Indices to Study the Electrical Power Signals in Active and Passive Distribution Lines: A Combined Analysis with Empirical Mode Decomposition
Abstract
:1. Introduction
2. Theoretical Framework
2.1. HHT and EMD
2.2. The Three Indices for an Electrical Signal
3. Description of the System Being Tested and Measured Power Data
4. Results and Discussion
4.1. FFT Results
4.2. Wavelet Results
4.3. HHT-EMD Results Compared to FFT and Wavelet Results: Calculation of Frequencies of IMFs
4.4. The Indices: Numerical Evaluation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Farzanehrafat, A.; Watson, R. Power quality state estimator for smart distribution grids. IEEE Trans. Power Syst. 2013, 28, 2183–2191. [Google Scholar]
- Smart Grid System Report, U.S. Department of Energy, August 2014. Available online: http://energy.gov/sites/prod/files/2014/08/f18/SmartGrid-SystemReport2014.pdf (accessed on 3 October 2015).
- EPRI, Smart Grid Demonstration-Integration of Distributed Energy Resources. 2014. Available online: http://smartgrid.epri.com/Demo.aspx (accessed on 3 October 2015).
- Tcheou, M.P.; Lovisolo, L.; Ribeiro, M.V.; da Silva, E.A.B.; Rodrigues, M.A.M.; Romano, J.M.T.; Diniz, P.S.R. The compression of electric signal waveforms for smart grids: State of the art and future trends. IEEE Trans. Smart Grid 2014, 5, 291–302. [Google Scholar]
- Beyer, M.; Laney, D. The Importance of Big Data: A Definition; Gartner Research Report; Gartner: Stamford, CT, USA, 2012. [Google Scholar]
- Ning, J.; Wang, J.; Gao, W.; Liu, C. A wavelet-based data compression technique for smart grid. IEEE Trans. Smart Grid 2011, 2, 212–218. [Google Scholar] [CrossRef]
- IEEE Recommended Practice for Monitoring Electric Power Quality; IEEE Standard 1159-2009; IEEE: New York, NY, USA, 2009.
- Huang, S.-J.; Jou, M.-J. Application of arithmetic coding for electric power disturbance data compression with wavelet packet enhancement. IEEE Trans. Power Syst. 2004, 19, 1334–1341. [Google Scholar]
- Ribeiro, M.V.; Romano, J.M.T.; Duque, C.A. An improved method for signal processing and compression in power quality evaluation. IEEE Trans. Power Deliv. 2004, 19, 464–471. [Google Scholar]
- Ribeiro, M.V.; Park, S.H.; Romano, J.M.T.; Mitra, S.K. A novel MDL-based compression method for power quality applications. IEEE Trans. Power Deliv. 2007, 22, 27–36. [Google Scholar] [CrossRef]
- Vergura, S. Big data and efficiency of PV plants, IMEKO TC-4. In Proceedings of the International Symposium on Electrical Quantities, Benevento, Italy, 15–17 September 2014.
