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Abstract: This article presents heat transfer and fluid flow characteristics in a solar air heater (SAH)
channel with multi V-type perforated baffles. The flow passage has an aspect ratio of 10. The relative
baffle height, relative pitch, relative baffle hole position, flow attack angle, and baffle open area ratio
are 0.6, 8.0, 0.42, 60˝, and 12%, respectively. The Reynolds numbers considered in the study was in
the range of 3000–10,000. The re-normalization group (RNG) k-ε turbulence model has been used
for numerical analysis, and the optimum relative baffle width has been investigated considering
relative baffle widths of 1.0–7.0.The numerical results are in good agreement with the experimental
data for the range considered in the study. Multi V-type perforated baffles are shown to have better
thermal performance as compared to other baffle shapes in a rectangular passage. The overall thermal
hydraulic performance shows the maximum value at the relative baffle width of 5.0.

Keywords: solar energy; heat transfer enhancement; friction factor; solar air heater (SAH) channel;
perforated baffle

1. Introduction

Solar energy is one of the renewable and environment-friendly energy sources which can be
used in our daily lives without imposing negative effects on the environment. It is generally used
for a variety of engineering applications, among the generation of electric power, heating, cooking,
and other applications. The solar air heater (SAH) is very simple and commonly used to heat air,
and requires no maintenance [1]. However, the thermal performance of conventional SAH has been
observed to be low because of the low Nusselt number from the heated plate to the fluid. The local
heat transfer between the heated wall of SAH and flowing air can be improved by either (1) increasing
the heat transfer surface area by means of extended and ribbed surfaces without enhancing the heat
transfer rate; or (2) increasing the local heat transfer by means of the vortex generator in the form of
baffles roughness on the absorber surface [2,3]. The roughness on the absorber plate can be introduced
by various techniques casting, forming, welding ribs, baffles, and/or fixing thin circular wires. The use
of baffles roughness on the underside of the heated wall can substantially enhance the local heat
transfer of the SAH due to the rise in convective heat transfer rate from the plate to air.

Surface roughness is one of the first techniques to be considered as a means of augmenting forced
convection heat transfer. In order to attain a higher convective heat transfer rate it is desirable that the
flow at the heat transfer surface is turbulent [1–3]. However, the turbulence created in the core can
increase the fan power exorbitantly. It is, therefore, desirable that the turbulence be created very close
to the heat transfer surface, i.e., in the laminar sub-layer only, where the heat exchange takes place.
However, as pointed out above, it is necessary that while creating turbulence to break the laminar
sublayer, the core flow is not disturbed so as to avoid excessive losses. This can be achieved by using
baffles roughness with roughness height being such that it does not project into the core but is of the
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height that just projects out of laminar sublayer. A number of experimental investigations involving
roughness elements of different shapes, sizes, and orientations with respect to flow direction have
been carried out in order to obtain an optimum arrangement of baffles roughness geometry [4,5].

Various tabulators have been used to accelerate the heat transfer rate, including baffles, blocks,
roughness, and winglets, depending upon the requirement needed. Tall height tabulators, such as
baffles, are generally used for increasing heat transfer rates due to the turbulence in the flow field.
Typical shapes of baffles are transverse, angled shaped, V-shaped, perforated, and have multiple
blockages that can be fitted and bent away from the heated wall to produce turbulence in the flow field
that results in an improvement of Nuave [6–12]. Furthermore, these baffles are modified to improve the
thermo-hydraulic performance.

