Application of the Extension Taguchi Method to Optimal Capability Planning of a Stand-alone Power System
Abstract
:1. Introduction
2. System Model
2.1. The Objective Function
2.2. Mathematical Models of Solar Photovoltaic
2.3. Mathematical Models of Wind Power
2.4. Mathematical Models of Fuel Cell
2.5. Objective Function Setting and Limitation
3. Extension Taguchi Method
4. Simulated Result and Discussion
5. Conclusions
- (1)
- This paper proposes an optimum capability planning combining the extension theories and Taguchi method to solve the SAPS optimum problem; the proposed model reaches the optimal solution efficiently.
- (2)
- The proposed ETM needs to firstly specify the level and design factor. To guarantee the experimental results, the domain knowledge and expert experience are required when setting the design factors and their levels.
- (3)
- Since the specifications of commercial equipment are pre-specified, the optimum system allocation can be practically achieved by using the proposed ETM.
- (4)
- With fast computation speed, the proposed ETM can be easily applied to mathematical models with complicated objective functions and power systems, and the generated results could be directly implemented on practical equipment without further experimental adjustments.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Karki, R.; Billinton, R. Considering renewable energy in small isolated power system expansion. In Proceedings of the 2003 Canadian Conference on Electrical and Computer Engineering, Montreal, QC, Canada, 4–7 May 2003; pp. 367–370.
- Ai, B.; Yang, H.; Shen, H.; Liao, X. Computer-aided design of PV/wind hybrid system. IEEE Photovolt. Energy Convers. 2003, 3, 2411–2414. [Google Scholar] [CrossRef]
- Chen, H.C.; Bai, W.X. Dynamic modeling and simulation of renewable energy based hybrid power generation systems. In Proceedings of the 8th Intelligent Living Technology Conference, Taichung, Taiwan, 7 June 2013; pp. 1048–1055.
- Hiyama, T.; Kouzuma, S.; Imakubo, T.; Ortmeyer, T.H. Evaluation of neural network based real time maximum power tracking controller for PV system. IEEE Trans. Energy Conv. 1995, 10, 543–548. [Google Scholar] [CrossRef]
- Li, F.T.; Chao, Q.; Dai, X.J. The research of wind power optimal capacity configuration in hydraulic power system. In Proceedings of the Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, Nanjing, China, 6–9 April 2008; pp. 2569–2574.
- Chandel, S.S.; Ramasamy, P.; Murthy, K.S.R. Wind power potential evaluation of 12 locations in western Himalayan region of India. Renew. Sustain. Energy Rev. 2014, 39, 530–545. [Google Scholar]
- Nelson, D.B.; Nehrir, M.H.; Wang, C. Unit sizing and cost analysis of stand-alone hybrid wind/PV/fuel cell power generation systems. Renew Energy 2006, 31, 1641–1656. [Google Scholar] [CrossRef]
- Ekren, O.; Ekren, B.Y. Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing. Appl. Energy 2010, 87, 592–598. [Google Scholar] [CrossRef]
- Yang, H.X.; Zhou, W.; Lu, L.; Fang, Z.H. Optimal sizing method for stand-alone hybrid solar-wind system with LPSP technology by using genetic algorithm. Sol. Energy 2008, 82, 354–367. [Google Scholar] [CrossRef]
- HOMER ENERGY. Available online: http://www.homerenergy.com (accessed on 4 March 2016).
- IHoGA (Improved Hybrid Optimization by Genetic Algorithms). Available online: http://personal.unizar.es/rdufo/index.php?option=com_weblinks&view=category&id=9&Itemid=119&lang=en (accessed on 7 March 2016).
- Taguchi, G.; Elsayed, E.A.; Hsiang, T.C. Quality Engineering in Production Systems; McGraw-Hill Book Co.: New York, NY, USA, 1989; pp. 1–10. [Google Scholar]
- Small wind turbines, 1–6 kW. Greenspec. Available online: http://www.greenspec.co.uk/building-design/small-wind-turbines/ (accessed on 4 March 2016).
- Borowy, B.S.; Salameh, Z.M. Optimum Photovoltaic Array Size for a Hybrid Wind/PV System. IEEE Trans. Energy Conv. 1994, 9, 482–488. [Google Scholar] [CrossRef]
- Steiner, N.Y.; Mocoteguya, P.; Candussoc, D.; Hissel, D.; Hernandez, A.; Aslanides, A. A review on PEM voltage degradation associated with water management: Impacts, influent factors and characterization. J. Power Sources 2008, 183, 260–274. [Google Scholar] [CrossRef]
- Lingfeng, W.; Singh, C. Compromise between cost and reliability in optimum design of an autonomous hybrid power system using mixed-integer PSO algorithm. In Proceedings of the International Conference on Clean Electrical Power, Capri, Italy, 21–23 May 2007; pp. 682–689.
- Cai, W. The extension set and incompatibility problem. J. Sci. Explor. 1983, 1, 81–93. [Google Scholar]
- Dingwall, R.B. Development and product integration of a reliable optoelectronic system using Taguchi method. In Proceedings of the Annual Reliability and Maintainability Symposium, Orlando, FL, USA, 29–31 January 1991; pp. 541–546.
- Huang, K.H.; Shu, W.C. Multi-objective optimized design of permanent magnet motor by using the taguchi method with robust rules. In Proceedings of the 9th Intelligent Living Technology Conference (ILT2014), Taichung, Taiwan, 6 June 2014; pp. 202–205.
