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Abstract: Inductive-capacitive-inductive (LCL)-type line filters are widely used in grid-connected
voltage source inverters (VSIs), since they can provide substantially improved attenuation of
switching harmonics in currents injected into the grid with lower cost, weight and power losses
than their L-type counterparts. However, the inclusion of third order LCL network complicates the
current control design regarding the system stability issues because of an inherent resonance peak
which appears in the open-loop transfer function of the inverter control system near the control
stability boundary. To avoid passive (resistive) resonance damping solutions, due to their additional
power losses, active damping (AD) techniques are often applied with proper control algorithms
in order to damp the LCL filter resonance and stabilize the system. Among these techniques, the
capacitor current feedback (CCF) AD has attracted considerable attention due to its effective damping
performance and simple implementation. This paper thus presents a state-of-the-art review of
resonance and stability characteristics of CCF-based AD approaches for a digitally-controlled LCL
filter-based grid-connected inverter taking into account the effect of computation and pulse width
modulation (PWM) delays along with a detailed analysis on proper design and implementation.

Keywords: active resonance damping; discrete-time domain; Inductive-capacitive-inductive
(LCL)-filter; current control; grid-connected inverter

1. Introduction

Due to the increasing emergence of power electronics-interfaced distributed generation (DG)
units in modern power distribution systems, control of interfacing inverters has become a very
important issue and a flexible and outstanding opportunity for robust integration of renewable energy
resources-based DG units with high sustainability, as well as for overcoming the various power quality
problems [1–4].

In low-power applications with high switching frequency, a single inductor L is usually installed in
series with the inverter output port in order to attenuate the switching harmonics of the inverter output
currents. However, using such a simple topology in high-power applications with low switching
frequency, leads to the use of costly and bulky L-filters due to the associated high switching losses.
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Moreover, the dynamic response and harmonic attenuation performance of the inverter, which should
comply with the harmonic limitations in standards such as IEEE Std. 519-1992/2014 [5] and IEEE
Guide—Adoption of IEC/TR IEC/TR 61000-3-7:2008 [6], may also be affected [7–10]. To overcome
these limitations and improve the grid current quality, the inductive-capacitive-inductive (LCL) filter is
preferred to its conventional L-type counterpart due to the high attenuation of the converter switching
ripples and harmonics that can provide even in high-power conversion systems with low switching
frequency, reduction of overall size and cost of the filter, decrease of the filter power losses and better
dynamic response [10,11]. Figure 1 illustrates a typical structure of three-phase voltage source inverter
(VSI) connected to the grid/load through the popular types of the passive filters.
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Figure 1. Three-phase voltage source inverter (VSI) connected to grid/load through inductive 

(L)/inductive-capacitive (LC)/inductive-capacitive-inductive (LCL) filters. DG: distributed generation. 
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Figure 1. Three-phase voltage source inverter (VSI) connected to grid/load through inductive
(L)/inductive-capacitive (LC)/inductive-capacitive-inductive (LCL) filters. DG: distributed generation.

The shunt capacitor in the LCL filter plant is employed to provide a low-impedance path for
the high-frequency current components. The LCL filters are broadly used in current-controlled
grid-connected VSIs such as active power filters (APFs), and current-controlled DG units, whereas the
LC filters are normally adopted for voltage-controlled DG or UPS systems [12]. It is worth pointing out
that if these passive high-order filters are not carefully designed, they won’t be able to absorb perfect
inverter switching harmonics and also may bring additional switching ripples and resonances to the
system. It can lead to inappropriate operation of other electromagnetic interference (EMI)-sensitive
loads/equipment on the grid [6,13]. The general criteria for proper design of high-order filters such as
LCL-type are as follows [14–17]:

1) To filter out all of the inverter output harmonics except for the fundamental frequency.
2) To have a cut off frequency much less than the switching frequency of the VSI (which typically

should be lower than 0.1 of the switching frequency).
3) To limit the value of the filter inductances in order to reduce voltage drop and increase voltage

transfer ratio at the rated current and also improve the voltage quality (by taking a low di/dt for
large switching current ripples).

4) To minimize the total reactive power under the rated condition in order to ensure high power
factor (should normally be limited to lower than 5%–10% of rated power).

In addition, Shen et al. [18] demonstrated that the LCL-filter provides the maximum attenuation to
the high frequency switching ripples when the inverter-side inductor is equal to the grid-side inductors.

Despite the prominent merits of LCL-filter compared to the L-filter, adding it to the inverter
terminal leads to remarkable complexity from the perspective of the current control system design to
preserve the system stability. In fact, the underlying reason for this is the inherent peak of resonance
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between the filter elements, which introduces a pole pair on the closed-loop control stability boundary
owing to zero impedance at the resonance frequency. It may lead to greater susceptibility to interference
risks and the lower harmonic impedance introduced to the grid [8,9,19–23]. As a result, this third-order
passive filter brings some resonance hazards at the frequency response, which reduce the efficiency and
performance of the inverter system and in the worst case even leads to closed-loop system instability.
Moreover, if the inverters controller is not properly designed, the resonances may be excited by the
control loop, nonlinear loads, disturbances, or transients [14,19], which certainly introduce serious
power quality problems for the system. Consequently, one of the most important concerns in the
grid-connected inverter system is the inherent resonance caused by the inverter output LCL-filter [10].
Therefore, at first, by using a detailed discrete-time theoretical and stability analysis, this paper explains
why and when damping is needed for an LCL filter-based digitally-controlled grid-connected inverter
with various resonant frequencies, when computation and pulse width modulation (PWM) delays
arising from the nonlinear modulation process and digital sampling are taken into account [23–27]. It
is noteworthy that the significance and role of digital sampling and PWM transport delay in design of
resonance damping methods for an LCL filtered grid-connected inverter in order to conform more to
the actual conditions are of great importance.

There are many well-established methods for shaving the resonance peaks and stabilizing the
system, which can be classified as active damping (AD) and passive damping (PD) techniques. It
is well known that the PD solutions can be easily realized through adding a real resistor in series
or parallel with the output filter elements, especially the filter capacitor branch, to absorb resonance
energy and also to maintain the system stability [28]. Its performance, however, is inevitably limited
by increased cost, and additional power losses (that can be larger than 1% of the nominal power in
medium voltage applications) [29]. In addition, PD may adversely affect the filter harmonic attenuation
efficiency at high frequencies due to the downgrading of the filter plant to a second order system
by introducing additional resistors to it [11,29]. In other words, since PD hardly inserts damping in
a selective way at system resonance frequencies, the filter attenuation at the switching frequency is
inevitably compromised. Generally, although PD solution is simple, it will lead to non-compatibility
of high-power converters with the EMI standards [18], reduction of system bandwidth as well as the
elimination of the benefits introduced by the non-damped filters [11,28]. Recently, to further reduce
the filter inductor size, a high-order inductive-inductive-capacitive-inductive (LLCL) filter has been
proposed in [30]. In this structure, an inductor is added in series with filter capacitor branch. In
addition, various PD methods for LLCL-filter-based grid-tied inverter have been presented in [31,32]
by considering the large variation of grid-side inductance. As study of PD strategies is outside the
scope of this paper, the different combinations of PD methods are not presented here.

Although effectiveness of the PD solutions have been proven [33], thanks to the significant
advances in power electronic technologies, the switching frequency and control bandwidth of the
DG interface inverter can be much higher than the resonant frequency of output filters, even for
wind power converters at a few megawatts (MW) [16]. Consequently, AD schemes with high
efficiency and flexibility and without any additional power losses are often considered as a more
promising way to provide sufficient damping to the filter plant in the inverter system. In this way,
maximization of the system open-loop gain and increased the system damping can be attained by
moving the resonant poles away from the system control stability boundary [11,23]. The aim of
AD schemes is to dynamically modify the inverter output voltage to alleviate the zero impedance
impact of LCL-filter at resonant frequency. AD techniques can be broadly classified into two
categories. The first group includes digital filters which do not require any additional measurement
and placed in cascade with current controller [34]. Plugging-in these filters provides a sensor-less
damping scheme, but its performance strongly depends on the precision of system parameters and
model (sensitivity to system parameter variations and uncertainties) [9,11,35,36]. Performance and
design of these damping methods are not investigated in this paper. Another group consists of
feedback-type AD approaches which use the feedback of LCL filter state variables such as filter
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capacitor current [22,23,26,27,37–46]/voltage [8,13,47] or the inverter-side current feedback [11,37].
The basic idea of these approaches is to feed other control variables back to the existing current control
loop, so that they can operate as damping terms in order to suppress the LCL filter resonant peak.
It is clear that the implementation of the feedback-type approaches needs additional sensors, which
undoubtedly increase overall system cost. In addition, they are provided at the expense of increased
complexity of the current controller and damping gains tuning, particularly when computation and
PWM delays are taken into account. However, among feedback-type AD techniques, the capacitor
current feedback (CCF) AD has attracted considerable attention for its effective LCL resonance
damping performance and simple implementation in grid-connected inverters [27,42,46]. Hence,
this paper conducts an in-depth investigation on this AD method in discrete-time domain by using
impedance-based analysis and identifies stability limitations and challenges when computation and
PWM delays are taken into account. Consequently, in order to improve the LCL resonance damping
performance of conventional CCF AD scheme, two effective techniques along with determination
processes of current controller and damping gains are introduced, which so far have not been
comprehensively and seamlessly discussed in the literature. It is worthy to note that the analysis
conducted in this paper can be useful for exploring and development of other feedback-type
AD methods. Several comparative results are also presented to validate the part of theoretical
findings in this paper, which would be efficient for engineers in using this damping method in
practical applications.

