Lignocellulosic Ethanol Production from the Recovery of Stranded Driftwood Residues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock
2.2. Biomass Pretreatment
2.3. Enzymatic Hydrolysis
2.4. SSSF (Semi-Simultaneous Saccharification and Fermentation)
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Alfieri, L.; Thielen, J. A european precipitation index for extreme rain-storm and flash flood early warning. Meteorol. Appl. 2015, 22, 3–13. [Google Scholar] [CrossRef]
- Schwartz, M. Encyclopedia of Coastal Science; Springer Science & Business Media: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Markandya, A.; Arnold, S.; Cassinelli, M.; Taylor, T. Protecting coastal zones in the mediterranean: An economic and regulatory analysis. J. Coast. Conserv. 2008, 12, 145–159. [Google Scholar] [CrossRef]
- Tsai, W.T.; Tsai, Y.L.; Liu, S.C. Utilization of driftwood as an energy source and its environmental and economic benefit analysis in taiwan. BioResources 2011, 6, 4781–4789. [Google Scholar]
- Daylan, B.; Ciliz, N. Life cycle assessment and environmental life cycle costing analysis of lignocellulosic bioethanol as an alternative transportation fuel. Renew. Energy 2016, 89, 578–587. [Google Scholar] [CrossRef]
- Gnansounou, E.; Dauriat, A. Techno-economic analysis of lignocellulosic ethanol: A review. Bioresour. Technol. 2010, 101, 4980–4991. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.; Nicolini, A. Ethanol reforming for supplying molten carbonate fuel cells. Int. J. Low-Carbon Technol. 2013, 8, 140–145. [Google Scholar] [CrossRef]
- Cotana, F.; Belardi, P.; Manciola, P.; Tamagnini, C.; Materazzi, A.L.; Fornaciari, M.; Petrozzi, A.; Pisello, A.L.; Cavalaglio, G.; Coccia, V.; et al. Renewable energy production, storage and distribution; A new multidisciplinary approach for the design of rural facility. Energy Procedia 2014, 45, 323–332. [Google Scholar] [CrossRef]
- Cotana, F.; Coccia, V.; Petrozzi, A.; Cavalaglio, G.; Gelosia, M.; Merico, M.C. Energy valorization of poultry manure in a thermal power plant: Experimental campaign. Energy Procedia 2014, 45, 315–322. [Google Scholar] [CrossRef]
- Haghighi Mood, S.; Hossein Golfeshan, A.; Tabatabaei, M.; Salehi Jouzani, G.; Najafi, G.H.; Gholami, M.; Ardjmand, M. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 2013, 27, 77–93. [Google Scholar] [CrossRef]
- Limayem, A.; Ricke, S.C. Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 2012, 38, 449–467. [Google Scholar] [CrossRef]
- Chandra, R.P.; Bura, R.; Mabee, W.; Berlin, D.A.; Pan, X.; Saddler, J. Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? In Biofuels; Springer: Berlin/Heidelberg, Germany, 2007; pp. 67–93. [Google Scholar]
- Tao, L.; Schell, D.; Davis, R.; Tan, E.; Elander, R.; Bratis, A. Nrel 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2014.
