A Run-Time Dynamic Reconfigurable Computing System for Lithium-Ion Battery Prognosis
Abstract
:1. Introduction
2. BMS Based on Dynamic Reconfigurable Computing System
3. Battery RUL Estimation with RVM Algorithm
3.1. RVM Algorithm
3.2. Expectation Maximization (EM) Algorithm
4. Run-Time Dynamic Reconfigurable Computing Platform for Embedded RVM Implementation
4.1. Computing Process Analysis of RVM Algorithm
- The entire computation process is composed of matrix multiplication, matrix inversion, and kernel function calculation, which involves a lot of computation in the iteration. This indicates that the RVM algorithm is of high complexity and of intensive computation.
- The training efficiency is determined by the number of iterations, which depends on the training samples and the convergence conditions. Therefore, a well-designed computing architecture is imperative to maximize the utilization of hardware resources and efficiency of RVM.
4.2. Dynamic Reconfigurable RVM
4.3. Computing Task Partition of Dynamic Reconfigurable RVM
- (a)
- Dynamic reconfigurable partitions must be less than the actual FPGA resources, i.e., , where is the actual FPGA resources. In our applications, 50% of FPGA hardware resources are reserved for algorithm fusion and parallel computing. With this consideration, the dynamic reconfigurable resources is limited by:
- (b)
- Resources for each sub-task must be less than the amount of resources in dynamic reconfigurable partitions, namely:
- (c)
- Because different tasks may share the same reconfigurable partition in time multiplexed mode, the resource occupation of each task needs to be balanced to avoid waste of hardware resource. These resources include Look-Up-Table (LUT), block RAM (BRAM), connection resources, and DSP48E resources. DSP48E is the processing unit for a variety of arithmetic computing, such as addition, subtraction, multiplication, and division in FPGA. Since DSP48E resources are the key factors that affect the computing capability of FPGA, to simplify the problem, we keep the balance of DSP48E resource as follows:
4.4. Implementation of Dynamic Reconfigurable RVM
4.4.1. System Framework of Dynamic reconfigurable RVM
4.4.2. Architecture of Dynamic Reconfigurable Partition
4.4.3. Design of Key Modules
- Multi-level pipelined calculation method of piecewise linear approximation for the kernel function
- (a)
- 2-Norm Calculation
- (b)
- Exponential Function Calculation
- Improved Cholesky decomposition for matrix inversion based on multiply subtraction
5. Discussion System Performance Testing and Evaluation
5.1. Hardware Platform
- FPGA: Virtex XC5VFX130T;
- DDR2 SDRAM: 512 MB, 72-bit and 2 chips;
- CompactFlash (CF): 512 MB.
5.2. Lithium-Ion Battery Data Set
5.3. Prediction Precision of RUL Estimation
5.4. Analysis of Computing Efficiency
5.5. Analysis of Hardware Resource Consumptions
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, D.; Wang, H.; Peng, Y.; Xie, W.; Liao, H. Satellite lithium-ion battery remaining cycle life prediction with novel indirect health indicator extraction. Energies 2013, 6, 3654–3668. [Google Scholar] [CrossRef]
- Chaoui, H.; Golbon, N.; Hmouz, I.; Souissi, R.; Tahar, S. Lyapunov-Based Adaptive State of Charge and State of Health Estimation for Lithium-Ion Batteries. IEEE Trans. Ind. Electron. 2015, 62, 1610–1618. [Google Scholar] [CrossRef]
- Xiao, R.; Shen, J.; Li, X.; Yan, W.; Pan, E.; Chen, Z. Comparisons of Modeling and State of Charge Estimation for Lithium-Ion Battery Based on Fractional Order and Integral Order Methods. Energies 2016, 9. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, L.; Li, X.; Chen, W.; George, G.Y.; Jiang, J. Robust and Adaptive Estimation of State of Charge for Lithium-Ion Batteries. IEEE Trans. Ind. Electron. 2015, 62, 4948–4957. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Salmasi, F.R. Estimation of state of charge, unknown nonlinearities, and state of health of a lithium-ion battery based on a comprehensive unobservable model. IEEE Trans. Ind. Electron. 2014, 61, 1335–1344. [Google Scholar] [CrossRef]
