Cost Engineering Techniques and Their Applicability for Cost Estimation of Organic Rankine Cycle Systems
Abstract
:1. Introduction
2. Cost Estimation for Industrial Plants
3. ORC Investment Costs: A Brief Literature Review
4. Comparing the Estimated and Actual Costs of a Heat Recovery ORC System
4.1. Case Study: ORC for Industrial Heat Recovery
4.2. Using Cost Data of Other Systems: The Capacity Exponent Ratio Method
4.3. Using Technical Parameters of the System: Factorial Estimation Techniques
4.3.1. Estimating the Purchased Equipment Costs
4.3.2. Estimating the Total Investment Costs: Multiplication Factors
4.3.3. Estimating the Total Investment Costs: Percentages of Delivered Equipment Costs
5. Discussion and Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
AFUDC | Allowance for funds used during construction |
CEPCI | Chemical Engineering Plant Cost Index |
DFCI | Direct fixed-capital investment |
FCI | Fixed-capital investment |
IFCI | Indirect Fixed-Capital Investments |
M | Module |
OFSC | Offsite costs |
ONSC | Onsite costs |
ORC | organic Rankine cycle |
P | Projects |
PEC | Purchased-equipment cost |
SIC | specific investment costs |
A | equipment cost attribute |
C | costs |
I | cost index |
a, b | component |
gr | gross |
i, j | year |
n | scaling exponent for correlating costs |
References
- Chen, H.; Goswami, D.Y.; Stefanakos, E.K. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renew. Sustain. Energy Rev. 2010, 14, 3059–3067. [Google Scholar] [CrossRef]
- Lecompte, S.; Huisseune, H.; van den Broek, M.; Vanslambrouck, B.; De Paepe, M. Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renew. Sustain. Energy Rev. 2015, 47, 448–461. [Google Scholar] [CrossRef]
- Lakew, A.A.; Bolland, O. Working fluids for low-temperature heat source. Appl. Therm. Eng. 2010, 30, 1262–1268. [Google Scholar] [CrossRef]
- Hung, T.-C. Waste heat recovery of organic Rankine cycle using dry fluids. Energy Convers. Manag. 2001, 42, 539–553. [Google Scholar] [CrossRef]
- Brown, J.S.; Brignoli, R.; Quine, T. Parametric investigation of working fluids for organic Rankine cycle applications. Appl. Therm. Eng. 2015, 90, 64–74. [Google Scholar] [CrossRef]
- Declaye, S.; Quoilin, S.; Guillaume, L.; Lemort, V. Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid. Energy 2013, 55, 173–183. [Google Scholar] [CrossRef]
- Papes, I.; Degroote, J.; Vierendeels, J. New insights in twin screw expander performance for small scale ORC systems from 3D CFD analysis. Appl. Therm. Eng. 2015, 91, 535–546. [Google Scholar] [CrossRef]
- Jaffe, A.B.; Stavins, R.N. The energy paradox and the diffusion of conservation technology. Resour. Energy Econ. 1994, 16, 91–122. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003. [Google Scholar]
- Jaffe, A.B.; Newell, R.G.; Stavins, R.N. Economics of Energy Efficiency. Encycl. Energy 2004, 2, 79–90. [Google Scholar]
- Lemmens, S. A perspective on costs and cost estimation techniques for organic Rankine cycle systems. In Proceedings of the 3rd International Seminar on ORC Power Systems (ASME ORC 2015), Brussels, Belgium, 12–14 October 2015.