- Overend, R.; Chornet, E.; Gascoigne, J. Fractionation of lignocellulosics by steam-aqueous pretreatments [and discussion]. Philos. Trans. Royal Soc. London. Ser. A Math. Phys. Sci. 1987, 321, 523–536. [Google Scholar] [CrossRef]
- Cotana, F.; Cavalaglio, G.; Gelosia, M.; Nicolini, A.; Coccia, V.; Petrozzi, A. Production of bioethanol in a second generation prototype from pine wood chips. Energy Procedia 2014, 45, 42–51. [Google Scholar] [CrossRef]
- Cavalaglio, G.; Gelosia, M.; Ingles, D.; Pompili, E.; D'Antonio, S.; Cotana, F. Response surface methodology for the optimization of cellulosic ethanol production from phragmites australis through pre-saccharification and simultaneous saccharification and fermentation. Ind. Crop. Prod. 2016, 83, 431–437. [Google Scholar] [CrossRef]
- Ruiz, H.A.; Rodríguez-Jasso, R.M.; Fernandes, B.D.; Vicente, A.A.; Teixeira, J.A. Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review. Renew. Sustain. Energy Rev. 2013, 21, 35–51. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, F.A.; Ruiz, H.A.; da Costa Nogueira, C.; dos Santos, E.S.; Teixeira, J.A.; de Macedo, G.R. Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies. Fuel 2014, 131, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Cotana, F.; Cavalaglio, G.; Gelosia, M.; Coccia, V.; Petrozzi, A.; Ingles, D.; Pompili, E. A comparison between shf and sssf processes from cardoon for ethanol production. Ind. Crop. Prod. 2015, 69, 424–432. [Google Scholar] [CrossRef]
- Marques, S.; Alves, L.; Roseiro, J.; Gírio, F. Conversion of recycled paper sludge to ethanol by SHF and SSF using pichia stipitis. Biomass Bioenergy 2008, 32, 400–406. [Google Scholar] [CrossRef]
- Tomás-Pejó, E.; Oliva, J.M.; Ballesteros, M.; Olsson, L. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting saccharomyces cerevisiae strains. Biotechnol. Bioeng. 2008, 100, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
- Ask, M.; Olofsson, K.; Di Felice, T.; Ruohonen, L.; Penttilä, M.; Lidén, G.; Olsson, L. Challenges in enzymatic hydrolysis and fermentation of pretreated arundo donax revealed by a comparison between SHF and SSF. Process biochem. 2012, 47, 1452–1459. [Google Scholar] [CrossRef]
- Wirawan, F.; Cheng, C.L.; Kao, W.C.; Lee, D.J.; Chang, J.S. Cellulosic ethanol production performance with SSF and SHF processes using immobilized zymomonas mobilis. Appl. Energy 2012, 100, 19–26. [Google Scholar] [CrossRef]
- Sluiter, J.; Sluiter, A. Summative Mass Closure; Technical Report for Laboratory Analytical Procedure; National Renewable Energy Laboratory (NREL): Golden, CO, USA, April 2005.
- Martinez, J.; Negro, M.; Saez, F.; Manero, J.; Saez, R.; Martin, C. Effect of acid steam explosion on enzymatic hydrolysis of O. Nervosum and C. Cardunculus. Appl. Biochem. Biotechnol. 1990, 24, 127–134. [Google Scholar] [CrossRef]
- Möller, M.; Harnisch, F.; Schröder, U. Hydrothermal liquefaction of cellulose in subcritical water—the role of crystallinity on the cellulose reactivity. Rsc Advances 2013, 3, 11035–11044. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; Technical Report for Laboratory Analytical Procedure; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 7 July 2005.
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples; Technical Report for Laboratory Analytical Procedure; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 12 August 2006.
- Resch, M.; Baker, J.; Decker, S. Low Solids Enzymatic Saccharification of Lignocellulosic Biomass; Technical Report for Laboratory Analytical Procedure; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 4 February 2015.