This paper is organized as follows. In Section 2, the resonance issue caused by the grid-connected
VSI with an LCL filter under single-loop grid-side current feedback control scheme will be reviewed
under the various resonant frequencies in discrete-time domain when computation and PWM delays
are regarded and at the same time, the AD regions will be identified. After that, the conventional
proportional CCF AD solution is introduced and analyzed in discrete-time domain by virtual
impedance model in Section 3. It is shown that this resonance damping scheme has stability challenges
due to the limitation of valid damping region, especially in a weak grid with the potential influence of
the grid-impedance variation. Two improved CCF AD methods along with determination processes of
current controller and damping gains are then presented in Section 4 to address this limitation and
achieve the desired performance characteristics. Finally, this paper will end with a general conclusion
in Section 5.

2. Stability Analysis for Single-Loop-Controlled Inductive-Capacitive-Inductive-Filtered
Grid-Connected Inverter with Different Resonant Frequencies

In this section, the single-loop grid-side current control strategy is analyzed in the discrete-time
domain, when computation and PWM delays are considered. This then leads to the identification of
two distinct LCL filter resonant frequency regions [23,26,27], which determined when AD is needed
for these systems in order to damp the resonance and retain the system stability.

2.1. Single-Loop Grid-Side Current Control Strategy in Discrete-Time Domain

2.1.1. System Description

Figure 2 shows the structure of an LCL-filter-based grid-connected three-phase inverter including
inverter-side inductor L1, capacitor Cf, grid-side Inductor L2, grid inductor Lg, inverter output voltage
vinv, and grid voltage vg.

It is clear that by neglecting the physical internal damping of the output filter related to winding
resistance of the inductors and the equivalent series resistance of filter capacitor as well as the resistive
component of grid impedance, which offer a certain degree of damping, the worst case for stability
analysis is drawn [11,19,46].
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The main aim of the control system is to regulate the grid-side current i2 in order to manage the
injected active and reactive powers into the grid. However, typically, it has been stated that a single-loop
feedback current control scheme is not sufficient for this aim because the LCL filter resonance causes
controller instability [9,22]. This point will be precisely investigated in the following for different
resonance frequencies. Another assumption made here is that the grid voltage vg only includes
positive-sequence fundamental component and thus a clean three-phase balanced grid is considered.
It is measured for the purpose of synchronizing the control system by a phase-locked-loop (PLL).
Hence, vg can be regarded as short circuit with zero impedance and removed from modeling block
diagrams; since it has not effect on the system stability and harmonic analyses and only influences
the fundamental grid-side current component [11,23]. It should be noted that a low-bandwidth
synchronizing approach (compared to the grid fundamental frequency) should be applied to avoid
the undesired low-frequency instability [36,48,49]. By incorporating these conditions, Figure 2 can be
simplified to the per-phase equivalent circuit depicted in Figure 3.
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Another important practical issue that must be taken into account is that the system actual
delays can significantly reduce the phase margin in the high frequency range (the resonance
frequencies range) [11,25]. In fact, in the digitally-controlled system, there are computation and
PWM delays [24,25,42]. When the sampling instant happens at the beginning and in the middle of a
switching period (synchronous sampling scheme), the computation delay that is the time duration
from the sampling instant to the PWM reference update instant, is considered as one sampling
period Ts to avoid the unwanted intermediate PWM transitions [24,32,42]. Since in the synchronous
sampling scheme, the fundamental component (the average value per switching period) is obtained,
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the sampling-induced aliasing is not automatically created [42]. Also, since in this sampling scheme,
no switching devices are switched at the sampling instant, the switching noise is almost avoided.
Because of these advantages, the synchronous sampling scheme is commonly employed in
digitally-controlled systems. In addition, the PWM delay, which is caused by zero-order-hold (ZOH)
effect to keep the PWM reference after it has been updated, is approximately considered as half
sampling period [25,42]. Thus, in order to investigate the role and importance of the delays in the
effectiveness of AD strategies in digitally-controlled systems, the inverter is well modeled in z-domain
as a linear VDC gain with one sample delay z−1 created by the nonlinear modulation process [23–25].
Note that the considering a first-order low-pass term as the actual delay term is not appropriate,
because the main impact defined by delay is to reduce the phase of the open-loop transfer function,
not to decrease amplitude response [23].

Figure 4 illustrates the block diagram of single-loop grid-side current control scheme in s-domain
and in discrete-time domain (z-domain) [22,23,27,36,42,46]. GC(z) is the current controller transfer
function and i*(z) is the reference grid-side current. The reference grid-side current is generated either
from inverter dc-link voltage control loop (for APF systems) or fundamental power reference control
(for DG systems).Energies 2016, 9, 642 6 of 30 
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Figure 4. Block diagram of single-loop grid-side current control scheme without any damping method:
(a) s-domain; and (b) z-domain.

The active power reference can be obtained based on the maximum power point tracking (MPPT)
in photovoltaic or wind system applications, the maximum system efficiency like in a fuel cell system,
or the command from energy management center of a microgrid [3]. The reactive power reference can
also be generated from load power factor compensation algorithms or the voltage support requirements.
It is worth noting that since the dynamics of the control loop related to the current reference generation
is much lower than that of the grid-side current loop, the grid-side current loop can be analyzed
separately, resulting in the current reference is directly given as i* here [23,42].

2.1.2. Stability Analysis

To explore the resonance and stability issues, firstly, the discrete-time domain control mathematical
model of the system shown in Figure 4 is derived. Therefore, by considering Figure 3, the transfer
function of Gi2 in the s-domain is defined as following [11,22,23]:

Gi2 (s) =
i2 (s)

vinv (s)
=

1
sL1
× ζ2

LC
s2 +ω2

res
(1)
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where ζLC =
√

1/
((

L2 + Lg
)
× Cf

)
and ωres =

√(
L1 + L2 + Lg

)
/
(

L1 ×
(

L2 + Lg
)
× Cf

)
which is

undamped resonance angular frequency and the resonance frequency is f res =ωres/(2π). With applying
a ZOH transform [50] and considering a sampling period of Ts = 1/f s, the transfer function of Gi2 in
z-domain can be calculated as follows [23,26]:

Gi2 (z) =
i2(z)

vinv(z)
= Ts

(L1+L2+Lg)×(z−1) −
sin(ωresTs)

ωres×(L1+L2+Lg)
× z−1

z2−2zcos(ωresTs)+1 (2)

Usually the controller for three-phase systems is designed under two-phase rotating (dq) or
stationary (αβ) coordinate systems (reference frame). However, for the LCL filter, use of the
rotating coordinate system introduces the complex coupling between d- and q-axes. As a result,
the proportional resonant (PR) controller under stationary frame is often used in LCL filter-based
inverter systems in order to track the ac reference current accurately and also to avoid the mentioned
strong coupling [23,25,37]. A PR controller has a higher bandwidth and an infinite gain at a selected
resonant frequency in order to ensure rapid current tracking and remove steady-state error at that
frequency [18]. The transfer function for this controller in s-domain can be expressed as:

