2206–2214. [Google Scholar] [CrossRef]
- Ramirez Camargo, L.; Pagany, R.; Marquardt, A. Zeitlich und räumlich hochaufgelöste Modellierung der potentiellen solaren Einstrahlung—ein Methodenvergleich. In Angewandte Geoinformatik 2014, Beiträge zum 26. AGIT-Symposium Salzburg; Strobl, J., Blaschke, T., Griesebner, G., Zagel, B., Eds.; Wichmann: Berlin, Germany, 2014; pp. 143–152. [Google Scholar]
- Ruiz-Arias, J.A.; Tovar-Pescador, J.; Pozo-Vázquez, D.; Alsamamra, H. A comparative analysis of DEM-based models to estimate the solar radiation in mountainous terrain. Int. J. Geogr. Inf. Sci. 2009, 23, 1049–1076. [Google Scholar] [CrossRef]
- Šúri, M.; Hofierka, J. A New GIS-based Solar Radiation Model and Its Application to Photovoltaic Assessments. Trans. GIS 2004, 8, 175–190. [Google Scholar] [CrossRef]
- Meteonorm Global Metereological Database, Version 7, Software and Data for Engineers, Planners and Education-Handbook Part II: Theory; Meteonorm: Bern, Switzerland, 2015.
- Šúri, M.; Huld, T.A.; Dunlop, E.D. PV-GIS: A web-based solar radiation database for the calculation of PV potential in Europe. Int. J. Sustain. Energy 2005, 24, 55–67. [Google Scholar] [CrossRef]
- Bergamasco, L.; Asinari, P. Scalable methodology for the photovoltaic solar energy potential assessment based on available roof surface area: Application to Piedmont Region (Italy). Sol. Energy 2011, 85, 1041–1055. [Google Scholar] [CrossRef]
- Kanters, J.; Wall, M.; Kjellsson, E. The Solar Map as a Knowledge Base for Solar Energy Use. Energy Procedia 2014, 48, 1597–1606. [Google Scholar] [CrossRef]
- Sun, Y.; Hof, A.; Wang, R.; Liu, J.; Lin, Y.; Yang, D. GIS-based approach for potential analysis of solar PV generation at the regional scale: A case study of Fujian Province. Energy Policy 2013, 58, 248–259. [Google Scholar] [CrossRef]
- Ghosh, S.; Nair, A.; Krishnan, S.S. Techno-economic review of rooftop photovoltaic systems: Case studies of industrial, residential and off-grid rooftops in Bangalore, Karnataka. Renew. Sustain. Energy Rev. 2015, 42, 1132–1142. [Google Scholar] [CrossRef]
- Huld, T.; Amillo, A. Estimating PV Module Performance over Large Geographical Regions: The Role of Irradiance, Air Temperature, Wind Speed and Solar Spectrum. Energies 2015, 8, 5159–5181. [Google Scholar] [CrossRef] [Green Version]
- Mayr, D.; Schmidt, J.; Schmid, E. The potentials of a reverse auction in allocating subsidies for cost-effective roof-top photovoltaic system deployment. Energy Policy 2014, 69, 555–565. [Google Scholar] [CrossRef]
- Bayerisches Staatsministerium für Umwelt und Gesundheit; Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie; Oberste Baubehörde im Bayerischen Staatsministerium des Innern Leitfaden Energienutzungsplan. Available online: http://www.stmi.bayern.de/imperia/md/content/stmi/bauen/rechtundtechnikundbauplanung/_staedtebau/veroeffentlichungen/oeko/leitfaden_enp.pdf (accessed on 18 April 2012).