- Cotana, F.; Cavalaglio, G.; Nicolini, A.; Gelosia, M.; Coccia, V.; Petrozzi, A.; Brinchi, L. Lignin as co-product of second generation bioethanol production from ligno-cellulosic biomass. Energy Procedia 2014, 45, 52–60. [Google Scholar] [CrossRef]
- Martín, C.; Galbe, M.; Nilvebrant, N.O.; Jönsson, L. Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pretreated by steam explosion using different impregnating agents. Appl. Biochem. Biotechnol. 2002, 98, 699–716. [Google Scholar] [CrossRef]
- Olofsson, K.; Bertilsson, M.; Liden, G. A short review on ssf - an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol. Biofuels 2008, 1, 7. [Google Scholar] [CrossRef] [PubMed]
- Baltz, R.H.; Demain, A.L.; Davies, J.E. Manual of Industrial Microbiology and Biotechnology; American Society for Microbiology Press: Washington, DC, USA, 2010. [Google Scholar]
- Nitsos, C.K.; Matis, K.A.; Triantafyllidis, K.S. Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process. ChemSusChem 2013, 6, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 2002, 83, 1–11. [Google Scholar] [CrossRef]
- Galbe, M.; Zacchi, G. A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 2002, 59, 618–628. [Google Scholar] [CrossRef] [PubMed]
Sample ID | T (°C) | T (min) | LogR0 |
---|---|---|---|
BS01 | 190 | 10 | 3.65 |
BS02 | 190 | 25 | 4.05 |
BS03 | 210 | 10 | 4.24 |
BS04 | 210 | 25 | 4.64 |
Component | Cellulose % | Hemicellulose % | Acetyl % | Lignin % | Extractives % | Ash % | Tot. % | Other % | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Monomer | Glucose | Xylose | Galactose | Mannose | Arabinose | ||||||
RM | 31.43 | 12.63 | 0.75 | 1.03 | 0.50 | 4.27 | 27.77 | 6.19 | 4.86 | 85.30 | 14.70 |
S.D. | 0.59 | 0.23 | 0.04 | 1.53 | 0.15 | 0.35 | 1.70 |
Sample | LogR0 | WISr | %H | %C | %L |
---|---|---|---|---|---|
BS01 | 3.65 | 78.34% | 12.71% | 39.52% | 36.83% |
BS02 | 4.05 | 77.06% | 5.80% | 44.30% | 44.02% |
BS03 | 4.24 | 73.63% | 2.82% | 44.73% | 44.00% |
BS04 | 4.64 | 69.09% | 0.82% | 46.81% | 47.07% |
Sample | LogR0 | %Hr PL | %Hr WIS | %Total Hr |
---|---|---|---|---|
BS01 | 3.65 | 17.86 | 66.79 | 84.65 |
BS02 | 4.05 | 14.79 | 29.95 | 44.76 |
BS03 | 4.24 | 11.80 | 13.94 | 25.74 |
BS04 | 4.64 | 5.27 | 3.82 | 9.09 |
Sample | LogR0 | HY96% | Glucose(g) |
---|---|---|---|
BS01 | 3.65 | 21.10% | 0.46 |
BS02 | 4.05 | 44.07% | 1.08 |
BS03 | 4.24 | 51.18% | 1.33 |
BS04 | 4.64 | 83.17% | 2.16 |
Sample | EtOHy% | OY | OY% |
---|---|---|---|
BS2 | 22.0361 | 7.5227 | 42.28 |
BS4 | 27.7724 | 8.9818 | 50.48 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavalaglio, G.; Gelosia, M.; D’Antonio, S.; Nicolini, A.; Pisello, A.L.; Barbanera, M.; Cotana, F. Lignocellulosic Ethanol Production from the Recovery of Stranded Driftwood Residues. Energies 2016, 9, 634. https://doi.org/10.3390/en9080634
Cavalaglio G, Gelosia M, D’Antonio S, Nicolini A, Pisello AL, Barbanera M, Cotana F. Lignocellulosic Ethanol Production from the Recovery of Stranded Driftwood Residues. Energies. 2016; 9(8):634. https://doi.org/10.3390/en9080634
Chicago/Turabian StyleCavalaglio, Gianluca, Mattia Gelosia, Silvia D’Antonio, Andrea Nicolini, Anna Laura Pisello, Marco Barbanera, and Franco Cotana. 2016. "Lignocellulosic Ethanol Production from the Recovery of Stranded Driftwood Residues" Energies 9, no. 8: 634. https://doi.org/10.3390/en9080634
APA StyleCavalaglio, G., Gelosia, M., D’Antonio, S., Nicolini, A., Pisello, A. L., Barbanera, M., & Cotana, F. (2016). Lignocellulosic Ethanol Production from the Recovery of Stranded Driftwood Residues. Energies, 9(8), 634. https://doi.org/10.3390/en9080634