- Zhang, B.; Tang, L.; Jonathan, D.; Michael, R.; Kai, G. Autonomous Vehicle Battery State-of-Charge Prognostics Enhanced Mission Planning. Int. J. Progn. Heal. Manag. 2014, 5, 1–11. [Google Scholar]
- Shahriari, M.; Farrokhi, M. Online State-of-Health Estimation of VRLA Batteries Using State of Charge. IEEE Trans. Ind. Electron. 2013, 60, 191–202. [Google Scholar] [CrossRef]
- Muñoz-Condes, P.; Gomez-Parra, M.; Sancho, C.; Andrés, M.A.G.S.; González-Fernández, F.J.; Carpio, J.; Guirado, R. On Condition Maintenance Based on the Impedance Measurement for Traction Batteries: Development and Industrial Implementation. IEEE Trans. Ind. Electron. 2013, 60, 2750–2759. [Google Scholar] [CrossRef]
- Long, B.; Xian, W.; Jiang, L.; Liu, Z. An improved autoregressive model by particle swarm optimization for prognostics of lithium-ion batteries. Microelectron. Reliab. 2013, 53, 821–831. [Google Scholar] [CrossRef]
- Liu, J.; Wilson, W.; Farid, G. A multi-step predictor with a variable input pattern for system state forecasting. Mech. Syst. Signal. Process. 2009, 23, 1586–1599. [Google Scholar] [CrossRef]
- Andre, D.; Appel, C.; Soczka-Guth, T.; Sauer, D.U. Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries. J. Power Sources 2013, 224, 20–27. [Google Scholar] [CrossRef]
- Orchard, M.O.; Hevia-Koch, P.; Zhang, B. Risk Measures for Particle-Filtering-Based State-of-Charge Prognosis in Lithium-Ion Batteries. IEEE Trans. Ind. Electron. 2013, 60, 5260–5269. [Google Scholar] [CrossRef]
- Zhang, B.; Chris, S.; Carl, B.; Romano, P.; Marcos, E.O.; George, V. A Probabilistic Fault Detection Approach: Application to Bearing Fault Detection. IEEE Trans. Ind. Electron. 2011, 58, 2011–2018. [Google Scholar] [CrossRef]
- Tipping, M.E. Sparse Bayesian Learning and the Relevance Vector Machine. J. Mach. Learn. Res. 2001, 1, 211–244. [Google Scholar]
- Wang, D.; Miao, Q.; Michael, P. Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model. J. Power Sources 2013, 239, 253–264. [Google Scholar] [CrossRef]
- García, G.J.; Jara, C.A.; Pomares, J.; Alabdo, A.; Poggi, L.M.; Torres, F. A Survey on FPGA-Based Sensor Systems: Towards Intelligent and Reconfigurable Low-Power Sensors for Computer Vision, Control and Signal Processing. Sensors 2014, 14, 6247–6278. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Kim, J.; Kim, J.M. An FPGA-Based Multicore System for Real-Time Bearing Fault Diagnosis Using Ultrasampling Rate AE Signals. IEEE Trans. Ind. Electron. 2015, 62, 2319–2329. [Google Scholar] [CrossRef]
- Souza, A.C.D.; Fernandes, M.A.C. Parallel Fixed Point Implementation of a Radial Basis Function Network in an FPGA. Sensors 2014, 14, 18223–18243. [Google Scholar] [CrossRef] [PubMed]
- Romero-Troncoso, R.J.; Saucedo-Gallaga, R.; Cabal-Yepez, E.; Garcia-Perez, A.; Osornio-Rios, R.A.; Alvarez-Salas, R.; Miranda-Vidales, H.; Huber, N. FPGA-based online detection of multiple combined faults in induction motors through information entropy and fuzzy inference. IEEE Trans. Ind. Electron. 2011, 58, 5263–5270. [Google Scholar] [CrossRef]
- Fons, F.; Fons, M.; Cantó, E.; López, M. Real-time embedded systems powered by FPGA dynamic partial self-reconfiguration: A case study oriented to biometric recognition application. J. Real-Time Image Process. 2013, 8, 229–251. [Google Scholar] [CrossRef] [Green Version]
- Mentens, N.; Vandorpe, J.; Vliegen, J.; Braeken, A.; Silva, B.; Touhafi, A.; Kern, A.; Knappmann, S.; Rettkowski, J.; Kadi, M.S.A.; et al. DynamIA: Dynamic Hardware Reconfiguration in Industrial Applications. Appl. Reconfig. Comput. 2015, 9040, 513–518. [Google Scholar]
- Wang, C.; Liu, Y.L.; Jiang, P.L.; Zhang, Q.Z.; Tao, F.; Zhang, L. Multiple Faults Detection with SoC Dynamic Reconfiguration System Based on FPGA. Advance Mater. Res. 2013, 694, 2642–2645. [Google Scholar] [CrossRef]
- He, Y.; Wang, S.; Peng, Y.; Pang, Y.; Ma, N.; Pang, J. High performance relevance vector machine on HMPSoC. In Proceedings of the 2014 International Conference on Field-Programmable Technol, Shanghai, China, 10–12 December 2014; pp. 334–337.