Numerous investigations have been carried out to improve the performance of baffles. Detailed
descriptions of numerous experimental and numerical studies on baffles with different shapes, sizes,
and orientations are discussed herein. Won et al. [6] reported the effect of angled rib baffles with an α
value of 45˝, e/D of 0.078, P/e of 10, and β of 25%, for a range of Reynolds (Re) values of 9000–76,000.
Khanoknaiyakarn [7] carried out an experimental study on Nuave and f ave for V-shaped baffles using
a broad heated wall with a large Wc/H value, and the effects of the baffles on Nuave and f ave were
reported. Sriromreun et al. [8] experimentally determined the values of Nu and f for an air passage
with a Z-type blockage. Bopche and Tandale [9] reported the turbulent flow in a rectangular passage
rough with a U-pattern blockage. Skullong et al. [10] carried out an analytical study on the turbulent
passage flow and Nuave and f ave behaviour in a rectangular passage equipped with a blockage and
groove blockage. Three different cases were experimentally studied with e/H = 0.5–2.0 and P/e = 0.25.
They showed that the blockage-grooved with an upper wall at e/H = 0.5 yielded the highest overall
performance. Furthermore, Karwa and Maheshwari [11] performed an experimental study on the
thermo-hydraulic performance for half and fully perforated blockage with Re values ranging from
2700 to 11,150. They reported that half-perforated blockage with P/e of 7.2 showed the maximum
performance that is approximately 68.66% higher than the smooth wall with the same pumping power.
Shin and Kwak [12] conducted an experimental study on the effect of the shape of perforation in the
baffle roughened wall on Nu in a flow passage. They considered five geometries including wide,
narrow, and circular hole configurations and reported the wider shape perforation showed superior
thermal efficiency.

Zhou and Ye [13] carried out an experimental study investigating the turbulent fluid flow and
heat transfer performance of a SAH rectangular passage with a curved trapezoidal winglet. Results
were compared with rectangular, delta winglets, and trapezoidal. Bekele et al. [14] conducted indoor
experiments to examine the effect of a delta-pattern blockage mounted on the heated wall of a
rectangular passage with a small aspect ratio of 5.0:1.0. Chompookham et al. [15] conducted an
experimental study on the effective efficiency performance of the winglet vortex type generators in a
turbulent flow. Abene et al. [16] experimentally investigated the heat transfer augmentation of several
different patterns of blockages attached to the top wall of a rectangular passage.

Ozgen et al. [17] investigated the thermal performance in a rectangular passage with a blockage
attached to a heated wall. They reported that the collector efficiency could be improved by increasing
the air velocity and the Nu data between the heated wall and the fluid. In addition, Thianpong et al. [18]
conducted experimental work to examine the effects of collectors equipped with a twisted ring-type
blockage in a rectangular passage. Eiamsa-ard et al. [19] reported the effect of thermal efficiency in
a tube having different winglet tapes, namely, twisted tapes with straight delta and oblique delta
winglets on twist and wing cut ratios. It was shown that the Nuave and f ave and thermal performance
behaviour of the twisted tapes with an oblique delta winglet were better than those obtained in the
cases of twisted tapes with oblique delta winglets, and in the case of typical twisted tapes. Chamoli
and Thakur [20] reported the thermal performance of air passing through an air passage rough by
V-type perforated blockage. Alam et al. [21] conducted an experimental study on the thermal hydraulic
performance of a rectangular blockage with V-type rectangular perforated blocks fixed to a heated wall.
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Tamna et al. [22] experimentally and numerically investigated the thermal hydraulic performance of a
rectangular passage with a multi V-type blockage fitted to a heated surface for the range of Re values
from 4000 to 21,000. Table 1 summarises the experimental investigations of some important baffle
arrangements reported by various researchers.

Table 1. Previous experimental investigations in various baffle shapes in an air channel.

S.N. Baffle Shapes Parameter Ranges Principle Findings
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Single, perforated, V- shaped baffles (Chamoli and 

Thakur [20]) 
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P/e = 2–7, 
β = 12%–14%, 
α = 60°, 
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These studies have shown that 
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perform better than angled and 
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Continuous, multi V-shaped baffles (Tamna et al. [22]) 

