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Abstract:

 This paper proposes a new robust two-degree-of-freedom (DoF) design method for controlling the nonlinear longitudinal speed problem of hybrid electric vehicles (HEVs). First, the uncertain parameters of the HEV model are described by fuzzy α-cut representation, in which the interval uncertainty and the possibility can be simultaneously indicated by the fuzzy membership function. For the fuzzy parametric uncertain system, the maximum uncertainty interval can be translated into the weighting matrix Q of the linear quadratic tracking problem to guarantee that the designed feedback controller is robust. Second, the fuzzy forward compensator is incorporated with a robust feedback controller to enhance the system tracking response. The simulation results demonstrate that the proposed controller has higher tracking performance compared to the single-DoF self-tuning fuzzy logic controller or conventional optimal H∞ controller.
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1. Introduction


Recently, increasing concern about a cleaner environment and fuel conservation has made hybrid electric vehicles (HEVs) an indispensable next-generation technology. HEVs coordinate both electric machines and internal combustion engines (ICEs) to deliver propulsion power. Many previous studies have focused on the energy management and optimal power flow of HEV dynamics [1,2,3,4]. However, HEV speed control techniques are drastically different than those of a conventional vehicle, because HEVs typically move in electric mode, and ICEs can be operated at higher speeds. Therefore, the drive performance and wide-range speed control algorithm of HEVs are also key concerns [5]. The practical application of speed control includes adaptive cruise control, intelligent collision avoidance and car following [6,7,8].



In the traditional ICE propulsion system, the vehicle speed and engine power are directly controlled by the mechanical throttle control system (MTCS). However, the hybrid powertrain request does not go directly to the engine in HEVs; instead, the MTCS is replaced by an electronic throttle control system (ETCS) [9,10,11]. The ETCS system is a complex engine mechanism that utilizes a DC servo motor to regulate the throttle position. With ETCS, the desired torque and a wide range of vehicle speeds can be achieved in HEVs [12]. In addition, HEV speed control must combine ETCS with nonlinear vehicle dynamics. Because of factors such as the uncertainty parameters of nonlinear elements and instability from environmental disturbances, designing an algorithm for HEV speed control is challenging [13].



Longitudinal speed control belongs to a group of wide-range and cyclic operations. The goal of HEV speed response is to track a desired speed under any operating condition. A robust and adaptive internal model control algorithm was used to track speed and reject road grade disturbance in [14]. The sliding mode control, incorporated with an adaptive proportional-integral-derivative (PID) controller, was proposed to solve the uncertain speed servo problem [15]. The speed control performance among the state feedback controller, intelligent control techniques and adaptive controller was compared in [16]. However, these previous studies have two limitations. First, the uncertainty of the dynamic system model can generally be described as a bounded interval model that considers each operational point with equal probability. Compared to the interval approach, the fuzzy [image: there is no content]-cut representation of uncertainties can use the fuzzy membership function to indicate the possibilities and intervals of variations. Such a fuzzy parametric uncertain system (FPUS) can be viewed as an extension of interval systems and has attracted considerable attention from researchers [17,18,19]. In [20], the problem of designing a robust controller for FPUS was converted into an optimal linear quadratic regulator (LQR) control approach. The optimal LQR controller, which was designed for the worst-case condition ([image: there is no content], can stabilize all systems for various values of [image: there is no content]. Second, previous studies have addressed control schemes in one-degree-of-freedom (1-DoF) controllers, which may address them for specific types of performance, but be compromised in others. Two-degree-of-freedom (2-DoF) controllers can fulfill another performance requirement by adding a feed-forward controller or prefilter. For example, combining a forward fuzzy prefilter and a feedback controller for hydraulically-actuated robotic mechanisms was studied in [21]. Because the prefilter can compensate the effects of the dead-zone of the electromagnetic proportional control valve, the 2-DoF controller has quite good tracking trajectories compared to the conventional 1-DoF controller. In [22], the 2-DoF integral-P (IP) controller for electrical drives was shown to have good reference tracking and load-torque rejection performance. Coordinating the inner loop observer to reject disturbances and an outer loop tracking controller to achieve control performances was successful implemented in robust yaw stability control of electric vehicles [23]. Therefore, 2-DoF control systems can be used to enhance wide-range operations.