- AACE International. Recommended Practice No. 18R-97. Cost Estimate Classification System—As Applied in Engineering, Procurement, and Construction for the Process Industries. TCM Framework: 7.3—Cost Estimating and Budgeting; AACE International: Morgantown, WV, USA, 2005; p. 10. [Google Scholar]
- Turton, R.; Bailie, R.C.; Whiting, W.B.; Shaeiwitz, J.A.; Bhattacharyya, D. Analysis, Synthesis, and Design of Chemical Processes, 4th ed.; Pearson Education International: Upper Saddle River, NJ, USA, 2013. [Google Scholar]
- Bejan, A.; Tsatsaronis, G.; Moran, M. Thermal Design and Optimization; Wiley & Sons: New York, NY, USA, 1996; p. 542. [Google Scholar]
- Couper, J.R.; Penney, R.W.; Fair, J.R.; Walas, S.M. Chemical Process Equipment: Selection and Design, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 2012. [Google Scholar]
- Smith, R. Chemical Process Design and Integration; John Wiley & Sons, Ltd.: West Sussex, UK, 2005. [Google Scholar]
- Towler, G.; Sinnot, R. Chemical Egineering Design: Principles, Practice and Economics of Plant and Process Design; Butterworth-Heinemann: Oxford, UK, 2008. [Google Scholar]
- Peters, M.S.; Timmerhaus, K.D.; West, R.E. Plant Design and Economics for Chemical Engineers, 5th ed.; McGraw-Hill: New York, NY, USA, 2004. [Google Scholar]
- Jelen, F.C.; Black, J.H. Cost and Optimization Engineering, 2nd ed.; McGraw-Hill, Inc.: New York, NY, USA, 1983. [Google Scholar]
- Yari, M.; Mahmoudi, S.M.S. A thermodynamic study of waste heat recovery from GT-MHR using organic Rankine cycles. Heat Mass Transf. 2010, 47, 181–196. [Google Scholar] [CrossRef]
- Arvay, P.; Muller, M.R.; Ramdeen, V.; Cunningham, G. Economic Implementation of the Organic Rankine Cycle in Industry. In Proceedings of the 2011 ACEEE Summer Study on Energy Efficiency in Industry, Niagara Falls, NY, USA, 26–29 July 2011.
- Algieri, A.; Morrone, P. Techno-economic Analysis of Biomass-fired ORC Systems for Single-family Combined Heat and Power (CHP) Applications. Energy Procedia 2014, 45, 1285–1294. [Google Scholar] [CrossRef]
- Arslan, O.; Ozgur, M.A.; Kose, R. Electricity Generation Ability of the Simav Geothermal Field: A Technoeconomic Approach. Energy Sources Part A 2012, 34, 1130–1144. [Google Scholar] [CrossRef]
- Arslan, O.; Yetik, O. ANN based optimization of supercritical ORC-Binary geothermal power plant: Simav case study. Appl. Therm. Eng. 2011, 31, 3922–3928. [Google Scholar] [CrossRef]
- Bruno, J.C.; López-Villada, J.; Letelier, E.; Romera, S.; Coronas, A. Modelling and optimisation of solar organic rankine cycle engines for reverse osmosis desalination. Appl. Therm. Eng. 2008, 28, 2212–2226. [Google Scholar] [CrossRef]
- Kosmadakis, G.; Manolakos, D.; Papadakis, G. Simulation and economic analysis of a CPV/thermal system coupled with an organic Rankine cycle for increased power generation. Sol. Energy 2011, 85, 308–324. [Google Scholar] [CrossRef]
- STIA—Holzindustrie Ges.m.b.H. Biomass Fired CHP Plant Based on an ORC Cycle; Project: ORC-STIA-Admont; STIA−Holzindustria Ges.m.b.H. in Cooperation with BIOS-Bioenergy Systems: Admont, Austria, 2001; pp. 1–12. [Google Scholar]
- Duvia, A.; Guercio, A.; di Schio, C.R. Technical and Economic Aspects of Biomass Fuelled CHP Plants Based on ORC Turbogenerators Feeding Existing District Heating Networks; Turboden: Brescia, Italy, 2009. [Google Scholar]
- Tumen Ozdil, N.F.; Segmen, M.R. Investigation of the effect of the water phase in the evaporator inlet on economic performance for an Organic Rankine Cycle (ORC) based on industrial data. Appl. Therm. Eng. 2016, 100, 1042–1051. [Google Scholar] [CrossRef]
- Campos Rodríguez, C.E.; Escobar Palacio, J.C.; Venturini, O.J.; Silva Lora, E.E.; Cobas, V.M.; Marques dos Santos, D.; Lofrano Dotto, F.R.; Gialluca, V. Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil. Appl. Therm. Eng. 2013, 52, 109–119. [Google Scholar] [CrossRef]