e/H = 0.25,  
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of 3.16 and 3.56 times were reported over a
smooth rectangular channel.
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Computational fluid dynamics (CFD) is a numerical approach used to estimate detailed
information for the fluid flow and heat transfer characteristics of a roughened rectangular channel.
A critical review on heat transfer enhancement in a rectangular channel revealed that most
investigations were carried out experimentally. However, only a few investigations are available
those are based on CFD approaches [23–34]. Gawande et al. [23] conducted a numerical study on
the effect of the transverse circular vortex type generator in an air channel. It was observed that
the performance of the transverse circular vortex type generator in the channel was better than that
of the smooth wall channel. Promvonge et al. [24] carried out a three-dimensional CFD analysis of
heat transfer and fluid flow characteristics through a 30˝ inline angled baffle as tabulators in an air
channel. Garg et al. [25] numerically investigated the effect of transverse circular vortex generators
for roughened air channels. Jedsadaratanachai and Boonloi [26] presented CFD results of flow and
heat transfer characteristics in an isothermal square channel with a 30˝ double V-baffles. It was found
that the use of the double V-baffles led to higher heat transfer rates and pressure loss compared to
the smooth channel with no baffle. Moreover, the rise of the blockage ratio and reduction of the pitch
ratio led to heat transfer rate and pressure loss increases. Yadav et al. [27] conducted a CFD analysis
on the overall thermal performance of a SAH with V-perforated downstream blocks attached to the
heated wall. Several researchers numerically investigated rib roughened rectangular channels and
reported the effects of rib shapes, rib spacing, rib height, rib flow attack angle, and channel aspect
ratio on the heat transfer, pressure drop, and thermal performance [28–34]. Table 2 summarises the
numerical investigations of some important baffle arrangements reported by various researchers.

Table 2. Summary of results from a previous computational fluid dynamics (CFD)-based study using
various baffle shapes in an air channel.

S.N. Baffle Shapes Parameter Ranges Principle Findings

1
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Respective Nuave and f ave
augmentations of 4.62 and
4.84 times augmentation in heat
transfer and pressure drop were
reported over a smooth
rectangular channel.



Energies 2016, 9, 564 5 of 18

A literature review shows that the shape of the transverse baffles increases the heat transfer by
air separation, reattachment, and creation of vortices upstream and downstream of the baffles, and
that the air re-attaches in inter-baffle spaces. Angulations of the transverse baffles improve the heat
transfer further on the explanation of movement of vortices on the length of the baffle wall and create
secondary jets close to the leading end, which enhancement outcomes in local surface turbulence.

The advantage of V-down baffles is the generation of the two types of secondary stream jets as
compared to only one in the case of angled baffles. In this case, the more the secondary stream jets,
the higher the heat transfer rate. Further, making a perforation in the angulations blockage is found
to increase the heat transfer by breaking and disturbing the secondary stream jets, and developing
maximum level of turbulence in the downstream of the baffles. The use of multi V-type pattern baffles
across the width of the passage is observed to improve the heat transfer by increasing the number of
secondary stream jets more times in case of single type V-pattern baffle.

Recently, Chamoli and Thakur [20] explored the result of V-down perforated baffles on the heat
transfer and fluid flow explanation of a rectangular passage. They concluded that the rise in the
heat transfer rate attained was credited to the interaction of the secondary stream jets throughout the
perforation, reattachment, and mixture with the main flow that creates extra turbulence. It is assumed
that multi V-pattern perforated baffles will increase the heat transfer as compared to either single
V-down perforated baffles, or baffles without perforated multi V-down baffles.

The purpose of this study is to numerically and experimentally investigate the air stream and
heat transfer behaviour of the three-dimensional rectangular channel with rough in the form of multi
V-type perforated baffles. In this investigation, the CFD ANSYS Fluent 6.3.26 Software (Fluent Inc.,
Lebanon, NH, USA) has been used to simulate the heat transfer and flow performance with multi
V-type perforated baffles on the heated wall.

2. Numerical Analysis

2.1. Description of Computational Model

The rectangular air passage with multi V-down perforated baffles placed on one side of the heated
plate is presented in Figures 1 and 2. The rectangular channel had a stream cross-section of (Wc)
300 mm ˆ (H) 30 mm, with an aspect ratio (Wc/H) of 10.0, and consisted of inlet and outlet parts
separated by a test section. The hydraulic diameter (D = 4A/P = 2H) was 54.54 mm. The test unit
distance end to end of the passage was 1000 mm. The baffle rough can be explained by the data of the
width of the rectangular channel (Wc), width of single V-perforated baffles (Wb), height of the baffles (e),
height of the channel (H), hole position (O) spacing between baffles (P), size of hole (d), and flow
angle of attack (α). These rough parameters have been explained in the form of dimensionless rough
parameters, i.e., the relative baffle width (Wc/Wb), relative baffle height (e/H), relative baffle hole
position (O/e), relative baffle pitch (P/e), open area ratio (β), and flow angle of attack (α). The blockage
open area ratio is distinct as the ratio of the region perforation to the baffle frontal region, given by:

β “
n
`

πˆD2{4
˘

bˆ e
(1)

The choices for Re and blockage parameters for this study have been listed in Table 3.
The functional fluid was air in all of the cases studied. The velocity inlet was estimated at the
inlet face of the duct. The air-inlet temperature was stable at 300 K. The average inlet velocities of the
stream were calculated using the Re. The inlet velocity of the air ranged between 0.9 m/s and 2.9 m/s.
A heat flux, q = 1000 W/m2, was provided to the upper face of the collector, in a similar manner to the
experimental setup of prior investigations [21,22]. The lower wall and the walls on the other sides were
thought to be adiabatic. The exit boundary condition was considered to be at atmospheric pressure,
i.e., p = 1.013 ˆ 105 Pa.
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(D) Wc/Wb = 4; (E) Wc/Wb = 5; (F) Wc/Wb = 6; and (G) Wc/Wb = 7.

Table 3. Range of operating parameters for CFD analysis.

S.N. Parameters Ranges/Values

1 Relative width ratio (Wc/Wb) 1.0–7.0
2 Relative height ratio (e/H) 0.6
3 Relative pitch ratio (P/e) 8.0
4 Relative hole position (O/e) 0.42
5 Open area ratio (β) 12%
6 Angle of attack (α) 60˝

7 Reynolds number (Re) 3000–10,000
8 Uniform heat flux (q) 1000 W/m2

9 Prandtl number (Pr) 0.71
10 Duct aspect ratio (Wc/H) 10
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2.2. Governing Equations

The numerical model for fluid flow and heat transfer in a SAH duct was developed under the
following assumptions:

The flow is steady, fully developed, turbulent, and three-dimensional.
The thermal conductivity of the duct wall, absorber plate and roughness material are independent

of temperature.
The duct wall, absorber plate, and roughness material are homogeneous and isotropic.
The working fluid (air) is assumed to be incompressible for the operating range of SAH since

variation in density is much lower.
No-slip boundary condition is assigned to the walls in contact with the fluid in the model.
Radiation heat transfer and other heat losses are negligible.
The governing mathematical equations are the conservation of mass, momentum, and energy

that can be described as follows [35]:
Continuity equation:

∇.pρ.
Ñ
υ q “ 0 (2)

Momentum equation:

∇. pρ.
Ñ
υ .
Ñ
υ q “ ´∇p`∇.

ˆ

µ

„

p∇Ñυ `∇Ñυ
T
q ´

2
3
∇.
Ñ
υ I

˙

` ρ
Ñ
g (3)

Energy equation:

∇.p
Ñ
υ pρE` pqq “ ∇.

ˆ

keff∇T´ h
Ñ

J `
ˆ

µ

„

p∇Ñυ `∇Ñυ
T
q ´

2
3
∇.
Ñ
υ I



.
Ñ
υ

˙˙

(4)

where keff is the effective conductivity (keff = k + kt).
The re-normalization group (RNG) k-ε model was used for turbulent flow [35]. In this model,

the turbulence kinetic energy (k) and its rate of dissipation (ε) are obtained from the following
transport equations:

B

Bxi
pρkuiq “

B

Bxj

˜

αkµeff
Bk
Bxj

¸

` Gk ` Gb ´ ρε´YM ` Sk (5)

B

Bxi
pρεuiq “

B

Bxj

˜

αεµeff
Bε

Bxj

¸

` C1ε
ε

k
pGk ` G3εGbq ´ C2ερ

ε2

k
´ Rε ` Sε (6)

The model constants C1ε and C2ε in Equation (6) are 1.42 and 1.68, respectively.
In these equations Gk, S, Gb, and YM represent the production of turbulence kinetic energy, the

modulus of the mean rate of the strain tensor, the generation of turbulence kinetic energy due to
buoyancy for ideal gas, and the contribution of the fluctuating dilatation in compressible turbulence to
the overall dissipation rate, respectively. Correspondingly, they are defined by the following equations:
Gk = µtS2, S “

b

2SijSji, Gb = ´giµt/ρPrtBρ/Bxi and YM = 2ρεMt
2, where the quantities αk and αε

are the respective inverse values of the effective Prandtl numbers for k and ε. However, Sk and Sε
are user-defined source terms. In addition, Rε = Cµρη1

3(1 ´ η1/η0)/1 + β0η1
3ε2/k, where η1 = Sk/ε,

Cµ = 0.0845, η0 = 4.38, β0 = 0.012.