This paper investigates the nonlinear longitudinal speed control model of HEVs with fuzzy parametric uncertain systems and proposes a new robust 2-DoF design method of speed control systems for HEVs. The design procedure consists of two steps. In the first step, the different loads of HEV components are described according to a fuzzy [image: there is no content]-cut number, and the maximum uncertainty interval of the system is translated into the weighting matrix [image: there is no content] of the linear quadratic tracking (LQT) servo problem, to guarantee that the designed feedback optimal controller is robust under the worst-case condition. In the second step, a fuzzy forward compensator is incorporated with a robust feedback controller to enhance the system response. The robust property of the proposed controller can track a desired speed at a wide range of vehicle speeds with varying road grades. In addition, the fast dynamic response has significant effects on engine performance, fuel consumption and pollution emission, especially in the transition mode of the hybrid operating system of HEVs. The effectiveness of this longitudinal speed controller has been demonstrated in simulation studies.



The remainder of this paper is organized as follows. Section 2 details the fuzzy parametric uncertain system for HEV speed control. In Section 3, the methodology for the synthesis of the 2-DoF fuzzy controller and the stability analysis of the proposed controller are presented. The simulation implementation of the proposed controller, with other controllers, such as the [image: there is no content] and 1-DoF self-tuning fuzzy PID controllers, are described in Section 4. Finally, Section 5 presents the conclusions of this study.




2. Problem Formulation and Longitudinal Speed Control Modeling


This paper focuses on the speed control of a small HEV with an uncertain parameter of ETCS and a nonlinear vehicle dynamic model, the control scheme for which is shown in Figure 1. The uncertainty component parameters are listed in Table 1 [12].


Figure 1. The speed control scheme of the HEV with an electronic throttle control system (ETCS) and a nonlinear vehicle dynamic system.
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Table 1. The nominal values and uncertainty parameters of the HEV.



	
ETCS




	
Descriptions

	
Symbol

	
Nominal Value (SI unit)

	
Uncertainty Bounds






	
Armature resistance

	
[image: there is no content]

	
2 [image: there is no content]

	
[1.5,2.5]




	
Armature inductance

	
[image: there is no content]

	
0.003 H

	
[0.002,0.004]




	
Back electromotive force (EMF) constant

	
[image: there is no content]

	
0.11 Vs/rad

	
[0.07,0.15]




	
Gear ratio

	
[image: there is no content]

	
4

	
[2,6]




	
Motor torque constant

	
[image: there is no content]

	
0.1 N m/A

	
[0.08,0.12]




	
Throttle spring constant

	
[image: there is no content]

	
0.4 N ms/rad

	
[0.3,0.5]




	
Equivalent inertia

	
[image: there is no content]

	
0.021 kg[image: there is no content]

	
[0.009,0.0502]




	
Damping constant

	
[image: there is no content]

	
0.482 N ms/rad

	
[0.082,1.443]




	
Vehicle Dynamic Model




	
Descriptions

	
Symbol

	
Nominal Value (SI unit)

	
Uncertainty Bounds




	
Vehicle mass

	
[image: there is no content]

	
1000 kg

	
[750,1250]




	
Drag coefficient

	
[image: there is no content]

	
0.48 N/[image: there is no content]

	
[0.4,0.56]




	
Engine force coefficient

	
[image: there is no content]

	
12500 N

	
[10000,15000]




	
Engine idle force

	
[image: there is no content]

	
6400 N

	
[5500,7300]




	
Engine time constancy

	
[image: there is no content]

	
0.5 s

	
[0.2,0.8]




	
Bearing damping coefficient

	
[image: there is no content]

	
0.035 N ms/rad

	
[0.03,0.04]




	
Radius of tire

	
[image: there is no content]

	
70 mm

	
[50,90]




	
Friction coefficient

	
[image: there is no content]

	
0.011

	
[0.01,0.012]




	
Road slope/grade

	
[image: there is no content]

	
Variable

	
[[image: there is no content]]










2.1. The Architecture of the HEV Model


The speed control architecture of the HEV includes an engine with ETCS and a nonlinear vehicle longitudinal motion model. The ETCS uses a DC servo motor to adjust the throttle, as expressed in the governing differential Equations (1)–(3) [9].