- Uris, M.; Linares, J.I.; Arenas, E. Techno-economic feasibility assessment of a biomass cogeneration plant based on an Organic Rankine Cycle. Renew. Energy 2014, 66, 707–713. [Google Scholar] [CrossRef]
- Di Maria, F.; Micale, C. Exergetic and Economic Analysis of Energy Recovery from the Exhaust Air of Organic Waste Aerobic Bioconversion by Organic Rankine Cycle. Energy Procedia 2015, 81, 272–281. [Google Scholar] [CrossRef]
- Heberle, F.; Bassermann, P.; Preißinger, M.; Brüggemann, D. Exergoeconomic optimization of an Organic Rankine Cycle for low-temperature geothermal heat sources. Int. J. Thermodyn. 2012, 15. [Google Scholar] [CrossRef]
- Heberle, F.; Brüggemann, D. Thermo-Economic Evaluation of Organic Rankine Cycles for Geothermal Power Generation Using Zeotropic Mixtures. Energies 2015, 8, 2097–2124. [Google Scholar] [CrossRef]
- Heberle, F.; Brüggemann, D. Thermo-Economic Analysis of Zeotropic Mixtures and Pure Working Fluids in Organic Rankine Cycles for Waste Heat Recovery. Energies 2016, 9, 226. [Google Scholar] [CrossRef]
- Yu, G.; Shu, G.; Tian, H.; Wei, H.; Liang, X. Multi-approach evaluations of a cascade-Organic Rankine Cycle (C-ORC) system driven by diesel engine waste heat: Part B-techno-economic evaluations. Energy Convers. Manag. 2016, 108, 596–608. [Google Scholar] [CrossRef]
- Astolfi, M.; Romano, M.C.; Bombarda, P.; Macchi, E. Binary ORC (Organic Rankine Cycles) power plants for the exploitation of medium–low temperature geothermal sources—Part B: Techno-economic optimization. Energy 2014, 66, 435–446. [Google Scholar] [CrossRef]
- Huang, Y.; McIlveen-Wright, D.R.; Rezvani, S.; Huang, M.J.; Wang, Y.D.; Roskilly, A.P.; Hewitt, N.J. Comparative techno-economic analysis of biomass fuelled combined heat and power for commercial buildings. Appl. Energy 2013, 112, 518–525. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Y.D.; Rezvani, S.; McIlveen-Wright, D.R.; Anderson, M.; Mondol, J.; Zacharopoulos, A.; Hewitt, N.J. A techno-economic assessment of biomass fuelled trigeneration system integrated with organic Rankine cycle. Appl. Therm. Eng. 2013, 53, 325–331. [Google Scholar] [CrossRef]
- Law, R.; Harvey, A.; Reay, D. Techno-economic comparison of a high-temperature heat pump and an organic Rankine cycle machine for low-grade waste heat recovery in UK industry. Int. J. Low-Carbon Technol. 2013, 8, i47–i54. [Google Scholar] [CrossRef]
- Rentizelas, A.; Karellas, S.; Kakaras, E.; Tatsiopoulos, I. Comparative techno-economic analysis of ORC and gasification for bioenergy applications. Energy Convers. Manag. 2009, 50, 674–681. [Google Scholar] [CrossRef] [Green Version]
- Zare, V. A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants. Energy Convers. Manag. 2015, 105, 127–138. [Google Scholar] [CrossRef]
- Khaljani, M.; Saray, R.K.; Bahlouli, K. Comprehensive analysis of energy, exergy and exergo-economic of cogeneration of heat and power in a combined gas turbine and organic Rankine cycle. Energy Convers. Manag. 2015, 97, 154–165. [Google Scholar] [CrossRef]
- Darvish, K.; Ehyaei, M.; Atabi, F.; Rosen, M. Selection of Optimum Working Fluid for Organic Rankine Cycles by Exergy and Exergy-Economic Analyses. Sustainability 2015, 7, 15362–15383. [Google Scholar] [CrossRef]
- Quoilin, S.; van den Broek, M.; Declaye, S.; Dewallef, P.; Lemort, V. Techno-economic survey of Organic Rankine Cycle (ORC) systems. Renew. Sustain. Energy Rev. 2013, 22, 168–186. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, H.; Song, S.; Bei, C.; Wang, H.; Wang, E. Thermoeconomic multi-objective optimization of an organic Rankine cycle for exhaust waste heat recovery of a diesel engine. Energy 2015, 93, 2208–2228. [Google Scholar] [CrossRef]
- Lazzaretto, A.; Toffolo, A.; Manente, G.; Rossi, N.; Paci, M. Cost evaluation of organic Rankine cycles for low temperature geothermal sources. In Proceedings of the 24th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Novi Sad, Serbia, 4–7 July 2011.