- Wang, M.H.; Chao, K.H. Application of the Extension Neural Network-Type 3 to Defect Recognition of Car Engine. ICIC Express Lett. 2012, 6, 417–423. [Google Scholar]
- Wang, M.H.; Huang, M.L.; Liou, K.J. Application of Extension Theory with Chaotic Signal Synchronization to Detect Islanding Effect of Photovoltaic Power System. Int. J. Photoenergy 2015, 2015. [Google Scholar] [CrossRef]
- Wang, M.H.; Huang, M.L.; Liou, K.J. A Novel Islanding Detection Method for Grid Connected Photovoltaic Systems. IET Renew. Power Gener. 2015, 6, 700–709. [Google Scholar] [CrossRef]
Equipment Name | Equipment Cost | Unit Capacity | Cost (USD) |
---|---|---|---|
Wnd power | CW | 1000 W | 688 |
PV power system | CPV | 230 W | 565 |
Hydrogen tank | CHT | 40 L | 235 |
Fuel Cell | CFC | 100 W | 1250 |
Electrolyzer | CE | 100 W | 1563 |
Design Factors | Level 1 | Level 2 | Level 3 | |
---|---|---|---|---|
Wind power | QW | 1 | 2 | 3 |
PV power | QPV | 3 | 4 | 5 |
Hydrogen tank | QHT | 10 | 15 | 20 |
Fuel Cell | QFC | 3 | 4 | 5 |
Electrolyzer | QE | 2 | 3 | 4 |
L18 | QW | QPV | QHT | QFC | QE |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 | 2 | 2 |
3 | 1 | 3 | 3 | 3 | 3 |
4 | 2 | 1 | 1 | 2 | 2 |
5 | 2 | 2 | 2 | 3 | 3 |
6 | 2 | 3 | 3 | 1 | 1 |
7 | 3 | 1 | 2 | 1 | 3 |
8 | 3 | 2 | 3 | 2 | 1 |
9 | 3 | 3 | 1 | 3 | 2 |
10 | 1 | 1 | 3 | 3 | 2 |
11 | 1 | 2 | 1 | 1 | 3 |
12 | 1 | 3 | 2 | 2 | 1 |
13 | 2 | 1 | 2 | 3 | 1 |
14 | 2 | 2 | 3 | 1 | 2 |
15 | 2 | 3 | 1 | 2 | 3 |
16 | 3 | 1 | 3 | 2 | 3 |
17 | 3 | 2 | 1 | 3 | 1 |
18 | 3 | 3 | 2 | 1 | 2 |
L18 | βP | Cost (USD) |
---|---|---|
1 | 0.35927 | 11,609 |
2 | 0.32500 | 16,162 |
3 | 0.27777 | 20,715 |
4 | 0.21527 | 15,110 |
5 | 0.15833 | 19,663 |
6 | 0.14305 | 15,777 |
7 | 0.10416 | 17,286 |
8 | 0.07316 | 17,150 |
9 | 0.08333 | 18,174 |
10 | 0.36388 | 18,022 |
11 | 0.33472 | 15,300 |
12 | 0.28055 | 15,164 |
13 | 0.19444 | 15,972 |
14 | 0.15972 | 16,775 |
15 | 0.18472 | 17,803 |
16 | 0.09444 | 19,711 |
17 | 0.09305 | 16,050 |
18 | 0.07638 | 16,853 |
L18 | Comprehensive Correlative Degree |
---|---|
1 | −0.02697 |
2 | −0.15052 |
3 | −0.74338 |
4 | 0.110458 |
5 | −0.39659 |
6 | 0.162556 |
7 | 0.059634 |
8 | 0.068294 |
9 | −0.07669 |
10 | −0.45393 |
11 | −0.45393 |
12 | 0.006634 |
13 | 0.064505 |
14 | 0.046478 |
15 | −0.14816 |
16 | −0.30322 |
17 | 0.216926 |
18 | 0.118986 |
Parameter | Load | QW | QPV | QHT | QFC | QE |
---|---|---|---|---|---|---|
Level | 2 | 2 | 1 | 1 | 1 | 2 |
Optimum quantity | 500 W | 2 | 3 | 10 | 3 | 3 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.-H.; Huang, M.-L.; Zhan, Z.-Y.; Huang, C.-J. Application of the Extension Taguchi Method to Optimal Capability Planning of a Stand-alone Power System. Energies 2016, 9, 174. https://doi.org/10.3390/en9030174
Wang M-H, Huang M-L, Zhan Z-Y, Huang C-J. Application of the Extension Taguchi Method to Optimal Capability Planning of a Stand-alone Power System. Energies. 2016; 9(3):174. https://doi.org/10.3390/en9030174
Chicago/Turabian StyleWang, Meng-Hui, Mei-Ling Huang, Zi-Yi Zhan, and Chong-Jie Huang. 2016. "Application of the Extension Taguchi Method to Optimal Capability Planning of a Stand-alone Power System" Energies 9, no. 3: 174. https://doi.org/10.3390/en9030174
APA StyleWang, M. -H., Huang, M. -L., Zhan, Z. -Y., & Huang, C. -J. (2016). Application of the Extension Taguchi Method to Optimal Capability Planning of a Stand-alone Power System. Energies, 9(3), 174. https://doi.org/10.3390/en9030174