2.3. Grid Independency Test

Figure 3 shows a schematic of the grid systems. Five different grid densities (respectively
comprising 1789565, 1864345, 1964367, 2154376, and 2374635 cells) are used in order to select the
suitable mesh size that adapts with near-wall modelling. The wall distance y+ is considered in the
choice of the suitable near wall modelling. Figure 4 shows that the grid independence examination
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graph between the number of grids and the average Nusselt number for different values of (Wc/Wb)
when all other baffles parameters were kept constant, and for a smooth wall with the RNG k-ε
turbulence model for five dissimilar grid densities of 1789565, 1864345, 1964367, 2154376, and
2374635 cells. It is observed that the relative deviation of the average Nusselt number among the
solutions comprising 2154376 and 2374635 cells is less than 2% at Re = 7000. Hence, the mesh with
2154376 cells with a close to wall element spacing y+ « 2 has been chosen for all the cases careful herein.
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2.4. Selection of Turbulence Model

Previous investigations [29–34] indicated that they used different turbulence models for their
studies in air flow channels, such as realizable k-εmodel, RNG k-εmodel, standard k-εmodel, standard
k-ω, and shear stress transport k-ω model. Therefore, numerical predictions were compared with
available experimental data and the RNG k-εmodel was selected in this study because it was found
to be the better one. The data of Nuave and f ave determined from the CFD results (RNG k-ε model)
for single V-type perforated baffle and were compared with the values obtained from the correlations
described by Equation (7) for Nuave and Equation (8) for f ave.

The Nuave correlation for the single V-type perforated baffle [20] is shown as follow:
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Nu “ 0.029ˆ Re0.7848 ˆ pP{eq0.3007
ˆ pe{Hq´0.6774

ˆβ´0.3571expp´0.254ln pP{eq2q
ˆexpp´0.4406ln pe{Hq2qexpp´0.0863ln pβq2q

(7)

The f ave correlation for the single V-type perforated baffle [20] is shown as follows:

f “ 0.632ˆ Re´0.18 ˆ pP{eq´0.16
ˆ pe{Hq1.05 β´0.13 (8)

Comparisons of the experimental and numerical values for Nuave and f ave as a function of Re are
shown in Figure 5. The average deviations of Nuave and f ave obtained using the RNG k-ε turbulence
model are ˘8.34% and ˘9.73%, respectively, from the experimental results [20].Energies 2016, 9, 564 9 of 18 
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2.5. Solution Method

A three-dimensional model of the flow domain used for numerical analysis was built using ANSYS
Fluent 6.3.26 Software. Grid was generated in GAMBIT Software. Meshed model was then exported to
ANSYS Fluent 6.3.26 for analysis. The continuity equation, energy equation, and the Navier–Stokes
equations in their steady, incompressible form, along with the associated boundary conditions, were
solved using the multipurpose finite volume-based CFD software package, ANSYS Fluent 6.3.26. In the
present numerical study, RNG k-ε turbulence model with ‘enhanced wall treatment’ was used. In the
discretization of governing equations, SIMPLE (semi-implicit method for pressure linked equations)
algorithm was used in pressure–velocity coupling as suggested by Kumar and Kim [34]. This algorithm
was developed by Karmare and Tikekar [29] and is based on a predictor–corrector approach. Double
precision pressure-based solver was selected in order to solve the set of equations used. Second order
upwind discretization scheme was selected for all the transport equations as suggested by Kumar and
Saini [30]. Whenever convergence problems were noticed, the solution was started using the first order
upwind discretization scheme and continued with the second order upwind scheme. The governing
equations for mass and momentum conservation were solved with a segregated approach in steady
state, where equations are sequentially solved with implicit linearization. In the present simulation,
the convergence criteria between two consecutive iterations was set to be the relative deviation less
than 10´6 for energy equation and less than 10´3 for the solution in velocity and continuity equation.