- Toffolo, A.; Lazzaretto, A.; Manente, G.; Paci, M. A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems. Appl. Energy 2014, 121, 219–232. [Google Scholar] [CrossRef]
- Walraven, D.; Laenen, B.; D’haeseleer, W. Minimizing the levelized cost of electricity production from low-temperature geothermal heat sources with ORCs: Water or air cooled? Appl. Energy 2015, 142, 144–153. [Google Scholar] [CrossRef]
- Yang, M.-H.; Yeh, R.-H. Economic performances optimization of an organic Rankine cycle system with lower global warming potential working fluids in geothermal application. Renew. Energy 2016, 85, 1201–1213. [Google Scholar] [CrossRef]
- Barber, R.E. Current costs of solar powered organic Rankine cycle engines. Sol. Energy 1978, 20, 1–6. [Google Scholar] [CrossRef]
- Georges, E.; Declaye, S.; Dumont, O.; Quoilin, S.; Lemort, V. Design of a small-scale organic Rankine cycle engine used in a solar power plant. Int. J. Low-Carbon Technol. 2013, 8, i34–i41. [Google Scholar] [CrossRef]
- Manolakos, D.; Mohamed, E.S.; Karagiannis, I.; Papadakis, G. Technical and economic comparison between PV-RO system and RO-Solar Rankine system. Case study: Thirasia island. Desalination 2008, 221, 37–46. [Google Scholar] [CrossRef]
- Kosmadakis, G.; Manolakos, D.; Kyritsis, G.; Papadakis, G. Economic assessment of a two-stage solar organic Rankine cycle for reverse osmosis desalination. Renew. Energy 2009, 34, 1579–1586. [Google Scholar] [CrossRef]
- Amini, A.; Mirkhani, N.; Pakjesm Pourfard, P.; Asjaee, M.; Khodkar, M.A. Thermo-economic optimization of low-grade waste heat recovery in Yazd combined-cycle power plant (Iran) by a CO2 transcritical Rankine cycle. Energy 2015, 86, 74–84. [Google Scholar] [CrossRef]
- David, G.; Michel, F.; Sanchez, L. Waste heat recovery projects using Organic Rankine Cycle technology—Examples of biogas engines and steel mills applications. In Proceedings of the World Engineers’ Convention, Geneva, Switzerland, 4–9 September 2011; pp. 1–11.
- Forni, D.; Vaccari, V.; Di Santo, D.; Rossetti, N.; Baresi, M. Heat recovery for electricity generation in industry. In Proceedings of the European Council for an Energy Efficient Economy 2012 Summer Study on Energy Efficiency in Industry, Arnhem, The Netherlands, 11–14 September 2012.
