Evaluation of Batteries for Safe Air Transport
Abstract
:1. Introduction
2. Current Regulations
“Package contains lithium-ion cells or batteries. Handle with care. When package is damaged can cause fire. Special procedures should be followed: inspect the package and arrange repack by qualified persons when required. Contact Nr: 00XX XXXX XXX XXX.”
“Lithium Ion Batteries in compliance with Section II of PI966.”
“Package contains lithium ion cells or batteries. Handle with care. When package is damaged can cause fire. Special procedures should be followed: inspect the package and arrange repack by qualified persons when required. Contact Nr: 00XX XXXX XXX XXX.”
Compliance Tests
3. Hazards Associated with Degraded Batteries
“Waste batteries and batteries being shipped for recycling or disposal are prohibited from air transport unless approved by the appropriate national authority of the State of Origin and the State of the Operator.”UN Special Provision A183
“Lithium batteries identified by the manufacturer as being defective for safety reasons, or that have been damaged, that have the potential of producing a dangerous evolution of heat, fire or short circuit are forbidden for transport (e.g., those being returned to the manufacturer for safety reasons).”UN Special Provision A154
3.1. Current Collector Corrosion and Dissolution
3.2. Separator Shrinkage
3.3. Contamination
3.4. Dendrite Growth
4. Suggested Pre-Shipping Tests
4.1. Disassembly
4.2. Thermal and Mechanical Stress Testing
4.3. Electrochemical Characterization
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
BMS | Battery management system |
ICAO | International civil aviation organization |
IATA | International air transportation association |
FAA | U.S. federal aviation administration |
UN | United nations |
DGR | Dangerous goods regulations |
SOC | State of charge |
LiCoO2 | Lithium cobalt oxide |
PE | Polyethylene |
PP | Polypropylene |
DSC | Differential scanning calorimetry |
GITT | Galvanostatic intermittent titration technique |
References
- United Arab Emirates General Civil Aviation Authority. “UPS Boeing 747 cargo fire accident: Uncontained cargo fire leading to loss of control inflight and uncontrolled descent into terrain” AAIS Case Reference 13/2010. Available online: http://www.gcaa.gov.ae/en/ePublication/admin/iradmin/Lists/Incidents%20Investigation%20Reports/Attachments/40/2010-2010%20-%20Final%20Report%20-%20Boeing%20747-44AF%20-%20N571UP%20-%20Report%2013%202010.pdf (accessed on 28 March 2016).
- International Civil Aviation Organization (ICAO). Technical Instructions for the Safe Transport of Dangerous Goods by Air (Doc 9284); International Civil Aviation Organization: Montreal, QC, Canada, 2015. [Google Scholar]
- International Air Transport Association (IATA). Dangerous Goods Regulations; International Air Transport Association: Montreal, QC, Canada, 2015. [Google Scholar]
- United Nations Economic Commission for Europe (UNECE). Recommendations on the Transport of Dangerous Goods: Manual of Tests and Criteria, 5th revised ed.; United Nations Publications: New York, NY, USA; Geneva, Switzerland, 2008. [Google Scholar]
- Wang, Y.; Apelian, D.; Mishra, B.; Blanpain, B. Lithium ion battery recycling: A CR3 communication. J. Miner. Met. Mater. Soc. 2011, 63, 10. [Google Scholar] [CrossRef]
- Viswanathan, V.; Kintner-Meyer, M. Second use of transportation batteries: Maximizing the value of batteries for transportation and grid services. IEEE Trans. Veh. Technol. 2011, 60, 2963–2970. [Google Scholar] [CrossRef]
- Saito, Y.; Shikano, M.; Kobayashi, H. Heat generation behavior during charging and discharging of lithium-ion batteries after long-time storage. J. Power Sources 2013, 244, 294–299. [Google Scholar] [CrossRef]
- Kang, J.; Han, B. First-Principles Study on the Thermal Stability of LiNiO2 Materials Coated by Amorphous Al2O3 with Atomic Layer Thickness. ACS Appl. Mater. Interfaces 2015, 7, 11599–11603. [Google Scholar] [CrossRef] [PubMed]
- Jhu, C.-Y.; Wang, Y.-W.; Shu, C.-M.; Chuang, J.-C.; Wu, H.-C. Thermal explosion hazards of 18650 lithium ion batteries with a VSP2 adiabatic calorimeter. J. Hazard Mater. 2011, 192, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; Shui, M.; Huang, F.; Xu, D.; Ren, Y.; Hou, L.; Cui, J.; Xu, J. Comparative study on surface behaviors of copper current collector in electrolyte for lithium-ion batteries. Electrochim. Acta 2011, 56, 3006–3014. [Google Scholar] [CrossRef]
- Maleki, H.; Howard, J.N. Effects of overdischarge on performance and thermal stability of a Li-ion cell. J. Power Sources 2006, 160, 1395–1402. [Google Scholar] [CrossRef]
- Zhao, M.; Kariuki, S.; Dewald, H.D.; Lemke, F.R.; Staniewicz, J.R.; Plichta, E.J.; Marsh, R.A. Electrochemical stability of copper in lithium-ion battery electrolytes. J. Electrochem. Soc. 2000, 147, 2874–2879. [Google Scholar] [CrossRef]
- Orendorff, C.J. The role of separators in lithium-ion cell safety. Electrochem. Soc. Interface 2012, 21, 61–65. [Google Scholar]
- Choi, J.A.; Kim, S.H.; Kim, D.W. Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators. J. Power Sources 2010, 195, 6192–6196. [Google Scholar] [CrossRef]
- Kim, J.; Eom, M.; Noh, S.; Shin, D. Performance optimization of all-solid-state lithium ion batteries using Li2S-P2S5 solid electrolyte and LiCoO2 cathode. Electron. Mater. Lett. 2012, 8, 209–213. [Google Scholar] [CrossRef]
- Kang, J.; Chung, H.; Doh, C.; Kang, B.; Han, B. Integrated study of first principles calculations and experimental measurements for Li-ionic conductivity in Al-doped solid-state LiGe2(PO4)3 electrolyte. J. Power Sources 2015, 293, 11–16. [Google Scholar] [CrossRef]
- PC World Australia. Available online: http://www.pcworld.idg.com.au/article/163302/dell_sony_discussed_battery_problem_10_months_ago/ (accessed on 28 March 2016).