2.6. Data Reduction

The values of Reynolds number, Nusselt number, average Nusselt number, friction factor and
thermal-hydraulic performance have been calculated using the following equations [15,17,19–23]:

The Reynolds number:

Re “
ρuD
µ

(9)
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The heat transfer performance is calculated using the Nu, which can be obtained from:

Nu “
hL
k

(10)

The average Nuave can be obtained from:

Nuave “
1
L

ż

Nu pxq Bx (11)

The f is calculated using the following equation:

f “
p∆p{LqH
p1{2q ρu2 (12)

where ∆p is the pressure drop through the length of the duct, L.
The thermal enhancement factor (η) is defined as the ratio of the heat transfer coefficient of an

augmented surface (h) to that of a smooth channel without ribs (hs) at an equal pumping power.

η “
h
hs
“ pNuave{Nusaveq { p fave{ f saveq

0.33 (13)

where Nuave and f ave are the average Nusselt number and friction factor for the smooth duct,
respectively.

3. Results and Discussion

The CFD analysis has been performed for a roughened rectangular channel with multi V-down
perforated baffles on a heated plate, and the results are discussed in this section.

3.1. Heat Transfer and Fluid Flow

The outcome of the Wc/Wb on the Nuave and f ave for air stream are presented in a rectangular
channel. The results have been comparable with those obtained in the case of a smooth wall channel
working under similar numerical circumstances.

The results of Nuave have been shown as a function of Re for the different values of Wc/Wb in
Figure 6, and for constant values of the other parameters, such as e/H = 0.6, P/e = 8.0, O/e = 0.42,
β = 12%, and α = 60˝. It has been seen that the Nuave increases with an increase in the Wc/Wb, and
attains a maximum value matching to a Wc/Wb value of 5.0 in the range of the parameters investigated.
In all cases, the presence of a wall with multi V-down perforated baffles produces higher Nuave

compared to the case of a smooth wall, as expected. The V-down perforated baffles can lead to better
Nuave performance because of the secondary stream jets induced by the top part of the baffles. These
secondary stream jets have the form of more than one counter rotating vortex, which carry cold air
from the middle core region towards the baffle walls. These secondary flow jets interact with the main
stream, thereby affecting the flow re-attachment and re-circulation between baffles, and interrupt the
boundary layer enlargement downward of the re-attachment regions.

Figure 7 presents the contour map of the turbulent intensity for different Wc/Wb values, while
other roughness parameters are maintained constant and equal to e/H = 0.6, P/e = 8.0, β = 12%,
O/e = 0.42, α = 60˝, and Re = 5000. It can be observed that doubling the value of the width ratio Wc/Wb
also increases the number of leading and trailing ends as well as the secondary flow cells, thereby
resulting in a considerable enhancement in the heat transfer, as clearly observed in Figure 7. However,
the increase in Nuave continues only up to a Wc/Wb of 5.0. Subsequently, a further increase in the
baffle width results in the reduction of the Nuave. The V-pattern configuration of the baffles induces
strong secondary stream jets along the limbs and a higher level of mixing and turbulence when the jets
passing from the various perforations re-attach and mix with the main stream.
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Introduction of the perforated multi V-baffles allows the release of the secondary stream jets and
the mixing with the main stream through the perforations, as shown in Figure 8.

Use of baffle roughness on a heated wall substantially increases the heat transfer from the heated
wall of rectangular channels. However, it results in corresponding increases in frictional losses. Figure 9
shows the variation in the f ave with Re for different values of Wc/Wb, while all other rough parameters
are maintained constant at e/H = 0.6, P/e = 8.0, O/e = 0.42, β = 12%, and α = 60˝.It has been observed
from this plot that the f ave decreases with increases in the Re values, for all values of Wc/Wb. It can
also be seen that the f ave increases monotonically with increases in Wc/Wb values. The maximum
value of the f ave has been observed at a value of Wc/Wb of 7.0. This is due to fact that angulation
of the baffles helps in the development of the secondary stream jets. Increasing the value of Wc/Wb
would lead to an increased number of secondary stream jets, which in turn increases the value of the
Nuave up to 5.0. Furthermore, increases in Wc/Wb beyond 5.0 could lead to the partition of flow from
the top baffle surface, and to a subsequent reduction in Nuave. However, the values of f ave increase
continuously due to the mixing of an increased number of secondary flows after being issued from
the perforations and after their re-attachment with the heated surface. For this reason, this mixing
increases heat transfer from the plate to air, but also facilitates large pressure drops through the flow
across the passage.
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3.2. Thermo-Hydraulic Performance