- Eftekharnejad, S.; Vittal, V.; Heydt, G.T.; Keel, B.; Loehr, J. Impact of increased penetration of photovoltaic generation on power systems. IEEE Trans. Power Syst. 2013, 28, 893–901. [Google Scholar] [CrossRef]
- Du, W.; Wang, H.F.; Dunn, R. Power system small-signal oscillation stability as affected by large-scale PV penetration. International Conference on Sustainable Power Generation and Supply 2009, 1–4, 1684–1689. [Google Scholar]
- Gopakumar, P.; Jaya Bharata Reddy, M.; Kumar Mohanta, D. Stability concerns in smart grid with emerging renewable energy technologies. Int. J. Electr. Power Compon. Syst. 2014, 42, 418–425. [Google Scholar] [CrossRef]
- Cecati, C.; Citro, C.; Siano, P. Combined operations of renewable energy systems and responsive demand in a smart Grid. IEEE Trans. Sustain. Energy 2011, 2, 468–476. [Google Scholar] [CrossRef]
- Guo, Y.; Li, C.; Li, Y.; Gao, S. Research on the power system fault classification based on HHT and SVM using wide-area information. Energy Power Eng. 2013, 5, 138–142. [Google Scholar] [CrossRef]
- Senroy, N.; Suryanarayanan, S.; Ribeiro, P.F. An improved Hilbert-Huang method for analysis of time-varying waveforms in power quality. IEEE Trans. Power Syst. 2007, 22, 1843–1850. [Google Scholar] [CrossRef]
- Mehta, K.; Russell, B.D. Data compression for digital data from power systems disturbances: Requirements and technique evaluation. IEEE Trans. Power Deliv. 1989, 4, 1683–1688. [Google Scholar] [CrossRef]
- Gerek, O.N.; Ece, D.G. Compression of power quality event data using 2D representation. Electr. Power Syst. Res. 2008, 78, 1047–1052. [Google Scholar]
- Kraus, J.; Tobiska, T.; Bubla, V. Looseless encodings and compression algorithms applied on power quality datasets. In Proceedings of the 20th International Conference and Exhibition on Electricity Distribution—Part 1, Prague, Czech Republic, 8–11 June 2009; pp. 1–4.
- Kraus, J.; Stepan, P.; Kukacka, L. Optimal data compression techniques for smart grid and power quality trend data. In Proceedings of the 15th International Conference on Harmonics and Quality of Power (ICHQP), Hong Kong, China, 17–20 June 2012; pp. 707–712.
- Qing, A.; Hongtao, Z.; Zhikun, H.; Zhiwen, C. A compression approach of power quality monitoring data based on two-dimension dct. In Proceedings of the 2011 Third International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Shanghai, China, 6–7 January 2011; pp. 20–24.
- Tse, N.C.F.; Chan, J.Y.C.; Lai, L.L. Development of a smart metering scheme for building smart grid system. In Proceedings of the 8th International Conference on Advances in Power System Control, Operation and Management (APSCOM 2009), Hong Kong, China, 8–11 November 2009; pp. 1–5.
- Zhang, M.; Li, K.; Hu, Y. A high efficient compression method for power quality applications. IEEE Trans. Instrum. Meas. 2011, 60, 1976–1985. [Google Scholar] [CrossRef]
- Vergura, S.; Siracusano, G.; Carpentieri, M.; Finocchio, G. A nonlinear and non-stationary signal analysis for accurate power quality monitoring in smart grids. In Proceedings of the 3rd Renewable Power Generation Conference (IET-RPG), Naples, Italy, 24–25 September 2014; pp. 1–6.
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Oberlin, T.; Meignen, S.; Perrier, V. An alternative formulation for the empirical mode decomposition. IEEE Trans. Signal Process. 2012, 60, 2236–2246. [Google Scholar] [CrossRef]
- Coughlin, K.; Tung, K. 11-year solar cycle in the stratosphere extracted by the empirical mode decomposition method. Adv. Space Res. 2004, 34, 323–329. [Google Scholar] [CrossRef]
- Peng, S.; Hwang, W. Adaptive signal decomposition based on local narrow band signals. IEEE Trans. Signal Process. 2008, 56, 2669–2676. [Google Scholar] [CrossRef]
- Mandic, D.P.; Rehman, N.U.; Wu, Z.; Huang, N.E. Empirical mode decomposition-based time-frequency analysis of multivariate signals. IEEE Signal Process. Mag. 2013, 30, 74–86. [Google Scholar] [CrossRef]
- Huang, N.E.; Kunot, A. An optimization based EMD scheme. J. Comput. Appl. Math. 2013, 240, 174–183. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, M.; Yu, Q.; Zhang, H. Comparing the applications of EMD and EEMD on time-frequency analysis of seismic signal. J. Appl. Geophys. 2012, 83, 29–34. [Google Scholar] [CrossRef]
- Vergura, S.; Acciani, G.; Amoruso, V.; Patrono, G.E.; Vacca, F. Descriptive and inferential statistics for supervising and monitoring the operation of PV plants. IEEE Trans. Ind. Electron. 2009, 56, 4456–4464. [Google Scholar] [CrossRef]
- Vergura, S.; Zivieri, R.; Carpentieri, M. Seasonal signal analysis of distribution lines in smart grids via hilbert-huang transform. In Proceedings of the 15th International Conference on Environment and Electrical Engineering (EEEIC), Roma, Italy, 10–13 June 2015; pp. 1420–1425.