- Cha, S. Lithium Secondary Battery. U.S. Patent Number US20090317707 A1, 24 December 2009. [Google Scholar]
- Lux, S.F.; Lucas, I.T.; Pollak, E.; Passerini, S.; Winter, M.; Kostecki, R. The mechanism of HF formation in LiPF6 based organic carbonate electrolytes. Electrochem. Commun. 2012, 14, 47–50. [Google Scholar] [CrossRef]
- Zier, M.; Scheiba, F.; Oswald, S.; Thomas, J.; Goers, D.; Scherer, T.; Klose, M.; Ehrenberg, H.; Eckert, J. Lithium dendrite and SEI investigation using OsO4. J. Power Sources 2014, 266, 198–207. [Google Scholar] [CrossRef]
- Zhang, S.S.; Xu, K.; Jow, T.R. Study of the charging process of a LiCoO2-based Li-ion battery. J. Power Sources 2006, 160, 1349–1354. [Google Scholar] [CrossRef]
- Petzl, M.; Danzer, M. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries. J. Power Sources 2014, 254, 80–87. [Google Scholar] [CrossRef]
- Williard, N.; Sood, B.; Osterman, M.; Pecht, M. Disassembly methodology for conducting failure analysis on lithium-ion batteries. J. Mater. Sci.: Mater. Electron. 2011, 22, 1616–1630. [Google Scholar] [CrossRef]
- Wen, C.-Y.; Jhu, C.-Y.; Wang, Y.-W.; Chaing, C.-C.; Shu, C.-M. Thermal runaway features of 18650 lithium-ion batteries for LiFePO4 cathode material by DSC and VSP2. J. Therm. Anal. Calorim. 2012, 109, 1297–1302. [Google Scholar] [CrossRef]
- Ichitsubo, T.; Yukitani, S.; Hirai, K.; Yagi, S.; Uda, T.; Matsubara, E. Mechanical-energy influences to electrochemical phenomena in lithium-ion batteries. J. Mater. Chem. 2011, 21, 2701–2708. [Google Scholar] [CrossRef] [Green Version]
- Wen, C.J.; Boukamp, B.A.; Huggins, R.A. Thermodynamic and mass transport properties of “LiAl”. J. Electrochem. Soc. 1979, 126, 2258–2266. [Google Scholar] [CrossRef]
- Wu, M.-S.; Chiang, P.-C. High-rate capability of lithium-ion batteries after storing at elevated temperature. Electrochim. Acta 2007, 52, 3719–3725. [Google Scholar] [CrossRef]
Test | Cells | Batteries |
---|---|---|
Altitude Simulation |
|
|
Thermal | ||
Vibration | ||
Shock | ||
External Short Circuit | ||
Impact | 5 cells | 5 batteries |
Overcharge |
| |
Forced Discharge |
|
|
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williard, N.; Hendricks, C.; Sood, B.; Chung, J.S.; Pecht, M. Evaluation of Batteries for Safe Air Transport. Energies 2016, 9, 340. https://doi.org/10.3390/en9050340
Williard N, Hendricks C, Sood B, Chung JS, Pecht M. Evaluation of Batteries for Safe Air Transport. Energies. 2016; 9(5):340. https://doi.org/10.3390/en9050340
Chicago/Turabian StyleWilliard, Nicholas, Christopher Hendricks, Bhanu Sood, Jae Sik Chung, and Michael Pecht. 2016. "Evaluation of Batteries for Safe Air Transport" Energies 9, no. 5: 340. https://doi.org/10.3390/en9050340
APA StyleWilliard, N., Hendricks, C., Sood, B., Chung, J. S., & Pecht, M. (2016). Evaluation of Batteries for Safe Air Transport. Energies, 9(5), 340. https://doi.org/10.3390/en9050340