- Ghirardo, F.; Santin, M.; Traverso, M.; Masssardo, A. Heat recovery options for onboard fuel cell systems. Int. J. Hydrog. Energy 2011, 36, 8134–8142. [Google Scholar] [CrossRef]
- Kwak, D.-H.; Binns, M.; Kim, J.-K. Integrated design and optimization of technologies for utilizing low grade heat in process industries. Appl. Energy 2014, 131, 307–322. [Google Scholar] [CrossRef]
- Lecompte, S.; Huisseune, H.; van den Broek, M.; De Schampheleire, S.; De Paepe, M. Part load based thermo-economic optimization of the Organic Rankine Cycle (ORC) applied to a combined heat and power (CHP) system. Appl. Energy 2013, 111, 871–881. [Google Scholar] [CrossRef]
- Lecompte, S.; Lazova, M.; van den Broek, M.; De Paepe, M. Multi-objective optimization of a low-temperature transcritical organic Rankine cycle for waste heat recovery. In Proceedings of the 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT2014), Orlando, FL, USA, 14–16 July 2014.
- Lecompte, S.; Lemmens, S.; Huisseune, H.; van den Broek, M.; De Paepe, M. Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery. Energies 2015, 8, 2714–2741. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.M.; Kuo, S.F.; Chien, M.L.; Shih, Y.S. Parameters analysis on organic rankine energy recovery system. Energy Convers. Manag. 1988, 28, 129–136. [Google Scholar] [CrossRef]
- Pierobon, L.; Nguyen, T.-V.; Larsen, U.; Haglind, F.; Elmegaard, B. Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform. Energy 2013, 58, 538–549. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.-H.; Yeh, R.-H. Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery. Energy 2015, 82, 256–268. [Google Scholar] [CrossRef]
- Chinese, D.; Meneghetti, A.; Nardin, G. Diffused introduction of Organic Rankine Cycle for biomass-based power generation in an industrial district: A systems analysis. Int. J. Energy Res. 2004, 28, 1003–1021. [Google Scholar] [CrossRef]
- Schuster, A.; Karellas, S.; Kakaras, E.; Spliethoff, H. Energetic and economic investigation of Organic Rankine Cycle applications. Appl. Therm. Eng. 2009, 29, 1809–1817. [Google Scholar] [CrossRef]
- Gonçalves, N.; Faias, S.; de Sousa, J. Biomass CHP Technical and Economic Assessment applied to a Sawmill Plant. In Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ 2012), Santiago de Compostela, Spain, 28–30 March 2012.
- Tańczuk, M.; Ulbrich, R. Implementation of a biomass-fired co-generation plant supplied with an ORC (Organic Rankine Cycle) as a heat source for small scale heat distribution system—A comparative analysis under Polish and German conditions. Energy 2013, 62, 132–141. [Google Scholar] [CrossRef]
- Yang, M.-H. Thermal and economic analyses of a compact waste heat recovering system for the marine diesel engine using transcritical Rankine cycle. Energy Convers. Manag. 2015, 106, 1082–1096. [Google Scholar] [CrossRef]
- Quoilin, S.; Declaye, S.; Tchanche, B.; Lemort, V. Thermo-economic optimization of waste heat recovery Organic Rankine Cycles. Appl. Therm. Eng. 2011, 31, 2885–2893. [Google Scholar] [CrossRef]
- Imran, M.; Park, B.S.; Kim, H.J.; Lee, D.H.; Usman, M.; Heo, M. Thermo-economic optimization of Regenerative Organic Rankine Cycle for waste heat recovery applications. Energy Convers. Manag. 2014, 87, 107–118. [Google Scholar] [CrossRef]