GC(s) = Kp +
Kis

s2 +ω2
0

(3)

where Kp and Ki are the proportional and resonant coefficients of the current controller, respectively.
Furthermore, multiple parallel low-order harmonics resonant controllers [3] can also be added to the
current control scheme to provide better harmonic rejection capability. However, it should be noted that
when the selected frequency is out of the bandwidth of the system, it may lead to the system instability.
This can be one reason for this fact that the harmonic compensators of the PR current controllers
are limited to the low-order harmonics [3]. To make damping effects of various AD solutions more
obvious, only fundamental PR controller is regarded here in GC(s). The best discretization method
for this controller due to its important dynamics is a Tustin (bilinear) approximation with frequency
pre-warping [50,51], equivalent to the fundamental frequency, which yields an equivalent discrete-time
current controller transfer function as follows [26]:

GC(z) = Kp +
Ki × γz

2ω0(z2 − 2z·cos(ω0Ts) + 1)
(4)

where γz = (z2 − 1)sin(ω0Ts).
Notice that the discrete PR controller can also be expressed as Equation (5) [42], so that, its

frequency response is similar and coincides with Equation (4) at whole frequency ranges:

GC(z) = Kp +
Ki × Ts × (−z−2 + z−1)

z−2 + ((Tsω0)
2 − 2)z−1 + 1

(5)

Then, with combination of these transfer functions, the open-loop gain expression for the
single-loop grid-side current control scheme (Figure 4b) can be readily derived as Equation (6)
in z-domain for applying the control system analysis approaches, such as frequency response
(Bode diagram) and root locus analysis:

Gopen_loop(z) =
i2(z)
ie(z)

= z−1VDC × GC(z)× Gi2(z) (6)

where ie(z) is the regulated grid-side current error.
To demonstrate the relationship between the current controller stability and the inherent resonance

of the LCL filter, the detailed stability analysis based on the frequency responses of the open-loop gain
has been obtained using Equation (6) in MATLAB software environment for the control system shown
in Figure 4b, with the parameters given in Table 1, in which the LCL filter is mainly designed according
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to the criteria presented in [14–17]. Three various filter capacitor values are regarded (Table 1), which
can be appropriate choices for consideration of the different regions of LCL resonant frequencies
(between ~6.25% and ~37% of the sampling frequency). It is worth mentioning that in order to provide
an acceptable active resonance damping performance and control bandwidth as well as sufficient
switching ripple attenuation, the resonance frequency should be less than half of the Nyquist frequency,
which is half of the sampling and the control updating frequency [7,52]. The sampling frequency f s is
set to be twice the switching frequency (2f sw) [26,42,46].

Table 1. LCL filter and inverter system parameters.

System Parameters L1 = 3.6 mH L2 = 1.8 mH Lg =1.8 mH

Ts = 1/fs = 100 µs (Sampling Period) ω0 = 100π 2VDC = 650 V f sw = 5 kHz

Filter Capacitances and Resonance Frequencies

Cf = 36 µF f res = 0.625 kHz f res/f s = 0.0625

Cf = 5 µF f res = 1.67 kHz f res/f s = 0.167

Cf = 1 µF f res = 3.751 kHz f res/f s = 0.3751

Figure 5a,b indicates frequency responses of the single-loop grid-side current control considering
the delay effects when the filter resonant frequency is significantly lower than the sampling frequency
(Cf = 36 µF) and when the resonant frequency is close to the sampling frequency (Cf = 1 µF), respectively.
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As seen in Figure 5a, a high-frequency LCL resonance appears in open-loop gain at the
frequency 625 Hz with very high resonant amplitude and a sharp phase transition passing
through −180◦. This certainly and unconditionally leads to instability of the closed-loop system
for all current controller gains along with a slow dynamic response [9,22,23,26,27]. Thus, in this
situation, the damping solutions are essential to limit the high gain at the LCL resonance frequency
for closed-loop control system stability, even if the physical internal damping terms of the output
filter are included. On the contrary, as is well evident from Figure 5b, when the resonant frequency is
close to the sampling frequency, the phase of open-loop transfer function moves below −180◦, before
the occurrence of the LCL filter resonance frequency (i.e., no Nyquist encirclement of −1). Thus, in
this case, the system can be stabilized with suitable selection of the proportional gain KP, so that the
amplitude response passes through 0 dB before the resonant frequency (Figure 5b), as long as for
any reason, such as the grid impedance variation, the resonance frequency is not reduced to the low
resonance frequency region [26,42,53].
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In summary, according to the presented theoretical findings, it can be concluded that for a
digitally-controlled LCL-filter–based inverter system with single-loop grid-side current control and
filter low-frequency resonances, the control system is unstable and an AD method is required for
closed-loop control system stability. In contrast, at high-frequency resonances, the grid-side current
feedback only, is adequate to design a conditional stable system with appropriate selection of the
current controller proportional gain without any kind of damping method. As a result, it is obvious that
there is a critical LCL filter resonance frequency that separates the two frequency regions introduced,
so that above this critical resonance frequency, the present current control strategy is sufficient to
attain a suitable stable response, but below it, AD is urgent to ensure the system stability. This specific
frequency can be easily obtained by calculating the point at which the phase of the open-loop transfer
function in Equation (6) cuts −180◦ [23], as seen from Equation (7):

∠
i2(z)
ie(z)

(z = ejωTs) = ∠e−jωTs ×VDC × GC(ejωTs)× Gi2(ejωTs) = −π (7)

Note that, since the PR controller resonant frequency ω0 is much lower than −180◦ crossing-over
angular frequency ωc, hence, it has a little phase contribution at this frequency [23,27], and only is
considered as a proportional gain Kp. Therefore, ∠GC(ejωTs) ≈ 0. In addition, the resonance of LCL
filter plant makes a phase contribution with value of −π/2 − ωTs/2 when it is actually reached.
Then, by applying these simplifications to Equation (7), ωcrit can be obtained as follows [23,26,27].
It is obvious that the critical resonant frequency becomes equivalent to one-sixth of the sampling
frequency (f s/6):

∠
i2(z)
ie(z)

(z = ejωTs) = −ωTs −
π

2
− ωTs

2
= −π⇒ ωcrit =

π

3Ts
→ fcrit =

fs

6
(8)

Hence, for better understanding of stability issues, the discrete root loci results are also presented.
It is worth noting that in this analysis, as previously mentioned, the PR controller GC(z) can be
reasonably simplified to Kp since aboveω0, the resonant term Ki has insignificant effect in terms of
the stability analysis. Thus, the system characteristic equation for the single-loop grid-side current
control system, which represents the closed-loop poles, can be obtained by using the conventional
1 + Gopen_loop(z) = 0 formulation, as:

z + VDC × Kp × Gi2(z) = 0 (9)

Figure 6 illustrates the movement of closed-loop poles for this digital current control scheme,
in different regions of the resonant frequency. As seen from Figure 6a, when the LCL filter resonant
frequency is adjusted above ωcrit, the open-loop gain has four poles, which the conjugate closed-loop
poles initially move well inside the unit circle. Therefore, the system will be stable until a high enough
proportional gain Kp is applied [9,22,23,26]. These conjugate poles which are necessary to study the
system stability and relate to the resonance frequencyωres can be expressed as follows [26]:

PConjugate = cos(ωresTs)± jsin(ωresTs) (10)

In contrast, when the resonant frequency is adjusted at or below ωcrit, the resonant pole pairs
always move away from the unit circle (Figure 6b,c). Thus, in low resonance frequency region, the
system is always unstable without using AD, regardless of the Kp values. It is notable that in this
case, use of pole-zero compensation method for proper damping of the LCL-filter resonance is very
hard; since the system stability is very sensitive to the parameters of the filter [54]. It means that the
model-based control approaches are more sensitive to system parameter changes.

In general, this section clearly revealed that why and when damping is needed in a LCL
filter-based inverter system with the single-loop grid-side current control scheme for various resonant
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frequencies, while digital sampling and transport delay arising from the controller and nonlinear
modulation process are considered. It should also be noted that the single-loop control schemes
suffer from low-bandwidth and there is a tradeoff between control dynamics and steady-state
performance [37].
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2.2. Current Controller Gains Determination for High Resonant Frequency Region

As specified above, if the LCL filter resonance frequency is higher than the critical frequencyωcrit,
single-loop control with a proper proportional gain Kp is sufficient to attain a conditional stable system.
Therefore, in this case, the PR controller defined in Equation (3) can be employed alone to control of
the grid-side current without any damping method. Consequently, PR current regulators with suitable
gains can thus be designed for this frequency region in order to provide an effective damping effect
and the greatest control system bandwidth [23,27]. It should be noted that to prevent instability from
using an economical choice, the LCL filters are usually installed in practice with a resonance frequency
higher than f s/6 [42–44]. However, in a real grid with the inductive grid impedance, in addition to
reducing the resonance frequency, the grid-impedance variation can yield a wide resonance frequency
range variation. In view of this, the resonance frequency might reduce to the critical frequency of
f s/6, and thus trigger instability. Hence, the stability challenge in f s/6 must be resolved to attain high
robustness against the variation of grid impedance [42].