- Wang, S. Research on Reconfigurable Computing for Time Series Forecasting. Ph.D. Thesis, Harbin Institue of Technology, Harbin, China, June 2012. [Google Scholar]
- Omondi, A.R.; Rajapakse, J.C. FPGA Implementations of Neural Networks; Springer: Dordrecht, The Netherlands, 2006; pp. 21–34. [Google Scholar]
- Yang, D.; Peterson, G.D.; Li, H.; Sun, J. An FPGA Implementation for Solving Least Square Problem. In Proceedings of the 17th IEEE Symposium on Field-Programmable Custom Computing Machines, Napa, CA, USA, 5–7 April 2009; pp. 303–306.
- 754-2008-IEEE Standard for Floating-Point Arithmetic. Available online: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5976968&queryText=IEEE%20754&refinements=4294965216 (accessed on 12 July 2016).
- Battery Data Set, NASA Ames Prognostics Data Repository. Available online: http://ti.arc.nasa.gov/project/prognostic-data-repository (accessed on 20 February 2016).
- Xing, Y.; Ma, E.W.M.; Tsui, K.; Pecht, M. An ensemble model for predicting the remaining useful performance of lithium-ion batteries. Microelectron. Reliab. 2013, 53, 811–820. [Google Scholar] [CrossRef]
1st | 1 | a1 | 0 |
2 | a2 | 0 | |
… | … | … | |
n − 1 | an−1 | 0 | |
2nd | 1 | an | a1 |
2 | an+1 | a2 | |
… | … | … | |
n − 1 | a2*(n−1) | an−1 | |
… | … | … | … |
1 | a1 + an+…+ | ||
2 | a2 + an+1 + … + | ||
… | … | … | |
2-Norm | 1st Step | 2nd Step | lth Step | |
---|---|---|---|---|
Index | Platform | RULa | RULp (mean) | 95% CI | AE | |
---|---|---|---|---|---|---|
B5 | FPGA | 48 | 45 | [34, 49] | 3 | 4.2% |
PC | 49 | [41, 54] | 1 | |||
CS2-33 | FPGA | 240 | 231 | [222, 248] | 9 | 2.5% |
PC | 225 | [208, 238] | 15 |
Index | Platform | TT (ms) | PT (ms) | N.R | O.R (ms) | OT (ms) |
---|---|---|---|---|---|---|
B5 | FPGA | 96.70 | 7.32 | 2 | 16.99 | 138.00 |
PC | 614.02 | 11.81 | 0 | 0.00 | 625.83 | |
Speed-up | 6.35 | 1.61 | 0 | 0.00 | 4.54 | |
CS2-33 | FPGA | 524.25 | 69.27 | 2 | 16.99 | 627.50 |
PC | 6287.30 | 185.62 | 0 | 0.00 | 6472.92 | |
Speed-up | 11.99 | 2.68 | 0 | 0.00 | 10.31 |
Categories | PowerPC | LUTs | BRAM | DSP48E |
---|---|---|---|---|
Static partition | 1 | 4826 | 48 | 0 |
Dynamic partition | 0 | 14,144 | 40 | 120 |
Total utilized resources | 1 | 18,970 | 88 | 120 |
Total FPGA resources | 2 | 81,920 | 298 | 320 |
Ratio of utilization | 50.00% | 23.16% | 29.53% | 37.50% |
Items | LUTs | BRAM | DSP48E | |
---|---|---|---|---|
Static | Reconfigurable unit A | 9440 | 21 | 90 |
Reconfigurable unit B | 14,112 | 34 | 92 | |
Sum of two units | 23,552 | 55 | 182 | |
Dynamic | Dynamic partition | 14,144 | 40 | 120 |
Resources saving | 9408 | 15 | 62 | |
Resources saving percentage | 39.95% | 27.27% | 34.07% |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Liu, D.; Zhou, J.; Zhang, B.; Peng, Y. A Run-Time Dynamic Reconfigurable Computing System for Lithium-Ion Battery Prognosis. Energies 2016, 9, 572. https://doi.org/10.3390/en9080572
Wang S, Liu D, Zhou J, Zhang B, Peng Y. A Run-Time Dynamic Reconfigurable Computing System for Lithium-Ion Battery Prognosis. Energies. 2016; 9(8):572. https://doi.org/10.3390/en9080572
Chicago/Turabian StyleWang, Shaojun, Datong Liu, Jianbao Zhou, Bin Zhang, and Yu Peng. 2016. "A Run-Time Dynamic Reconfigurable Computing System for Lithium-Ion Battery Prognosis" Energies 9, no. 8: 572. https://doi.org/10.3390/en9080572
APA StyleWang, S., Liu, D., Zhou, J., Zhang, B., & Peng, Y. (2016). A Run-Time Dynamic Reconfigurable Computing System for Lithium-Ion Battery Prognosis. Energies, 9(8), 572. https://doi.org/10.3390/en9080572