- Walraven, D.; Laenen, B.; D’Haeseleer, W. Economic system optimization of air-cooled organic Rankine cycles powered by low-temperature geothermal heat sources. Energy 2015, 80, 104–113. [Google Scholar] [CrossRef]
- Meinel, D.; Wieland, C.; Spliethoff, H. Economic comparison of ORC (Organic Rankine cycle) processes at different scales. Energy 2014, 74, 694–706. [Google Scholar] [CrossRef]
- Leslie, N.P.; Sweetser, R.S.; Zimron, O.; Stovall, T.K. Recovered Energy Generation Using an Organic Rankine Cycle System. ASHRAE Trans. 2009, 115, 220. [Google Scholar]
- Whealy, R.W.; Taylor, W.; George, E. City of Unalaska Powerhouse Exhaust Gas Waste Heat to Energy Project: Final Report; Electric Power Systems Inc.: Anchorage, AK, USA, 2012; pp. 1–140. [Google Scholar]
- Sweetser, R.; Leslie, N. Subcontractor Report: National Account Energy Alliance Final Report for the Basin Electric Project at Northern Border Pipeline Company’s Compressor Station #7, North Dakota; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2007; pp. 1–45. [Google Scholar]
- Kloppers, J.C. A Critical Evaluation and Refinement of the Performance Prediction of Wet-Cooling Towers; University of Stellenbosch: Stellenbosch, South Africa, 2003; pp. 1–360. [Google Scholar]
- Desai, N.B.; Bandyopadhyay, S. Thermo-economic analysis and selection of working fluid for solar organic Rankine cycle. Appl. Therm. Eng. 2016, 95, 471–481. [Google Scholar] [CrossRef]
Class | Type of Estimate | Description | Accuracy Ranges |
---|---|---|---|
5 | Order-of-magnitude estimate (also Ratio/Feasibility) | Based on limited information. | Low: −20% to −50% |
Concept screening. | High: +30% to +100% | ||
4 | Study estimate (also Major Equipment/Factored) | List of major equipment. | Low: −15% to −30% |
Project screening, feasibility assessment, concept evaluation, and preliminary budget approval. | High: +20% to +50% | ||
3 | Preliminary design estimate (also Scope) | More detailed sizing of equipment. | Low: −10% to −20% |
Budget authorization, appropriation, and/or funding. | High: +10% to +30% | ||
2 | Definitive estimate (also Project Control) | Preliminary specification of all the equipment, utilities, instrumentation, electrical and off-sites. | Low: −5% to −15% High: +5% to +20% |
Control or Bid/Tender. | |||
1 | Detailed estimate (also Firm/Contractor’s) | Complete engineering of process and related off-sites and utilities required. | Low: −3% to −10% High: +3% to +15% |
Check Estimate or Bid/Tender. |
No. | Reference Case | Reference Gross Power (kW) | Reference Module SIC | Reference Project SIC | Estimated Module SIC (€2013/kW) | Estimated Project SIC (€2013/kW) |
---|---|---|---|---|---|---|
1 | [57] | 1100 | 1818 €2012/kW | 2818 €2012/kW | 2796 | 4334 |
2 | [57] | 1300 | 1154 €2012/kW | 2923 €2012/kW | 1897 | 4806 |
3 | [57] | 5300 | 943 €2012/kW | 3321 €2012/kW | 2721 | 9579 |
4 | [57] | 5400 | 1148 €2012/kW | 2593 €2012/kW | 3337 | 7535 |
5 | [57] | 160 | 2594 €2011/kW | 3375 €2011/kW | 1845 | 2401 |
6 | [57] | 250 | 2080 €2011/kW | 4320 €2011/kW | 1769 | 3673 |
7 | [76] | 50 | 3700 USD2012/kW | - | 1653 | - |
8 | [76] | 150 | - | 12,596 USD2012/kW | - | 8731 |
9 | [75,77] | 5500 | - | 2500 USD2006/kW | - | 7319 |
Component | Coefficients and Correlations | Reference | ||
---|---|---|---|---|
Evaporator | [13] | |||
Expander | [13] | |||
Pump | [13] | |||
Condenser | with Q in kW | [16] | ||