As it is clear from Figure 6a, the current controller proportional gain limitation for this frequency
region is dependent on the low-frequency poles (delay and series filter inductance effects), not the LCL
filter resonance effect, similar to what occurs in simple L filter systems, where L = L1 + L2 + Lg [23].
Hence, for determining these gains (Kp and Ki), only low-frequency component of the filter plant
model in Equation (2) is needed for the open-loop transfer function in Equation (6) [11,22,23,25], as:

Gopen_loop(z) =
i2(z)
ie(z)

= z−1VDC × Kp ×
Ts

(L1 + L2 + Lg)× (z− 1)
(11)

By considering a desired phase margin ϕM and calculating the gain crossover frequency ωgc

(unity magnitude), the proportional gain Kp can be adjusted to achieve unity gain at the obtained gain
crossover frequency, which are described below [11,22,23,25]:

ϕM = π+∠Gopen_loop(z = ejωgcTs)

= π+∠
VDC×Kp×Ts
(L1+L2+Lg)

× 1
ejωgcTs×(ejωgcTs−1)

= π−ωgcTs − π
2 −

ωgcTs
2

(12)
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ϕM =
π

2
− 3

2
ωgc × Ts (13)

→ ωgc =
π
2 −ϕM

3
2 Ts

(14)

Then: ∣∣∣Gopen_loop(z = ejωgcTs)
∣∣∣ = 1→ Kp ≈

ωgc × (L1 + L2 + Lg)

VDC
(15)

Recognizing that the resonant term Ki makes low contribution at the crossover frequency [25],
it can be calculated as follows [11,22,23]:

Ki ≈
ωgc

2 × (L1 + L2 + Lg)

10VDC
(16)

Thus, for the high filter resonant frequency included in Table 1 (3.751 kHz) and a desired phase
margin of ϕM = 45◦, these gains are obtained as Kp = 0.116 and Ki = 60.736. This phase margin can be
easily identified from Figure 5b. However, as mentioned previously, in a real grid with inductive grid
impedance, which makes the resonance frequency lower; potential instability may be trigged if the
grid impedance variation introduced by inductive loads, power transformers, etc., further reduces
the resonance frequency to an unstable range (at or below ωcrit) [26,42,55,56]. Therefore, in general
case, when the LCL filter-based inverter system is connected to a weak grid, the stability challenge for
this resonance frequency region (f res ≤ f s/6) must be resolved by an effective AD scheme in order to
achieve high robustness against the variation of grid impedance [26,42,53].

3. Proportional Capacitor Current Feedback Active Damping Approach

Figure 7a,b illustrates the grid-side current control scheme based on CCF AD method via a
proportional gain KD in both s- and z-domains, respectively, to address the resonance stability problem.
In this Section, firstly, according to the impedance-based basic analysis in s-domain, the physical
meaning of proportional CCF AD is well clarified. Then, to design the controller parameters and AD
term (KD) as well as to confirm the impedance-based analysis, the stability analysis based on the Bode
diagram and the root locus in z-domain is presented. In [37], it has been proved that the proportional
feedback of filter capacitor current is equivalent to a virtual resistor damper connected in parallel
with the passive filter capacitor. This conclusion is, however, drawn without considering the effect of
delays, and therefore it is not accurate for digitally controlled systems [26,42,43,46,57]. With regard to
the delays’ effect, as will be discussed later, the AD scheme based on the proportional CCF should be
modeled as virtual impedance, rather than as a pure resistor [43,46,56,57]. It is worth noting that if the
relationship between capacitor current and voltage is considered, the capacitor voltage feedback AD
methods are generally equivalent to the CCF AD with a minor change. For instance, in [13,58], the
filter capacitor voltage has been fed back through a lead-lag filter, which is equivalent to the feedbacks
of both filter capacitor current and voltage through low-pass filters[53]. Also, in [59], with prediction
of the filter capacitor voltage and feedback through a high-pass filter (HPF), the resulting AD method
can be equivalent to the feeding back of filter capacitor current through a low-pass filter. Therefore,
for simplicity in explaining the concept, in this paper, the filter CCF AD schemes are considered and
based on them, the other state variable feedback AD methods can be developed.
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Figure 7. Block diagram of grid-side current control scheme with proportional capacitor current
feedback (CCF) active damping (AD): (a) s-domain; and (b) z-domain.

3.1. Impedance-Based Analysis

According to Figure 7a, the inverter output voltage can be expressed as follows:

vinv(s) = GC(s)× Gd(s)× KPWM × (i∗ − i2)− KD × KPWM × Gd(s)× iC (17)

It is well known from Equation (17) that the filter CCF AD scheme has an interesting circuit
physical meaning due to the presence of inverter-side inductor between the inverter output voltage
and the filter capacitor branch. This can easily be determined by obtaining i2 around the resonance
frequency considering Figure 3, as seen from Equation (18). It should be noted that due to the limited
bandwidth of the closed-loop current control term, the CCF term KD × KPWM × Gd(s) × iC is regarded
as the dominant term around the LCL filter resonance frequency [37]. Hence, this term will regulate
the system resonance damping performance:

i2(s) = −
(

KD×KPWM×Gd(s)×iC(s)+vC(s)
sL1

+ iC(z)
)
= −

(
vC(s)

L1/(Cf×KD×KPWM×Gd(s))
+ vC(s)

sL1
+ sCf × vC(s)

)
(18)

Further looking into Equation (18) reveals that the AD based on CCF introduces an extra term to
output current, which can be well modeled as virtual impedance Zv(s) parallel with the filter capacitor
around the resonant frequency in the continuous s-domain as follows:

Zv(s) =
L1

Cf × KD × KPWM × Gd(s)
(19)

Therefore, for better demonstration of circuit physical meaning realized by capacitor current
proportional feedback AD, its representation in Figure 7a is redrawn as Figure 8a, while retaining
the system closed-loop response unchanged. The modified filter plant in Figure 8a can be eventually
considered like the equivalent circuit shown in Figure 8b in order to provide sufficient damping into
the filter plant when the system delays are included. This representation reveals that the CCF AD
is no different from paralleling a virtual impedance Zv(s) across the filter capacitor Cf. As Gd(s) is
usually fixed by the chosen sampling frequency, the inserted virtual impedance can be shaped by
varying KD. Therefore, from this analysis, it can be easily concluded that if Gd(s) = 1 (system without
delay), the parallel resistive damper Rv can be implemented by KD = L1/Rv × KPWM × Cf, as seen
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in Figure 8c. The modified filter plant shown in Figure 8b can also be described in the continuous
s-domain as follows:

i2 = G1(s)× vinv − G2(s)× vg (20)

G1(s) =
Z2(s)× Zv(s)

Z1(s)Z2(s)Zv(s) + Z1(s)Z3(s)Zv(s) + Z2(s)Z3(s)Zv(s) + Z1(s)Z2(s)Z3(s)
(21)

G2(s) =
Z1(s)× Zv(s) + Z2(s)× Zv(s) + Z1(s)× Z2(s)

Z1(s)Z2(s)Zv(s) + Z1(s)Z3(s)Zv(s) + Z2(s)Z3(s)Zv(s) + Z1(s)Z2(s)Z3(s)
(22)

where Z1(s) = sL1, Z2(s) = 1/(sCf), and Z3(s) = (L2 + Lg)s.
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Figure 8. Equivalent control diagram and filter equivalent circuit for the proportional CCF AD scheme:
(a) control diagram representation; (b) filter equivalent circuit with considering system delays; and (c)
filter equivalent circuit without considering system delays.