- Huang, N.E.; Attoh-Okine, N.O. The Hilbert-Huang Transform in Engineering; CRC Press: London, UK, 2005. [Google Scholar]
- Laurent, H.; Doncarli, C. Stationary index for abrupt changes detection in the time-frequency plane. IEEE Signal Process. Lett. 1998, 5, 43–45. [Google Scholar] [CrossRef]
- Huang, N.E.; Wu, Z.; Long, S.R.; Arnold, K.C.; Chen, X.; Blank, K. On instantaneous frequency. Adv. Adapt. Data Anal. 2009, 1, 177–229. [Google Scholar] [CrossRef]
- Zivieri, R.; Santoro, G.; Bortolani, V. Anharmonicity on Al(100) and Al(111) surfaces. Phys. Rev. B 1999, 59, 15959–15965. [Google Scholar] [CrossRef]
- Carpentieri, M.; Torres, L.; Martinez, E. Temperature dependence of microwave nano-oscillator linewidths driven by spin-polarized currents: A micromagnetic analysis. IEEE Trans. Magn. 2009, 45, 3426–3429. [Google Scholar] [CrossRef]
ν (×10−6 Hz) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P1 | 439.48 | 278.28 | 151.09 | 73.28 | 32.65 | 17.28 | 8.50 | 2.21 | 0.17 | 0.08 | 0.13 | 0.12 | 0.04 | 0.02 |
P2 | 440.85 | 283.98 | 156.79 | 82.73 | 43.01 | 22.75 | 11.82 | 5.16 | 1.29 | 0.79 | 0.46 | 0.12 | 0.08 | 0.04 |
P3 | 426.45 | 272.28 | 155.71 | 88.64 | 44.50 | 19.70 | 10.12 | 5.25 | 2.37 | 1.00 | 0.38 | 0.13 | 0.08 | 0.04 |
Q1 | 444.30 | 288.14 | 163.33 | 93.64 | 51.75 | 27.06 | 12.08 | 5.83 | 3.12 | 0.96 | 0.12 | 0.14 | 0.08 | 0.04 |
Q2 | 456.71 | 292.76 | 156.75 | 90.10 | 51.59 | 27.07 | 11.91 | 4.79 | 0.83 | 0.21 | 0.13 | 0.08 | 0.04 | - |
Q3 | 416.99 | 291.72 | 184.56 | 127.44 | 87.01 | 54.83 | 30.68 | 13.57 | 6.87 | 3.41 | 0.71 | 0.13 | 0.12 | 0.08 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergura, S.; Zivieri, R.; Carpentieri, M. Indices to Study the Electrical Power Signals in Active and Passive Distribution Lines: A Combined Analysis with Empirical Mode Decomposition. Energies 2016, 9, 211. https://doi.org/10.3390/en9030211
Vergura S, Zivieri R, Carpentieri M. Indices to Study the Electrical Power Signals in Active and Passive Distribution Lines: A Combined Analysis with Empirical Mode Decomposition. Energies. 2016; 9(3):211. https://doi.org/10.3390/en9030211
Chicago/Turabian StyleVergura, Silvano, Roberto Zivieri, and Mario Carpentieri. 2016. "Indices to Study the Electrical Power Signals in Active and Passive Distribution Lines: A Combined Analysis with Empirical Mode Decomposition" Energies 9, no. 3: 211. https://doi.org/10.3390/en9030211
APA StyleVergura, S., Zivieri, R., & Carpentieri, M. (2016). Indices to Study the Electrical Power Signals in Active and Passive Distribution Lines: A Combined Analysis with Empirical Mode Decomposition. Energies, 9(3), 211. https://doi.org/10.3390/en9030211