Generator | with P in kW | [48] |
Component | (€2013) |
---|---|
Evaporator | 313,539.06 |
Expander | 187,773.74 |
Pump | 16,370.16 |
Condenser | 47,325.76 |
Generator | 126,282.44 |
Total | 691,291.16 |
Specific investment costs (€2013/kWgr) | 1843.44 |
Component | (€2013) | (€2013) | (€2013) |
---|---|---|---|
Evaporator | 313,539.06 | 680,379.76 | |
Expander | 187,773.74 | 657,208.08 | |
Pump | 16,370.16 | 53,039.31 | |
Condenser | 47,325.76 | 66,256.07 | |
Generator | 126,282.44 | 189,423.67 | |
Total | 691,291.16 | 1,646,306.89 | 1,942,642.13 |
Specific investment costs (€2013/kWgr) | 1843.44 | 4390.15 | 5180.38 |
Cost Breakdown | Percentage Range | Applied Percentage | Cost Estimate (€2013/kW) |
---|---|---|---|
1. Fixed-capital investment (FCI) | |||
1.1. Direct fixed-capital investment (DFCI) | |||
1.1.1. Onsite costs (ONSC) | |||
Purchased-equipment cost (PEC) | 15%–40% of FCI [14,18] | / | 1843.44 |
Purchased-equipment installation | 6%–14% of FCI; 20%–90% of PEC [14,18] | 45% of PEC [14] | 829.55 |
Piping | 4%–17% of FCI; 3%–20% of FCI; 10%–70% of PEC | 31% of PEC [14] | 571.47 |
Instrumentation and controls | 2%–12% of FCI; 2%–8% of FCI; 6%–40% of PEC | 10% of PEC [14] | 184.34 |
Electrical equipment and materials | 2%–10% of FCI; 10%–15% of PEC | 11% of PEC [14] | 202.78 |
1.1.2. Offsite costs (OFSC) | |||
Land | 1%–2% of FCI; 0%–2% of FCI; 0%–10% of PEC | / | 0 |
Civil, structural, and architectural work | 5%–23% of FCI; 15%–90% of PEC | 44% of PEC [14] | 811.11 |
Service facilities | 8%–30% of FCI; 30%–100% of PEC | 20% of PEC [14] | 368.69 |
Buildings | 2%–18% of FCI | / | 0 |
Yard improvements | 2%–5% of FCI | / | 0 |
Total DFCI | 4811.38 | ||
1.2. Indirect Fixed-Capital Investments (IFCI) | |||
Engineering and supervision | 4%–20% of FCI [18]; 4%–21% of FCI [14]; 6%–15% of DFCI [14]; 25%–75% of PEC [14] | 30% of PEC [14] | 553.03 |
Construction costs including contractor’s profit | 4%–17% of FCI [18]; 6%–22% of FCI [14]; 15% of DFCI [14] | 15% of DFCI [14] | 721.71 |
Contingencies | 5%–15% of FCI [18]; 5%–20% of FCI [14]; 8%–25% of all direct and indirect costs, without legal costs [14] | 10% of FCI [14] | 691.60 |
Legal costs | 1%–3% of FCI [18] | 2% of FCI [14] | 138.32 |
Total IFCI | 2104.66 | ||
2. Other outlays | |||
Startup costs | 5%–12% of FCI [14] | 10% of FCI [14] | 691.60 |
Working capital | 10%–20% of TCI [14] | / | 0 |
Costs of licensing, research, and development | / | / | 0 |
Allowance for funds used during construction (AFUDC) | / | / | 0 |
Total capital investment | 7607.65 |
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemmens, S. Cost Engineering Techniques and Their Applicability for Cost Estimation of Organic Rankine Cycle Systems. Energies 2016, 9, 485. https://doi.org/10.3390/en9070485
Lemmens S. Cost Engineering Techniques and Their Applicability for Cost Estimation of Organic Rankine Cycle Systems. Energies. 2016; 9(7):485. https://doi.org/10.3390/en9070485
Chicago/Turabian StyleLemmens, Sanne. 2016. "Cost Engineering Techniques and Their Applicability for Cost Estimation of Organic Rankine Cycle Systems" Energies 9, no. 7: 485. https://doi.org/10.3390/en9070485
APA StyleLemmens, S. (2016). Cost Engineering Techniques and Their Applicability for Cost Estimation of Organic Rankine Cycle Systems. Energies, 9(7), 485. https://doi.org/10.3390/en9070485