[image: there is no content]



(1)






[image: there is no content]



(2)






[image: there is no content]



(3)




where [image: there is no content] is armature current (A), [image: there is no content] is the spring torque and [image: there is no content] and [image: there is no content] are the angular position (rad) of the armature and throttle plate, respectively. [image: there is no content] and [image: there is no content] represent the armature resistance and inductance, respectively. The back electromotive force constant is [image: there is no content]. The parameters [image: there is no content] and [image: there is no content] are defined as the motor shaft and throttle viscous damping coefficients, respectively. [image: there is no content] is the torque due to airflow. Motor inertia and throttle inertia are defined as [image: there is no content] and [image: there is no content], respectively. Assume the gear ratio [image: there is no content] and the motor torque [image: there is no content] can be expanded as:


[image: there is no content]



(4)






[image: there is no content]



(5)




where [image: there is no content] is the torque transmitted from gears, [image: there is no content] is the load torque and [image: there is no content] is motor torque constant.



Equations (1) and (2) can be expressed in terms of throttle plate angular rotation as:


[image: there is no content]



(6)






[image: there is no content]



(7)







For simplicity, let spring torque [image: there is no content], equivalent inertia [image: there is no content] and damping constant [image: there is no content]. Taking the Laplace transform of Equations (6) and (7) into the s-domain, we obtain:


[image: there is no content]



(8)







From Table 1, the nominal transfer function of ETCS is given as:


[image: there is no content]



(9)







The dynamics of the nonlinear HEVs is given as [12,16]:


[image: there is no content]



(10)




where [image: there is no content] and [image: there is no content] are the engine idle force and engine force. [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are the coefficients of engine force, friction, drag and bearing damping, respectively. [image: there is no content] is the engine time constant. [image: there is no content] is the road slope.



The Simulink model of the nonlinear vehicle dynamic Equation (10) is depicted in Figure 1. The procedure of linearization of the nominal model [12] is as follows: First, [image: there is no content] = [image: there is no content] is considered. Then, by using the MATLAB linearization command “linmod”, the numerical transfer function of the vehicle which is linearized around the nominal value of Table 1 is given as:


[image: there is no content]



(11)







Combining Equations (9) and (11) and referring to Table 1, the nominal transfer function and the lowest and top-most bounds of the overall speed control system are given as:


V(s)Ea(S)=GN(s)=5×107s5+691.7s4+1.95×104s3+6.17×104s2+5.08×104s+25.4GL(s)=1.87×108s5+764s4+1.19×104s3+9.1×104s2+2.5×105s+200GU(s)=1.7×107s5+655s4+2.2×104s3+3.9×104s2+1.56×104s+5.5



(12)







The transfer function of the system under parametric uncertainty can be described as the plant with six uncertain interval parameters, [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content].


[image: there is no content]



(13)








2.2. Fuzzy Parametric α-Cut Representation of the Uncertain HEV Model


The interval uncertainty representation assumes all of the parameters have the same probability. However, this is not true in practical applications. In this study, the uncertain parameters are represented by a fuzzy number [image: there is no content] with membership function [image: there is no content]. The membership function [image: there is no content] can be any nonsymmetrical membership function, but decreases to the interval endpoint. The fuzzy parametric uncertainty [image: there is no content]-cut is defined as:


[image: there is no content]



(14)




where [image: there is no content] is an increasing function and [image: there is no content] is a decreasing function. Let [image: there is no content] be the membership level of [image: there is no content], as shown in Figure 2; we obtain:


[image: there is no content]



(15)






Figure 2. Fuzzy [image: there is no content]-cut representation of the uncertain parameter.
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Consider the uncertain interval model Equation (13). Assume that the only information available for the values of the uncertain parameters [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], is the linguistic information “around the nominal value of Table 1”, by using interval arithmetic (affine linearization) [17,19,20]; the linguistic information can be represented as a fuzzy set with triangular membership functions, where [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] (Figure 3). For [image: there is no content]-cut = 1, we obtain a nominal condition; for [image: there is no content]-cut = 0, we obtain maximum uncertainty. The fuzzy numbers correspond to their own confidence level [image: there is no content]-cut and can be interpreted as possibility distributions. Finally, the nonlinear HEV system can translate into a fuzzy parametric uncertain system with a degree of confidence of [image: there is no content].


GN(s,qi(α=1))=5×107s5+691.7s4+1.95×104s3+6.17×104s2+5.08×104s+25.4GL(s,qi(α=0))=1.87×108s5+764s4+1.19×104s3+9.1×104s2+2.5×105s+200GU(s,qi(α=0))=1.7×107s5+655s4+2.2×104s3+3.9×104s2+1.56×104s+5.5



(16)






Figure 3. Membership function for [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] .