Taking into account the delay effects and using Euler’s formula, the embedded virtual impedance
is composed as Equation (23) [42]:

Zv(jω) = Re {Zv(jω)}+ jIm {Zv(jω)}
Re {Zv(jω)} = L1

Cf×KD×KPWM
× cos(1.5ωTs), Im {Zv(jω)} = L1

Cf×KD×KPWM
× sin(1.5ωTs)

(23)

Further, Zv(jω) can be rewritten in another form as seen in Equation (24):

Zv(jω) = Req(ω)||jXeq(ω)

Req(ω) = L1
Cf×KD×KPWM×cos(1.5ωTs)

, Xeq(ω) = L1
Cf×KD×KPWM×sin(1.5ωTs)

(24)

This means Zv can be considered as parallel connection of a resistor Req and a reactor Xeq,
which both are frequency dependent, as represented in Figure 8b. The resistive component Req is
responsible for dampening the LCL-filter resonance peak, whereas, the inductive component Xeq

tends to change the resonance frequency. From Equation (24), it is clear that after introducing the
delays, both Req and Xeq can become positive or negative. As shown in Figure 9, the frequency
ranges to have positive and negative Req are, respectively, f < f s/6 and f s/6 < f < f s/2 (frequencies
between the critical LCL resonance frequency and the Nyquist frequency). In addition, the frequency
ranges for inductive or capacitive Xeq are, respectively, f < f s/3 and f s/3 < f < f s/2. The negative
resistance will insert open-loop unstable poles to the present current control loop that implies an
ineffective AD method [27,42,53]. If a fast dynamic response is also desired, the negative real part
causes a non-minimum phase treatment for the closed-loop response, which should preferably be
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resolved [27,36,42,53]. Although, as was demonstrated in Section 2.1.2, AD is not necessary for high
resonant frequency region (f > f s/6) [23,27,57], but, it should be noted that the resulting positive
resistance damping performance in low frequency region (f < f s/6) and the inherent damping effect
in high frequencies (f > f s/6), may be compromised accidentally with arrival of the system actual
resonance frequency, respectively, to the critical or high frequency region and low frequency region
due to the variation of grid impedance and embedded virtual impedance [27,42,53].
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3.2. Computation and Pulse Width Modulation Delays Effect on the Resonance Damping Performance

In this section, the effect of delays on the resonance damping performance is comprehensively
investigated to point out the basic challenges and problems in conventional proportional CCF AD
method. For performance evaluation of the control system of Figure 7b, it is needed to have discrete
transfer functions of Gic(z) and GI(z). Gic(s) is well defined as following [11,22,23]:

Gic (s) =
ic (s)

vinv (s)
=

1
L1
× s

s2 +ω2
res

(25)

The transfer function relating i2 to ic (GI(s)) can also be easily obtained as the ratio of
Equations (1) and (25) as:

GI(s) =
i2(s)
ic(s)

=
Gi2(s)
Gic(s)

=
ζ2

LC
s2 (26)

Similarly, applying a ZOH transform [50] to Equation (25) and consider a sampling period
of Ts = 1/f s, gives z-domain transfer function for ic to vinv as:

Gic (z) =
ic (z)

vinv (z)
=

sin (ωresTs)

ωres × L1
× z− 1

z2 − 2zcos (ωresTs) + 1
(27)

It is worth nothing that for the synchronous sampling case, the capacitor and grid-side currents are
sampled at the same time instants and also the grid-side current in Figure 7b comes from the cascaded
connection of Gic(z) and GI(z); hence additional delay should not be regarded again to the system
model by GI(z), since delay considered in this process is already accounted for Equation (27) by the
ZOH transformation [23]. As a result, to discretize Equation (26), the impulse-invariant transformation
can be used [50], which gives:

GI(z) =
i2(z)
ic(z)

=
ζ2

LC × T2
s z

(z− 1)2 (28)
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The derived transfer functions can then be combined to create open-loop gain expression for
the control system of Figure 7b as Equation (29) in order to investigate the stability issue based on
z-domain Bode diagram and root locus analysis:

Gopen_loop(z) =
i2(z)
ie(z)

=
VDC × GC(z)× GI(z)× Gic(z)

z + VDC × Gic(z)× KD
(29)

Then, according to Equation (29), the open-loop (inner proportional CCF loop only) and
closed-loop characteristic equations for this AD control scheme can be respectively written as:

z + KD ×VDC × Gic(z) = 0 (30)

z + KD ×VDC × Gic(z) + KP ×VDCGic × (z)× GI(z) = 0 (31)

Figure 10 illustrates Bode diagrams of the open-loop gain Gopen_loop(z) for different resonant
frequencies. It is worth mentioning that for each resonance frequency f res, the parameters of current
controller have been designed based on the phase margin of PM = 45◦ atωgc ≈ 0.3ωres to achieve a
satisfactory transient performance [11]. As seen from the Figure, with the increase of the damping
term KD, both amplitude and phase plots vary substantially. As it is shown in Figure 10a,b and is clear
from Equation (24), in the range (0, f s/3), with increase of KD, a higher actual resonance frequency f ′res
is generated. In contrast, in the range (f s/3, f s/2), with KD increase, a lower f ′res is created (Figure 10c).
Since the frequency boundary of Xeq is f s/3 (Figure 9), f ′res will only approach to f s/3 and never exceed it.
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Figure 10. Bode plots of the open-loop gain in the grid-side current control scheme with proportional
CCF AD method: (a) f res < f s/6; Cf = 36 µF; Kp = 0.0261; Ki = 3.0769; (b) f s/6 < f res < f s/3; Cf = 2.5 µF;
Kp = 0.0991; Ki = 44.3077; and (c) f s/3 < f res < f s/2; Cf = 1 µF; Kp = 0.1566; Ki = 110.7692.
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Also, Figure 11 indicates the poles movement for only the inner proportional CCF, for different
resonance frequencies by using the open-loop characteristic equation of Equation (30). It can thus be
seen how the resonance poles retain inside unit circle in low resonant frequency (f res < f s/6) to make a
damping contribution unless too large damping gain KD is applied (Figure 11a). Obviously, there is a
maximum useful damping gain, beyond which the stability of overall system will be compromised.
As seen in Figures 10a and 11a, for a specific KD, f ′res might exceed f s/6. Thus, this KD value can be
obtained so that the magnitude of the transfer function used in root locus analysis becomes equal to
unity for a specific pole z0 = 0.5 + j

√
3/2, i.e.,

|KD ×VDC × Gic(z)|z=z0
= 1 (32)

Energies 2016, 9, 642 15 of 30 

 

damping contribution unless too large damping gain KD is applied (Figure 11a). Obviously, there is 
a maximum useful damping gain, beyond which the stability of overall system will be compromised. 
As seen in Figures 10a and 11a, for a specific KD, ୰݂ୣୱᇱ  might exceed fs/6. Thus, this KD value can be 
obtained so that the magnitude of the transfer function used in root locus analysis becomes equal to 
unity for a specific pole ݖ = 0.5 + ݆√3/2, i.e., 

1)(
0

cDCD =×× =zzi zGVK  (32)

By solving Equation (32), KD,C can be found as Equation (33) [42]: 

)ωcos(21
)ωsin(

ω
sres

sresDC

1res
CD, T

TV

L
K −×

×
×=  (33)

(a) (b) (c) 
Figure 11. Root loci of the inner proportional CCF only (open-loop characteristic equation): (a) fres < 
fs/6; Cf = 36 μF; (b) fs/6 < fres < fs/3; Cf = 2.5 μF; and (c) fs/3 < fres < fs/2; Cf = 1 μF. 

Generally, after a detailed investigation of the open-loop gain Bode diagrams and root loci of 
the inner proportional CCF only shown in Figures 10 and 11, the key features can be summarized  
as follows: 

1) If fres < fs/6 and 0 < KD < KD,C, i.e., ୰݂ୣୱᇱ  < fs/6, Req is positive at ୰݂ୣୱᇱ  (Figure 9), and no open-loop 
unstable poles exists, as seen in Figure 11a. Hence, the phase plot crosses over −180° only at 
fres in the direction of phase decrease as shown in Figure 10a. In addition, if fres < fs/6 and KD = 
KD,C, i.e.,	 ୰݂ୣୱᇱ  = fs/6, Req is infinite at ୰݂ୣୱᇱ  (Figure 9), and no open-loop unstable poles exists, as 
seen in Figure 11a. In this case, it has no contribution to the resonance damping performance, 
and the phase plot also crosses over −180°only at fres in the direction of phase decrease (Figure 
10a). As it is known well, for evaluating the stability, in the open-loop Bode diagram, the 
frequency ranges with amplitude above 0 dB must be investigated. In these frequency ranges, 
a −180° crossing in the direction of phase increase is considered as a positive crossing N+ if 
the gain margin at that −180° crossover frequency is smaller than 0 dB, and a −180° crossing 
in the direction of phase decrease is considered as a negative crossing N− if the gain margin 
at that −180° crossover frequency is smaller than 0 dB [42,50]. According to the Nyquist 
stability criterion [50], to ensure the system stability, the value of 2(N+ − N−) must be equal to 
the number of the open-loop unstable poles, otherwise, the system gets unstable. For fres < fs/6 
and 0 < KD ≤ KD,C, i.e., ୰݂ୣୱᇱ  ≤ fs/6, the value of (N+ − N−) is equal to zero since the gain margin 
at −180° crossover frequency (fres) is greater than 0 dB, as seen from Equation (34) (in dB). This 
means that the system will be stable in this frequency region: 