- Jakubiec, J.A.; Reinhart, C.F. A method for predicting city-wide electricity gains from photovoltaic panels based on LiDAR and GIS data combined with hourly Daysim simulations. Sol. Energy 2013, 93, 127–143. [Google Scholar] [CrossRef]
- Lukač, N.; Seme, S.; Žlaus, D.; Štumberger, G.; Žalik, B. Buildings roofs photovoltaic potential assessment based on LiDAR (Light Detection And Ranging) data. Energy 2014, 66, 598–609. [Google Scholar] [CrossRef]
- Ramirez Camargo, L.; Zink, R.; Dorner, W.; Stoeglehner, G. Spatio-temporal modeling of roof-top photovoltaic panels for improved technical potential assessment and electricity peak load offsetting at the municipal scale. Comput. Environ. Urban Syst. 2015, 52, 58–69. [Google Scholar] [CrossRef]
- Lang, T.; Ammann, D.; Girod, B. Profitability in absence of subsidies: A techno-economic analysis of rooftop photovoltaic self-consumption in residential and commercial buildings. Renew. Energy 2016, 87, 77–87. [Google Scholar] [CrossRef]
- Girod, B.; Lang, T.; Nägele, F. Energieeffizienz in Gebäuden: Herausforderungen und Chancen für Energieversorger und Technologiehersteller—Abschlussbericht; ETH: Zürich, Switzerland, 2014. (In German) [Google Scholar]
- Belmonte, S.; Escalante, K.N.; Franco, J. Shaping changes through participatory processes: Local development and renewable energy in rural habitats. Renew. Sustain. Energy Rev. 2015, 45, 278–289. [Google Scholar] [CrossRef]
- Haralambopoulos, D.A.; Polatidis, H. Renewable energy projects: Structuring a multi-criteria group decision-making framework. Renew. Energy 2003, 28, 961–973. [Google Scholar] [CrossRef]
- Reddy, S.; Painuly, J.P. Diffusion of renewable energy technologies—barriers and stakeholders’ perspectives. Renew. Energy 2004, 29, 1431–1447. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, W.; Du, J.; Zhou, W.; Qiu, T.; Li, Q. Adoption of renewable energy technologies (RETs): A survey on rural construction in China. Technol. Soc. 2011, 33, 223–230. [Google Scholar] [CrossRef]
- Lang, T.; Gloerfeld, E.; Girod, B. Don’t just follow the sun—A global assessment of economic performance for residential building photovoltaics. Renew. Sustain. Energy Rev. 2015, 42, 932–951. [Google Scholar] [CrossRef]
- Bazilian, M.; Onyeji, I.; Liebreich, M.; MacGill, I.; Chase, J.; Shah, J.; Gielen, D.; Arent, D.; Landfear, D.; Zhengrong, S. Re-considering the economics of photovoltaic power. Renew. Energy 2013, 53, 329–338. [Google Scholar] [CrossRef]
- Branker, K.; Pathak, M.J.M.; Pearce, J.M. A review of solar photovoltaic levelized cost of electricity. Renew. Sustain. Energy Rev. 2011, 15, 4470–4482. [Google Scholar] [CrossRef]
- Belmonte, S.; Sarmiento, N.; Escalante, K.; Franco, J.; Ramirez Camargo, L.; Dorner, W. Aportes a la planificación energética en salta. información de base, marco legal y desafíos al corto plazo. In Acta de la XXXVIII Reunión de Trabajo de la Asociación Argentina de Energías Renovables y Medio Ambiente; INENCO: Salta, Argentina, 2015; Volume 3, pp. 12.61–12.72. ISBN 978-987-29873-0-5. (In Spanish) [Google Scholar]
- Encuesta Fácil. EncuestaFacil.com, Online Survey Website; Encuesta Fácil S.L.: Madrid, Spain, 2015. [Google Scholar]
- IRENA. Renewable Energy Prospects: Germany; Remap 2030 Analysis; International Renewable Energy Agency: Abu Dhabi, The United Arab Emirates, 2015. [Google Scholar]
- Righini, R.; Grossi Gallegos, H.; Raichijk, C. Approach to drawing new global solar irradiation contour maps for Argentina. Renew. Energy 2005, 30, 1241–1255. [Google Scholar] [CrossRef]
- Salazar, G.A.; Hernandez, A.L.; Echazú, R.; Saravia, L.R.; Romero, G.G. Comparison Between Measured Mean Monthly Solar Insolation Data and Estimates from Swera Database for Salta City (Northwestern Argentina). Electron. J. Energy Environ. 2013, 1, 9–20. [Google Scholar] [CrossRef]
- Aristegui, R.; Righini, R. Discusión sobre el proceso de selección de sitios apropiados para la ubicación de estaciones de una futura red solarimétrica nacional. Av. En Energ. Renov. Medio Ambiente 2012, 16, 39–46. [Google Scholar]
- Instituto Nacional de Tecnología Agropecuaria (INTA). La Argentina Medirá la Radiación Solar en Tiempo Real. INTA Informa. 2015. Available online: http://intainforma.inta.gov.ar/?p=28333 (accessed on 15 December 2015). (In Spanish) [Google Scholar]
- Ramirez Camargo, L.; Altamirano, M.; Belmonte, S.; Dorner, W. Comparación de fuentes satelitales, de re-análisis y métodos estadísticos para el mapeo de la radiación solar en el valle de Lerma (Salta-Argentina). In Acta de la XXXVIII Reunión de Trabajo de la Asociación Argentina de Energías Renovables y Medio Ambiente; INENCO: Salta, Argentina, 2015; Volume 3, pp. 11.31–11.42. ISBN 978-987-29873-0-5. (In Spanish) [Google Scholar]
- European Centre for Medium-Range Weather Forecasts (ECMWF). ERA-Interim Dataset (January 1979 to Present). 2015. Available online: http://www.ecmwf.int/en/research/climate-reanalysis/era-interim (accessed on 16 June 2015).