[image: Energies 09 00290 g003 1024]






This paper focuses on the problem of longitudinal speed control for HEV systems. The designed controller must not only stabilize the fuzzy parametric uncertain system, but also satisfy the performance requirements.





3. Controller Design


3.1. Optimal-Based Robust Feedback Controller Design


Nonlinear dynamic equations can be represented as linear models at specific operating points. When a nonlinear system can be stabilized at different operating points, it is equivalent to stabilizing the parametric uncertain linear model. Consider an uncertain system represented as a system with fuzzy parametric uncertainty, as described by the following transfer function:


[image: there is no content]



(17)




where [image: there is no content], [image: there is no content] represents the fuzzy interval number. The [image: there is no content]-cut confidence is given as [image: there is no content]



Furthermore, the fuzzy parametric uncertain system is realized in state-space representation by a controllable canonical form:


x˙=[01⋯0⋮⋮⋱⋮00⋯1−q˜0(α)−q˜1(α)⋯q˜n−1(α)]x+[0⋮01]uy=[p˜0(α)p˜1(α)⋯p˜n−1(α)]x



(18)







The compact representation of Equation (18) is:


x˙=A(q˜(α))x+Buy=C(p˜(α))x



(19)







Assume that there exists a nominal value [image: there is no content], such that [image: there is no content] is stable; there exists a matrix [image: there is no content]). The uncertainty in A is represented as:


[image: there is no content]



(20)







The fuzzy parametric uncertain system can then be rewritten as:


[image: there is no content]



(21)







The problem of designing a robust controller for a system with fuzzy parametric uncertainty lies in finding a feedback control law [image: there is no content] such that the closed loop system:


[image: there is no content]



(22)




is stable for all [image: there is no content]. For the system with fuzzy parametric uncertainty in Equation (19), let the cost function be designed as:


[image: there is no content]



(23)




where F is an upper bound on the uncertainty. Now, the aforementioned robust control problem can be translated into an optimal control problem by using an LQR approach. Generally, the weighting matrices Q and R are often determined arbitrarily or based on trial and error. In this study, we assume the uncertain system [image: there is no content]) is bounded; the upper bound on F can be written as:


[image: there is no content]



(24)




When [image: there is no content], the cost function is rewritten as:


[image: there is no content]



(25)







The LQR optimal control problem involves finding the optimal feedback gain [image: there is no content] that minimizes the cost function. When there exists a feedback control law [image: there is no content], such that Equation (22) is stable for all [image: there is no content], the design of a robust controller is completed. For a system with fuzzy parametric uncertainty, the solution to the LQR problem is the solution to the robust control problem. The following proposition demonstrates how to determine the weighting matrix [image: there is no content] in the LQR problem.



For [image: there is no content], consider the maximum uncertainty described by [image: there is no content]. For [image: there is no content], the uncertainty [image: there is no content] can be written as any value in [image: there is no content]. For the sake of demonstration, assume that the nominal value is [image: there is no content]. In Equation (21), the uncertain system [image: there is no content] can be written as:


[image: there is no content]



(26)







The maximum uncertainty [image: there is no content] is bounded by:


[image: there is no content]



(27)







Let [image: there is no content], and designate [image: there is no content] as the cost function for the LQR optimal control problem. With the feedback control law [image: there is no content], the characteristic equation of the closed loop system in Equation (22) can be written as:


[image: there is no content]



(28)







Kharitonov’s theorem can be used to determine whether the interval polynomial is stable. If and only if all four Kharitonov extreme characteristic polynomials have roots in the left-half plane (LHP), the optimal feedback controller design is a solution to stabilize all of the systems for various values of [image: there is no content].



For the linear quadratic tracking (LQT) problem, we cannot use the aforementioned algorithm directly. We must augment another system state. Define the augment system state [image: there is no content], and augment Equation (18) as:


[x˙x˙I]=[A0−C0][x(t)xI(t)]+[Bu0]u(t)+[0I]r(t)X¯=[x˙x˙I]



(29)







Then, the cost function in Equation (25) will be rewritten as:


[image: there is no content]



(30)







The tracking problem can be transformed into a stabilization problem. The block diagram for the HEV longitudinal speed control with a robust feedback controller is shown in Figure 4.