××
=−=

= 2
s

2
LCP

D
)(

ω
open_loop1 ζ

log20)e(log20
PC

sres

TK

K
GGM

KzG

Tj  (34)

For KD = KD,C, Cf = 36 μF, Kp = 0.0261, and L2 = Lg = 1.8 mH, the gain margin GM1 in dB is 33.565. 
2) If fres < fs/6 and KD > KD,C, i.e., ୰݂ୣୱᇱ 	> fs/6, Req is negative at ୰݂ୣୱᇱ  (Figure 9), and a pair of open-

loop unstable poles appears (non-minimum phase behavior in the closed-loop response), as 

Figure 11. Root loci of the inner proportional CCF only (open-loop characteristic equation):
(a) f res < f s/6; Cf = 36 µF; (b) f s/6 < f res < f s/3; Cf = 2.5 µF; and (c) f s/3 < f res < f s/2;
Cf = 1 µF.

By solving Equation (32), KD,C can be found as Equation (33) [42]:

KD,C =
ωres × L1

VDC × sin(ωresTs)
× |1− 2cos(ωresTs)| (33)

Generally, after a detailed investigation of the open-loop gain Bode diagrams and root loci of
the inner proportional CCF only shown in Figures 10 and 11, the key features can be summarized
as follows:

1) If f res < f s/6 and 0 < KD < KD,C, i.e., f ′res < f s/6, Req is positive at f ′res (Figure 9), and no open-loop
unstable poles exists, as seen in Figure 11a. Hence, the phase plot crosses over −180◦ only at f res

in the direction of phase decrease as shown in Figure 10a. In addition, if f res < f s/6 and KD = KD,C,
i.e., f ′res = f s/6, Req is infinite at f ′res (Figure 9), and no open-loop unstable poles exists, as seen in
Figure 11a. In this case, it has no contribution to the resonance damping performance, and the
phase plot also crosses over −180◦only at f res in the direction of phase decrease (Figure 10a). As it
is known well, for evaluating the stability, in the open-loop Bode diagram, the frequency ranges
with amplitude above 0 dB must be investigated. In these frequency ranges, a −180◦ crossing
in the direction of phase increase is considered as a positive crossing N+ if the gain margin
at that −180◦ crossover frequency is smaller than 0 dB, and a −180◦ crossing in the direction
of phase decrease is considered as a negative crossing N− if the gain margin at that −180◦

crossover frequency is smaller than 0 dB [42,50]. According to the Nyquist stability criterion [50],
to ensure the system stability, the value of 2(N+ − N−) must be equal to the number of the
open-loop unstable poles, otherwise, the system gets unstable. For f res < f s/6 and 0 < KD ≤ KD,C,
i.e., f ′res ≤ f s/6, the value of (N+ − N−) is equal to zero since the gain margin at −180◦ crossover
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frequency (f res) is greater than 0 dB, as seen from Equation (34) (in dB). This means that the
system will be stable in this frequency region:

GM1 = −20log
∣∣∣∣Gopen_loop(e

jωresTs)
∣∣∣
GC(z)=KP

∣∣∣∣ = 20log

(
KD

KP × ζ2
LC × T2

s

)
(34)

For KD = KD,C, Cf = 36 µF, Kp = 0.0261, and L2 = Lg = 1.8 mH, the gain margin GM1 in dB is 33.565.
2) If f res < f s/6 and KD > KD,C, i.e., f ′res > f s/6, Req is negative at f ′res (Figure 9), and a pair of

open-loop unstable poles appears (non-minimum phase behavior in the closed-loop response),
as seen in Figure 11a. In this case, the phase plot crosses over −180◦ both at f res and f s/6,
respectively, in the direction of phase decrease and phase increase as shown in Figure 10a. Hence,
according to the Nyquist stability criterion, to ensure the system stability, the value of 2(N+ − N−)
must be equal to 2. It means that the gain margin at f res and f s/6, respectively, must be greater and
smaller than 0 dB (GM1 > 0 dB and GM2 < 0 dB), i.e., N− = 0 and N+ = 1. The gain margin in dB at
f s/6 can be derived from Equation (29) as Equation (35). By comparing Equations (34) and (35),
one can easily understand that GM1 and GM2 will be equal, if f res = f s/6:
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3) If f res ≥ f s/6 and KD > 0, i.e., f ′res > f s/6, Req is negative at f ′res (Figure 9), and a pair of open-loop
unstable poles appears, as seen in Figure 11b,c. In this case, the phase plot crosses over −180◦

both at f s/6 and f res, respectively, in the direction of phase decrease and phase increase as seen in
Figure 10b,c. Hence, to stabilize the system, GM1 < 0 dB and GM2 > 0 dB are both needed.

Figure 12 indicates the effect of proportional CCF AD on the single-loop grid-side current control
scheme (Figure 7) for a fixed KP value at different resonance frequency ranges. As seen in Figure 12a,b,
when the LCL resonant frequency is equal or below the critical resonant frequency ωcrit, the resonance
poles always originate outside the unit circle, and thus, without AD, the system will be initially
unstable. In low resonance frequency region, the poles track back inside the unit circle with increasing
the damping gain KD, and hence, the overall system becomes stable unless too large damping gain is
applied, as seen in Figure 12a. Clearly, there are minimum and maximum values for damping gain
KD (KD,min, KD,max) that ensures the resonant poles, as far as possible, remain inside the unit circle to
retain the system stability. This bounded rang will be determined in the Section 3.4. It is also important
to note that for KD,C ≤ KD ≤ KD,max, the gain margin requirements GM1 > 0 dB and GM2 < 0 dB can be
satisfied by proper selection of KP to achieve a stable system (Figure 12a). In contrast, when the LCL
resonant frequency is equal toωcrit, as seen from Figure 12b, AD can only lead to the resonant poles
touching the unit circle, but never entering the circle. Therefore, at the critical resonance frequency,
it is essentially not possible to design a current control scheme with AD to stabilize the system, and
consequently, the system will always remain unstable irrespective of the applied damping gain [23,42].
In addition, as shown in Figure 12c, when the LCL resonant frequency is aboveωcrit, the poles initially
are inside the unit circle, as was discussed in previous section, and hence, with proper selection of KP,
the system will be initially stable without AD. Then, as long as the increased damping gain KD does
not lead to loss of the desired gain margin requirements (GM1 < 0 dB and GM2 > 0 dB), the system
will be stable but with lower stability margin compared with the grid-side current control scheme
without AD.
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Figure 12. Root loci of the digital single-loop current control with proportional CCF AD method with
variation of damping gain KD for a fixed KP value: (a) low resonant frequency region (f res < f s/6;
Cf = 36 µF; KP = 0.0261); (b) critical resonant frequency (f res = f s/6; Cf = 5µF; KP = 0.07); and (c) high
resonant frequency region (f res > f s/6; Cf = 1 µF; Kp = 0.116).