- Righini, R.; Aristegui, R.; Roldán, A. Determinación de la cantidad de años de medición necesarios para la evaluación de la radiación solar global a nivel de superficie en Argentina. Acta XXXVII Reunión Trab. Asoc. Argent. Energ. Renov. Medio Ambient. 2014, 17–25. (In Spanish) [Google Scholar]
- Ramirez Camargo, L.; Zink, R.; Dorner, W. Spatiotemporal modeling for assessing complementarity of renewable energy sources in distributed energy systems. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, II-4/W2, 147–154. [Google Scholar] [CrossRef]
- Schmidt, T.S.; Born, R.; Schneider, M. Assessing the costs of photovoltaic and wind power in six developing countries. Nat. Clim. Chang. 2012, 2, 548–553. [Google Scholar] [CrossRef]
- Gass, V.; Strauss, F.; Schmidt, J.; Schmid, E. Assessing the effect of wind power uncertainty on profitability. Renew. Sustain. Energy Rev. 2011, 15, 2677–2683. [Google Scholar] [CrossRef]
- IEA. Technology Roadmap—Solar Photovoltaic Energy; International Energy Agency: Paris, France, 2014. [Google Scholar]
- Wirth, H. Aktuelle Fakten zur Photovoltaik in Deutschland; Fraunhofer ISE: Freiburg, Germany, 2015. [Google Scholar]
- Empresa Distribuidora de Electricidad de Salta Cuadro tarifario edesa Agosto-Octubre 2015. Available online: https://www.edesa.com.ar/pdf/cuadrotarifario.pdf (accessed on 10 December 2015).
- International Renewable Energy Agency (IRENA). Renewable Power Generation Costs in 2014; IRENA: Bonn, Germany, 2015. [Google Scholar]
- Katz, C. What is neo-developmentism? A critical view. Argentina and Brazil. Serviço Soc. Soc. 2015, 224–249. [Google Scholar] [CrossRef]
- Diario el Clarín Suben las Tarifas de luz y Gas Desde Enero. Available online: http://www.ieco.clarin.com/economia/Suben-tarifas-luz-gas-enero_0_1485451723.html (accessed on 15 December 2015).
General Strategy | Proposed Actions |
---|---|
Coordinated Inter-Institutional work | - Establish a mechanism agreed by involved institutions to define stages of support. |
- Promote the regulation and control by professional organizations. | |
- Use energy saving education at all levels, from individual household to institutional levels. | |
RE promotion (regulation and new technologies) | - Advertise the laws and technologies massively (environmental awareness). |
- Show people how to handle RE technologies. | |
- Promote solar thermal and PV energy. | |
- Promote other renewable sources and their combination (biomass, small hydro, etc.). | |
Specific economical guidelines | - Specially designed to create economic incentives to encourage households (link to regulation improvements). |
- Promote subsidies for private households as well as small municipalities. | |
- Facilitate the importation of RE installation materials and supplies. |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramirez Camargo, L.; Franco, J.; Sarmiento Babieri, N.M.; Belmonte, S.; Escalante, K.; Pagany, R.; Dorner, W. Technical, Economical and Social Assessment of Photovoltaics in the Frame of the Net-Metering Law for the Province of Salta, Argentina. Energies 2016, 9, 133. https://doi.org/10.3390/en9030133
Ramirez Camargo L, Franco J, Sarmiento Babieri NM, Belmonte S, Escalante K, Pagany R, Dorner W. Technical, Economical and Social Assessment of Photovoltaics in the Frame of the Net-Metering Law for the Province of Salta, Argentina. Energies. 2016; 9(3):133. https://doi.org/10.3390/en9030133
Chicago/Turabian StyleRamirez Camargo, Luis, Judith Franco, Nilsa María Sarmiento Babieri, Silvina Belmonte, Karina Escalante, Raphaela Pagany, and Wolfgang Dorner. 2016. "Technical, Economical and Social Assessment of Photovoltaics in the Frame of the Net-Metering Law for the Province of Salta, Argentina" Energies 9, no. 3: 133. https://doi.org/10.3390/en9030133
APA StyleRamirez Camargo, L., Franco, J., Sarmiento Babieri, N. M., Belmonte, S., Escalante, K., Pagany, R., & Dorner, W. (2016). Technical, Economical and Social Assessment of Photovoltaics in the Frame of the Net-Metering Law for the Province of Salta, Argentina. Energies, 9(3), 133. https://doi.org/10.3390/en9030133