Figure 4. Block diagram for the HEV longitudinal speed control with robust feedback controller.
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3.2. Fuzzy Logic Forward Compensator Design


For accurate speed tracking, we need a controller that can exhibit robustness in stability, as well as in tracking performance. In Section 3.1, we complete the design of the optimal linear quadratic (LQ) feedback controller with robustness. However, neglecting the nonlinearities of the system may result in an LQ controller with poor tracking performance. Combining the forward and feedback controllers can therefore satisfy the performance requirements.



3.2.1. Forward Compensator Fc Design


As shown in Figure 4, a concern about the architecture is that the response to the reference input is driven only by the integrated error. There is no forward path from the reference input to the system, and the transient response may be slow. This drawback can be mitigated by adding the forward compensator [image: there is no content] shown in Figure 5. The control law for the revised implementation can be written as:


[image: there is no content]



(31)






Figure 5. Block diagram for the HEV longitudinal speed control with forward compensator.
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Note that the tracking error includes the output of the integrator and the state feedback components. Thus, this type of 2-DoF approach has the potential to enhance the performance problems identified in the original implementation. The entire design process of the forward controller ([image: there is no content]) is described as follows.



Assume the state X of the HEV system in Figure 4 can be partitioned into [image: there is no content] and [image: there is no content]. [image: there is no content] are the parts we care about for tracking ([image: there is no content]) that we assume are directly available from [image: there is no content], and [image: there is no content] are the parts we do not care about for tracking ([image: there is no content]). The matrices of [image: there is no content] and [image: there is no content] can be considered selectors with diagonals of one and zero, but they do not always take this form. Assume [image: there is no content] is the complementary matrix of [image: there is no content][image: there is no content] and state (vehicle speed) x is part of state vector [image: there is no content]; let [image: there is no content], the control input [image: there is no content] in Equation (31) is rewritten as:


[image: there is no content]



(32)







To proceed, define [image: there is no content]; then:


[image: there is no content]



(33)







Finally, the control input becomes:


[image: there is no content]



(34)







Using [image: there is no content] ensures avoiding double counting in the feedback. Without loss of generality, we can use:


[image: there is no content]



(35)







The entire closed-loop dynamics of the 2-DoF controller system is expressed as:


[image: there is no content]



(36)







Because of the nonlinear properties of HEV speed control, through Equations (16) and (35), the matrix C is not constant, but the fuzzy parametric uncertainty. To obtain optimal system performance, the weighting ([image: there is no content]) of forward compensator [image: there is no content] should not be constant, either. The next section discusses how to use fuzzy logic controllers (FLCs) to tune the [image: there is no content] of forward compensator [image: there is no content].




3.2.2. The Weighting ([image: there is no content]) of Forward Compensator Tuning by FLC


An FLC is used to design the tuning of forward compensator [image: there is no content]. The inputs to the FLC are the error ([image: there is no content]) and change in error (ce), and the output variable is the [image: there is no content]. The input triangular membership functions are designed according to five linguistic terms: positive big (PB), positive (P), zero (Z), negative (N) and negative big (NB). The output linguistic levels are assigned as small (S), medium small (MS), medium (M), medium big (MB) and big (B). Twenty-five rules for using the trial and error method are shown in Table 2. The entire system diagram is depicted in Figure 6.


Figure 6. Block diagram for the HEV longitudinal speed control with the 2-DoF fuzzy controller. FLC, fuzzy logic controller.
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Table 2. The rule base of the FLC: positive big (PB), positive (P), zero (Z), negative (N), negative big (NB), small (S), medium small (MS), medium (M), medium big (MB) and big (B).



	
Error

	
NB

	
N

	
Z

	
P

	
PB




	
Change in Error






	
NB

	
S

	
S

	
MS

	
MS

	
M




	
N

	
S

	
MS

	
MS

	
M

	
MB




	
Z

	
MS

	
MS

	
M

	
MB

	
MB




	
P

	
MS

	
M

	
MB

	
MB

	
B




	
PB

	
M

	
MB

	
MB

	
B

	
B












3.3. Design Procedure


We summarize the design procedure for the proposed robust 2-DoF controller as follows.

	
Step 1: Linearize the nonlinear HEV model at specific operating points and represent as an uncertain interval model.



	
Step 2: The uncertain interval parameters are represented by a fuzzy number [image: there is no content] with membership function [image: there is no content]. Translate the uncertain interval system into the fuzzy parametric uncertain system.