3.3. Robustness Evaluation Against the Grid-Impedance Variation

As shown previously, the digitally-controlled LCL-filtered grid-connected inverter with
proportional CCF AD introduces the negative virtual resistance parallel with the filter capacitor
for different resonance frequency regions and damping coefficients (f res < f s/6 and KD > KD,C or
f res ≥ f s/6 and KD > 0) due to the system delay effect. In this condition, a pair of open-loop unstable
poles is generated and the closed-loop response will then have a non-minimum phase behavior [53].
Therefore, to ensure the system stability, the resonance frequency dependent stringent gain margin
requirements need to be satisfied. For this reason, the system robustness against the grid inductance
variation that commonly leads to the variation of resonance frequency f res, should be evaluated. The
curves of gain margins (GM1 and GM2) with the increase of Lg are illustrated in Figure 13. From this
Figure and the gain margin requirements discussed above, it can be concluded that if f res > f s/6 and
KD > 0, then, GM1 < 0 dB and GM2 > 0 dB are needed to ensure the system stability.
However, with increasing Lg, GM1 increases, and GM2 decreases. It leads to the smaller stability
margin, which represents poor robustness against the variation of grid impedance [42]. If f res < f s/6
and 0 < KD ≤ KD,C, then, GM1 > 0 dB is needed to ensure stability. Moreover, if f res < f s/6 and
KD > KD,C, then, GM1 > 0 dB and GM2 < 0 dB are required. In both cases, with increase of Lg, GM1

increases, and GM2 decreases (for f ′res > f s/6), which thus indicates the larger stability margin, and
accordingly, high robustness against the variation of grid impedance [42]. Meanwhile, if f res = f s/6
and KD >0, it is needed to have GM1 < 0 dB and GM2 > 0 dB. However, as seen in Figure 13, in the
situation that GM1 = GM2, the system can hardly be stable regardless of KD value [23,42].
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3.4. Current Controller and Damping Gains Determination for Low Resonant Frequency Region

As mentioned earlier and is clear from the root locus shown in Figure 6c, when the LCL
filter resonant frequency is below the critical frequency(ωres < ωcrit), the single-loop grid-side
current feedback control scheme needs an AD technique to achieve a stable system with minimal
oscillation [23,42]. In this section, an enhanced procedure of current controller and damping gains
determination is introduced. It ensures the stability, highest possible LCL damping and controller
bandwidth, particularly taking system delay effect into account [23]. It should be noted that, control of
optimum damping is important regarding stability, since the transient response of a system with an
insufficient-damping will be seriously compromised when the system excited by a step change, whereas
in an over-damped system, the system dynamic response and phase margin will strongly degrade [11].
Similar to the high frequency region, the current controller gains (Kp and Ki) can also be calculated
using Equations (15) and (16), respectively, so that the gain crossover frequency is determined to obtain
an appropriate phase margin, without any damping method, since the low-frequency characteristic
of control plant will still be dominated by the series inductances [11]. However, by referring to
the Bode phase plot in Figure 5a, it can be comfortably found that to avoid the rapid transition of
transfer function phase (to yield satisfactory transient performance) and achieve a sufficient phase
margin, the gain crossover frequency must be set enough below the LCL filter undamped resonance
frequency [11,23,42]. Hence, the gain crossover frequency recommended in literature,ωgc ≈ 0.3ωres,
is considered in this frequency region in order to provide an acceptable system bandwidth [11,22].
Finally, for the low frequency resonance included in Table 1 (625 Hz), the controller gains are calculated
using this strategy that gives the values of Kp = 0.0261 and Ki = 3.075. The frequency response for
digital single-loop grid-side current feedback system in low frequency region has been already shown
in Figure 5a.

As it is mentioned and is clear from Figure 12a, there are minimum and maximum values
for damping gain KD that ensures the resonant poles remain inside the unit circle to achieve
maximum damping. This bounded range for KD can then be determined by identifying some
limitations. Accordingly, the maximum value of KD can be obtained so that the magnitude of open-loop
transfer function used in z-domain root locus analysis is equal to unity for a specific pole z0 on
the root locus, i.e., ∣∣∣∣ KD ×VDC × Gic(z)

z + KP ×VDC × Gic(z)× GI(z)

∣∣∣∣
z=z0

= 1 (36)

Note that by increase of the damping gain KD, the root loci path tracks through the unit circle at the
critical resonant frequencyωcrit or z = j

√
3/2 (Figure 12a). Therefore, by selecting the z0 = 0.5+ j

√
3/2

and solving Equation (36) by some simple mathematical manipulations, KD,max can be found as
Equation (37) [23]:

KD,max =
ωres × L1

VDC × sin(ωresTs)
× |1− 2cos(ωresTs)|+ KP × ζ2

LC × T2
s (37)

Using Routh’s stability criterion used for a continuous time model in [60], KD,min to maintain the
system stability can also be found for the discrete time model with delay [23]:

KD,min ≥
KP × L1

L1 + L2 + Lg
(38)

As a result, in the low resonance frequency region, the allowable range is 0.013 ≤ KD ≤ 0.098 in
order to achieve an effective resonance stability control. Within this specified bounded range for KD,
using root locus poles placement approach, the maximum possible damping gain can be found, as seen
in Figure 14a. Meanwhile, the bounded damping gain rang can also be determined by Jury stability
criterion [50]. The Bode plot of Figure 14b indicates frequency response of the digital single-loop
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current control with proportional CCF AD method when the resonance frequency is significantly less
than the sampling frequency for a fixed KP and the maximum damping gain KD values.
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Figure 14. (a) Root locus maximum damping gain KD selection; and (b) Bode plots. (KP = 0.0261,
Cf = 36 µF, KD = 0.039).

As it is clear from the figure, incorporating proportional CCF AD in low resonance frequency
region both suppresses the phase transition created in the case of without AD and reduces the
resonance peak amplitude. Thus, as previously analyzed, this structure can be stabilized in low
resonance frequency region with suitable proportional controller and damping gains.

In order to verify the theoretical findings and also to design current controller and select damping
gains, the simulation results have been done with MATLAB/Simulink for a fully switched three-phase
LCL-filtered inverter system, feeding into a stiff grid under ideal conditions without considering the
winding resistance of the inductors and the equivalent series resistance of filter capacitor as well as the
resistance component of grid impedance. Hence, simulation can be regarded to represent a worst case
to control a well-damped system compared with a real system in practice that very small resistances
are helping towards stability. The system parameters to test both low and high LCL resonant frequency
regions are given in Table 1. Figure 15 shows simulation of system transient time-domain responses,
where a step change of reference current from 4.4 A to 8.8 A is applied. As seen from Figure 15a,
despite not using any AD method in the high resonance frequency region, there is no oscillation, even
during the transient occurrence. This confirms that above the critical resonant frequency, appropriate
setting the current controller parameters in single-loop control scheme without AD is sufficient to
maintain stability and control the LCL filter resonance issue. However, as mentioned earlier, for a
weak grid, where the grid impedance variation leads towide changes in LCL resonance frequency,
system can easily become unstable if external damping solution is not employed. This could be due
to the fact that the actual resonance frequency may be close to critical and low resonance frequency
region [26,42,46,53].

In contrast, Figure 15b indicates the time response of the system under low LCL resonance
frequency with enabling and disabling proportional CCF AD, where controller and damping gains
set as previously discussed in Section 3.4. As it is clear from the figure, by applying the AD method
(t < 2.1 s), system is quite stable without resonance even during the transient event. In addition, if AD
is disabled (t > 2.1 s), large resonant currents appear and lead to instability of the system. Hence, for
low resonant frequency region, AD is necessary to retain system stability and grid-side current quality.
However, as previously proved theoretically, the proportional CCF AD is equivalent to the addition of
a virtual impedance in parallel with the filter capacitor when computational and modulation delays
are considered. The impacts identified from the virtual impedance can be included by filter resonance
frequency shifting due to its imaginary part and a negative real part depending on the ratio of the
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filter resonance to control frequency [42,53]. It can unintentionally lead to a closed-loop non-minimum
phase characteristic with unstable open-loop poles.
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Figure 15. Simulation results of digitally-controlled LCL-filtered grid-connected inverter system: (a) 
high resonant frequency without AD (KP = 0.116, Ki = 60.736, Cf = 1 μF); and (b) low resonant frequency 
with enabling and disabling proportional capacitor feedback AD (KP = 0.0261, Ki = 3.075, KD = 0.039, 
Cf = 36 μF). 

Figure 15. Simulation results of digitally-controlled LCL-filtered grid-connected inverter system:
(a) high resonant frequency without AD (KP = 0.116, Ki = 60.736, Cf = 1 µF); and (b) low resonant
frequency with enabling and disabling proportional capacitor feedback AD (KP = 0.0261, Ki = 3.075,
KD = 0.039, Cf = 36 µF).

Hence, in order to address these issues, improved CCF AD approaches should be provided so that
the resonance stability performance is robustly maintained for all resonance frequencies against a wide
variation in grid impedance. Two effective methods to cope with these problems will be presented in
the next section.