Analysis of the thermal and friction behaviours shows that improvement in thermal performance
is, in general, accompanied with a friction penalty owing to a resultant augmentation of the friction
factor. Consequently, it is necessary to establish the baffle shapes that will result in the maximal
enhancement in heat transfer with the least frictional power penalty. This can be achieved by concurrent
thought of thermal as well as hydraulic performances, i.e., the thermo-hydraulic performance
parameter, η, which indicates the comparison of the heat transfer enhancement for a roughened
channel to a smooth (without rough) channel for the same pumping power requirements, and for fully
developed turbulent flows. The following Equation (14) represents the thermo-hydraulic performance
parameter [31–34,36,37]:

η “ pNuave{Nusaveq { p fave{ f saveq
0.33 (14)

An increased parameter value indicates a relatively more efficient use of the augmentation device,
and can be used to evaluate the performance of the number of preparations in order to decide the best
one among these. The variation in η is shown in Figure 10 for different values of Wc/Wb. It can be
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observed that the value of the thermo-hydraulic performance parameter (η) is maximized for a Wc/Wb
value of 5.0 at any Re value, considered the current investigation.
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4. Comparison Computational Fluid Dynamics Results with Experimental Data

4.1. Experimental Setup Details

A schematic diagram of an experimental setup is shown in Figure 11. The setup comprised a
rectangular wooden channel coupled to a centrifugal blower through a circular galvanized iron (GI)
pipe. The rectangular channel had Wc of 300 mm, H of 30 mm, and Wc/H of 10. It consisted of inlet and
exit sections that were interposed by test sections. The upper wall of the test section was an aluminum
heated plate that was heated by an electric heater which provided a uniform heat flux over the whole
top wall. Air mass flow rate through the SAH was measured with a calibrated orifice meter that was
attached to a U-tube manometer. Air flow was regulated with two gate valves that were coupled in the
lines. The temperature was calculated at different locations with calibrated 0.3 mm diameter copper
constantan thermocouples, which were coupled to a digital micro voltmeter (DMV) to illustrate the
temperature. The pressure drop crossways the test section was deliberate with a micro-manometer
having least count of 0.001 mm of water.
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4.2. Uncertainty Analysis

An uncertainty analysis has been carried to estimate the errors involved in experimental data
measurement. The uncertainty is estimated based on errors associated with measuring instruments [38].
The maximum possible measurement errors in the values of major parameters are given below:

Mass flow rate (ma) 2.67%
Reynolds number (Re) 5.87%
Heat transfer coefficient (ht) 6.23%
Average Nusselt number (Nuave) 5.98%
Average friction factor (f ave) 4.18%

4.3. Validation of Computational Fluid Dynamics Results Using Experimental Data

For the validation of the present numerical model, the numerical results (average Nusselt
number, average friction factor and thermohydraulic performance) of a rectangular channel with
multi V-type perforated baffle attached on a heated plate are compared with experimental results
under similar experimental operating conditions. For validation of present CFD outcomes, baffle
roughened parameters were selected such as Wc/Wb = 5.0, e/H = 0.6, P/e = 8.0, O/e = 0.42, β = 12%,
and α = 60˝. Relative baffle width ratio (Wc/Wb) was selected as 5.0 based on the optimal value of
this parameter based on the CFD results. Figure 12 shows the comparison of the CFD results with
experimental data of the average Nusselt number, average friction factor as a function of the Reynolds
number. The average deviations of the average Nusselt numbers, friction factors, and thermohydraulic
performance are ˘7.98%, ˘9.56%, and ˘8.56%, respectively.
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The values of η = (Nuave/Nusave)/(f ave/fsave)0.33 of the multi V-shaped perforated baffles have
been compared with the values for other baffle shapes in a rectangular channel, as shown in Figure 13.
It is seen that the multi V-shaped perforated baffle shape results in the best thermo-hydraulic
performance η = (Nuave/Nusave)/(f ave/fsave)0.33 among all the shapes investigated.
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5. Conclusions