	
Step 3: For [image: there is no content], the maximum uncertain interval of the system is translated into the weighting matrix [image: there is no content] of the linear quadratic tracking (LQT) servo problem.



	
Step 4: Design an optimal controller for [image: there is no content], which can be considered as the worst case condition.



	
Step 5: Use Kharitonov’s theorem to test whether the optimal feedback controller is a solution to stabilize all of the systems for various values of [image: there is no content].



	
Step 6: Design the FLC-based forward compensator to satisfy the performance requirements.










4. Simulation Results


This section illustrates how to design robust longitudinal speed control systems for HEVs based on a 2-DoF design method.



Simulation of Optimal Based Robust Feedback Controller


In Equation (16), the transfer function of the HEV system with parametric variation is expressed as:


[image: there is no content]



(37)







For convenience, we translate this equation into its controllable canonical form, and the transfer function of the parametric uncertain system in Equation (21) is expressed as:


x˙[01000001000001000001−[5.5 200]−[1.56 25]×104−[3.9 9.1]×104−[1.19 2.2]×104−[655 764]]︸Ax+[00001]︸BuuC=[[1.87 17]×1080000]



(38)







In order to satisfy the requirement of LQT, we augment the system Equations (38) to (29).



Using Equation (20), the maximum uncertainty [image: there is no content] is bounded by:


[image: there is no content]



(39)







The upper bound of the uncertainty in Equation (24) can be expressed as [image: there is no content]. Then, the LQT weighting matrix [image: there is no content] can be written as [image: there is no content]. Considering [image: there is no content] and solving the feedback control gain by using the LQT approach, we obtain [image: there is no content] as follows:


[image: there is no content]



(40)







With the feedback control law, all four of Kharitonov’s extreme characteristic polynomials over all of the operating conditions can be expressed as:


k1(s)=s6+753.5s5+40,997s4+9.9×105s3+1.47×107s2+1.38×108s+5.85×107k2(s)=s6+862.5s5+51,097s4+9.3×105s3+1.45×107s2+1.38×108s+6.45×108k3(s)=s6+862.5s5+40,997s4+9.3×105s3+1.47×107s2+1.38×108s+5.85×107k4(s)=s6+753.5s5+51,097s4+9.9×105s3+1.45×107s2+1.38×108s+6.45×108



(41)







We verify the conditions for robust stability in Equation (41) and find the entire fuzzy uncertain system to be stable. Furthermore, to demonstrate that the proposed feedback approach can consider robustness, we evaluate the proposed approach by comparing [image: there is no content] methods [12] with different cruise-tracking regimes.



The step responses of the system with two kinds of feedback controller are shown in Figure 7. The comparison of the time domain performance indices in terms of the overshoot (OS), rise time (RT), delay time (DT) and settling time (ST) that correspond to transient state characteristics is shown in Table 3. Both control schemes stabilize the entire uncertain system. The simulation results show higher overshoot and longer settling times in the [image: there is no content] controller. However, the proposed robust feedback controller yields longer response times.


Figure 7. Step response for the HEV speed control (a) with the [image: there is no content] controller and (b) with the robust feedback controller.
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Table 3. The comparison of the time domain performance index: overshoot (OS), rise time (RT), delay time (DT) and settling time (ST).



	
Controller

	
Condition

	
OS (%)

	
RT (s)

	
DT (s)

	
ST (s)






	
[image: there is no content] controller

	
Nominal

	
1.369

	
1.59

	
0.63

	
2.17




	
Lower Bound

	
0

	
2.86

	
0.2

	
5.27




	
Upper Bound

	
25.13

	
1.92

	
1.13

	
8.99




	
Proposed feedback controller

	
Nominal

	
0

	
1.7

	
0.61

	
2.8




	
Lower Bound

	
13.37

	
0.31

	
0.24

	
0.72




	
Upper Bound

	
0

	
5.27

	
1.67

	
8.77










Because the speed does not generally change stepwise in practical applications, trapezoidal speed profiles are used instead. In this case, the accurate tracking of the reference input during acceleration and deceleration is crucial. Again, the robust properties and tracking performance of the two control schemes are also assessed. The scenario of wide-range cruise-tracking performance is set as follows: the vehicle speed is 20 m/s for the first 6 s; there is then an acceleration at the rate of 6 m/s2; thence, the vehicle runs at a constant speed of 32 m/s for 8 to 12 s. For a time interval of 12 to 14 s, the vehicle runs in a decelerating mode at 4 m/s2, reaching 24 m/s; finally, from 14 to 20 s, the vehicle runs at a constant speed of 24 m/s. The wide-range cruise-tracking responses of the system with two types of feedback controllers are shown in Figure 8.