The heat transfer and pressure drop characteristics have been investigated in multi V-pattern
perforated baffle attached on one broad wall, which is exposed to uniform heat flux in a rectangular
channel. The effects of baffle width ratios on average Nusselt number, average friction factor,
and thermal-hydraulic performance have been also studied for Reynolds number in the range
of 3000–10,000. Multi V-shaped perforated baffles show a considerable enhancement in the heat
transfer rate, and the heat transfer enhancement strongly depends on the relative baffle width ratio.
The average Nusselt number increases whereas the average friction factor decreases with an increase
in the Reynolds number. The values of average Nusselt numbers and friction factors are found to be
higher for multi V-shaped perforated baffles compared to those for a rectangular channel without
baffles. This is attributed to the change in the fluid flow characteristics due to the baffle roughness
that causes generation of secondary flows. The maximum values of average Nusselt number and
friction factor are observed for multi V-shaped perforated baffles width ratio of 5.0 and 7.0, respectively.
The optimum value of the thermo-hydraulic performance for multi V-shaped perforated baffles in a
rectangular channel has been found at the baffle width ratio of 5.0. Multi V-shaped perforated baffles
have also been shown to be thermo-hydraulically better in comparison to other baffle shapes in a
rectangular channel. The outcomes of 3-D CFD analysis are in good agreement with the experimental
data, and thus the current CFD model can be used for the analysis of the new baffle shapes in
rectangular channel.
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Nomenclature

B Length of the baffle, m
Cp Specific heat of air, J/kgK
D Hydraulic diameter of channel, m
d Hole diameter of perforated baffles, m
e Baffle height, m
e/H, e/D Relative baffle height
f Friction factor of baffle roughened wall
f ave Average friction factor of baffle roughened wall
fsave Average friction factor of smooth channel
H Height of channel, m
ht Convective heat transfer, W/m2K
k Turbulent kinetic energy, m2/s2

Ka Thermal conductivity of air, W/mK
L1 Axial pitch length, m
Lt Length of test section, m
ma Mass flow rate of fluid, kg/s
n Number of drilled holes
Nu Nusselt number for baffle roughened wall
Nus Nusselt number for smooth wall
Nuave Average Nusselt number for baffle roughened wall
Nusave Average Nusselt number for without baffle wall
O Hole location from bottom of baffle, m
O/e Relative baffle hole location
P Distance between baffles, m
P/e Relative baffles pitch
p Pressure, Pa
Pr Prandtl number
Prt Turbulent Prandtl number
q Heat flux, W/m2

Qu Useful heat gain, W
Re Reynolds number
T Temperature, K
Tf Average temperature of fluid, K
Ti Inlet temperature of fluid, K
To Outlet temperature of fluid, K
Tp Plate temperature of fluid, K
ui Velocity in xi-direction, m/s
Ñ
v Overall velocity vector, m/s
V Velocity of air, m/s
Wc/H Channel aspect ratio
Wc Width of passage, m
Wb Width of a single V-perforated baffle, m
Wc/Wb Relative baffles width
x Axial coordinate, m
y+ Dimensionless distance from walls
(∆p)d Pressure drop crossways test section, Pa
(∆p)o Pressure drop crossways orifice plate, Pa



Energies 2016, 9, 564 17 of 18

Greek Symbols

α Flow attack angle, degree
β Open area ratio, %
µ Dynamic viscosity, Ns/m2

µt Turbulent viscosity, Ns/m2

ρ Density, kg/m3

ϕ Half angle of baffle tip, degree
η Thermo-hydraulic performance parameter
ε Turbulent kinetic energy dissipation rate, m2/s3

Cµ, Cε1, Cε2 RNG k-εmodel constant

Subscript

CFD Computational fluid dynamics
SAH Solar air heater
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