Figure 8. Wide range cruise tracking response for the HEV speed control (a) with the [image: there is no content] controller and (b) with the robust feedback controller.
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Although both the [image: there is no content] feedback controller and proposed LQ feedback controller are robust because of high nonlinearities in the HEV system, when the range of operation is complex, the single-type feedback controller deteriorates in tracking performance. Figure 8 shows that the 1-DoF fixed-value controller cannot yield adequate tracking performance. To improve the slow transient response and enhance the tracking performance of the 1-DoF robust feedback controller, it can be paired with the forward compensator [image: there is no content] in Figure 6. The proposed 2-DoF fuzzy controller has an additional component to compensate for the effects of the response.



Based on Figure 6, the FLC is a two input and one output system. For successful implementation of the fuzzy forward compensator, we must estimate the maximum excursion of the input and output signals of the fuzzy controller. Using trial and error, the universe of discourse in fuzzy membership function designed for the error, the change of error and the output covers a range of [–10,20], [–25,25] and [0.25,7.5], respectively.



The tracking performance of the designed 2-DoF controller is analyzed by comparing it to that of the self-tuning fuzzy logic PID (STF-PID) controller in [12]. The integral error performance indices are used to obtain greater insight into HEV tracking performance with two controllers. The wide-range cruise-tracking responses of the system with two types of controllers are shown in Figure 9. The comparison of input energy for the period from t =5 s to t = 16 s in the nominal condition are shown in Figure 10. Table 4 shows the performance index analysis of the integral squared error (ISE) and integral absolute error (IAE).


Figure 9. Wide range operation response for the HEV speed control (a) with STF-PID and (b) with the 2-DoF robust controller.
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Figure 10. Corresponding change in input energy for the period from t = 5 s to t = 16 s.
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Table 4. The comparison of the integral error performance index. IAE, integral absolute error; ISE, integral squared error; STF, self-tuning fuzzy logic.



	

	
IAE

	
ISE




	
Controller

	
Nominal

	
Lower

	
Upper

	
Nominal

	
Lower

	
Upper






	
STF-PID

	
13.58

	
12.94

	
13.27

	
86.80

	
68.77

	
88.18




	
2-DoF controller

	
7.35

	
6.59

	
8.15

	
44.59

	
49.07

	
45.84










The proposed 2-DoF controller uses more input energy to adjust the throttle position quickly to satisfy the performance requirement. Although the input energy of the proposed controller (0.0343) is bigger than that of STF-PID controller (0.0078), the performance of the proposed controller is higher than that of the STF-PID controller, as shown in Figure 9 and Table 4. Compared to the STF-PID controller, the maximum tracking errors (IAE, ISE) of the 2-DoF controller are smaller and reach 8.15 and 49.7, respectively. From the practical point of view, the accuracy of speed control is the key technology to improve many important applications of HEVs (E.g. adaptive cruise control, intelligent collision avoidance or car following). Besides, the accuracy of throttle position control can upgrade the fuel economy and reduce the pollutant emission. Furthermore, if the performance requirements concern the factor of input energy, based on the LQT character, the proposed methodology still has the flexibility to adjust the LQT weighting matrix R to reduce the magnitude of input energy.





5. Conclusions


In this paper, a 2-DoF robust fuzzy controller is successfully applied to the nonlinear uncertain HEV longitudinal speed control model. First, using the proposed algorithm, the uncertainty intervals of HEV dynamic systems are approximated by fuzzy α-cut coefficients. Subsequently, the maximum uncertainty interval is then translated into the weighting matrix Q of the LQT problem to guarantee that the designed optimal feedback controller is robust under various values of α [image: there is no content][0,1]. The robust stability of the longitudinal speed control is analyzed using Kharitonov’s theorem. Finally, to compensate for the longer response time of the single-type feedback controller, the forward compensator is connected to enhance tracking performance. In contrast to many previously-proposed nonlinear controllers, our controller is easy to understand and implement. The proposed 2-DoF method was successfully applied in speed tracking control of HEVs and can also be extended to general servo control design.
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