4. Improved Capacitor Current Feedback Active Damping Schemes

To extend the valid damping region and ensure robustness against grid impedance variation,
this section introduces the improved CCF AD methods. As was proven in the previous section, due
to the effect of computation and PWM delays, the proportional CCF AD scheme is equivalent to
frequency dependent virtual impedance, consisting of a resistor paralleled with a reactor, connected in
parallel with the filter capacitor. The frequency dependent virtual resistor can damp the resonance
peak of the LCL filter, whereas the resonance frequency is shifted by the embedded virtual reactor and
grid-impedance variation. Obviously, by changing the resonance frequency, the damping performance
will be affected. As clearly demonstrated by the open-loop Bode and root locus diagrams in the
previous Section, if the actual resonance frequency is higher than the critical frequency of f s/6, a pair
of open-loop unstable poles appear due to the introduction of negative virtual resistor component in
this frequency region. As a result, the LCL-filtered grid-connected inverter system can readily become
unstable when the resonance frequency is close to critical frequency of f s/6 due to the grid-impedance
variation. Hence, the stability challenge for this critical resonance frequency must be resolved to
acquire high robustness against the variation of grid impedance through the removal of open-loop
unstable poles.
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4.1. Capacitor Current Feedback Active Damping Based on First-Order High-Pass Filter

Figure 16a shows the control block diagram of CCF AD scheme based on a first-order HPF [53]
in s-domain, where KD and ωD represent gain and cut-off frequency of the AD term, respectively.
Corresponding filter equivalent circuits with and without considering delay effects, representing this
AD method can also be seen in Figure 16b,c, respectively.
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Figure 16. Block diagram and filter equivalent circuit for the first-order HPF-based CCF AD scheme:
(a) control diagram representation; (b) filter equivalent circuit with delays considered; and (c) filter
equivalent circuit without delays considered.

As it is clear from Figure 16c, if delays are overlooked, a virtual series RC damper can be
specifically incorporated into the original filter plant with damper parameters derived as:

Rv,rc =
L1

Cf × KD × KPWM
, Cv,rc =

Cf × KD × KPWM

L1 ×ωD
,ωD =

1
Rv,rc × Cv,rc

(39)

After considering delays and using Euler’s formula, these expressions change to Equation (40):

Zv,rc(jω) = L1
Cf×KD×KPWM

× (1− jωD
ω )[cos(1.5ωTs) + jsin(1.5ωTs)]

Re {Zv,rc(jω)} = Rv,rc × cos(1.5ωTs) +
1

ω×Cv,rc
× sin(1.5ωTs)

Im {Zv,rc(jω)} = Rv,rc × sin(1.5ωTs)− 1
ω×Cv,rc

× cos(1.5ωTs)

(40)

Unlike, the proportional CCF AD scheme in Equation (23), the real and imaginary parts of
Equation (40) have an additional term, which are adjustable by Cv,rc and can be useful to lessen
the likelihood that Re{Zv,rc(jω)} becomes negative. With this understanding, the critical frequency
ωnR, wherein Re{Zv,rc(jω)} in Equation (40) becomes negative, can be limited in accordance with
Equation (41) in terms of the sampling frequency whenωD increases, asωnR =ωs/3 (Figure 17):

Re {Zv,rc(jω)} = 0⇒ ωnR

ωs
× cos(3π

ωnR

ωs
) +

ωD

ωs
× sin(3π

ωnR

ωs
) = 0 (41)
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whereωs = 2πf s. Compared to the proportional CCF AD scheme, compensation of the delay-induced
phase lag can be achieved by the added HPF resulting from extension of the critical frequency from
f s/6 to f s/3 [53]. This means that Re{Zv,rc(jω)} is less likely to be negative. However, this resulting
improvement is not limitless, since if LCL resonance frequency of a system placed between f s/3 and
f s/2 (Nyquist frequency), the closed-loop response has always a non-minimum phase behavior.
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Parameter Tunning, Stability Analysis, and Robustness Evaluation against Grid Impedance Variation

For system design and stability analysis as well as robustness evaluation against grid impedance
variation, z-domain frequency response and root locus analysis are performed based on the control
scheme in Figure 18, which is z-domain block diagram of Figure 16a.
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The HPF used for AD term (virtual RC damper) can be discretized by Tustin approximation [50]
as follows:

GAD (z) =
2KD × (z− 1)

(ωDTs + 2)z + (ωDTs − 2)
(42)

Combining Equations (4), (27), (28) and (42), the open-loop gain transfer function for the scheme
shown in Figure 18 is readily achieved as:

Gopen_loop(z) =
i2(z)
ie(z)

=
VDC × GC(z)× GI(z)× Gic(z)

z + VDC × Gic(z)× GAD(z)
(43)

Then, according to Equation (43), the characteristic equation for this AD control scheme can be
written as:

z + KD ×VDC × Gic(z)× G′AD(z) + KP ×VDC × Gic(z)× GI(z) = 0 (44)

where G′AD(z) has the same equation as Equation (42), excluding KD.
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Figure 19 shows the closed-loop poles movement of the control scheme with variation of the
HPF gain KD, where HPF cut-off frequencyωD is swept from 0 to 0.8ωs with a step of 0.2ωs as also
controller gains are designed based on the algorithms adopted in Sections 2.2 and 3.4, respectively,
for low and high resonance frequency regions. To assess robustness subject to wide impedance
variation, assuming a fixed value for the filter capacitor (Cf = 4.7 µF), three grid inductance values are
considered that represent low and high LCL resonance frequency regions around the critical frequency
of f s/6 = 1.67 kHz.
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Figure 19. Root loci of the grid-side current control with and without CCF AD scheme for different 
grid inductances: (a) Lg = 4.8 mH, fres = 1.521 kHz, KP = 0.09, Ki = 25.8 (low resonant frequency region); 
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Figure 19. Root loci of the grid-side current control with and without CCF AD scheme for different
grid inductances: (a) Lg = 4.8 mH, f res = 1.521 kHz, KP = 0.09, Ki = 25.8 (low resonant frequency region);
(b) Lg = 2.4 mH, f res = 1.667 kHz, KP = 0.09, Ki = 25.8 (critical resonant frequency); and (c) Lg = 0 mH,
f res = 2.119 kHz, KP = 0.06, Ki = 26.5 (high resonant frequency region).

As seen in Figure 19a,b, due to the lack of inherent damping effect, as explained in the previous
section, when the LCL resonance frequency is below or equal to critical resonance frequency, the
resonant poles initially are out of the unit circle, and hence, the system will be unstable without AD.
It should be noted that applying the proportional CCF AD (ωD = 0) can only lead to the resonant
poles touching the unit circle, but never entering the circle. Therefore, for this resonance frequency
and this type of AD method, the system will always be unstable irrespective of the damping gain that
is applied (blue line in Figure 19b). However, in this case, the poles will track back inside the unit



Energies 2016, 9, 642 25 of 32

circle by applying the HPF-based CCF AD method, and hence, the stability will be established. Note
that in these resonance frequencies, the stability would be jeopardized by increasing the HPF cut-off
frequency ωD (Figure 19a,b). In contrast, when the LCL resonance frequency is above the critical
frequency (Lg = 0 mH), the resonant poles initially are inside the unit circle because of the inherent
resonance damping effect (Figure 19c). However, too large HPF gain will force the poles track back
outside the unit circle, and lead to the system instability.

Generally speaking, the design of HPF parameters should firstly be attempted by selecting a
proper ωD that will give an appropriate margin between resonance frequency and ωnR according
to Figure 17. Then, based on the root locus plots illustrated in Figure 19, the appropriate KD can be
selected [53].

To further understand effectiveness of the HPF-based CCF AD, comparison among the different
control cases is performed in the frequency domain (Figure 20). As seen in Figure 20, in the case of
without AD, the system is very sensitive to the variation of grid impedance, so that it will be unstable
when the resonance frequency decreases below f s/6 and also can be stabilized by proper selection
of proportional controller gain when the resonance frequency increases above f s/6. By applying
the proportional CCF AD, as explained, a non-minimum phase behavior (the presence of open-loop
unstable poles) occurs due to the inserted negative virtual resistance (Figure 20). After introducing the
HPF-based CCF AD, as it is clear from Figure 20, the behavior of system non-minimum phase has been
mitigated by the embedded virtual capacitor in the HPF [23,26,42,46,53]. For more details regarding the
stability conditions, please, refer to the explanations provided for Figure 10 in Section 3.2. Thus, based
on these observations prove effectiveness of the HPF-based CCF AD scheme because of extension the
damping region from (0, f s/6) to (0, f s/3) through proper selection of the HPF parameters [53].
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4.2. Capacitor Current Feedback Active Damping with Reduced Computation Delay 

To remove the open-loop unstable poles (mitigation of the non-minimum phase characteristic) 
and widen the effective damping region, a CCF AD method with reduced computation delay has 
been presented in [42], which is realized by shifting the capacitor current sampling instant towards 
PWM reference update instant. Using this model-independent method, as will be shown later, the 
embedded virtual impedance is formed in a wider frequency range more like a resistor; thus, high 
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Figure 20. Bode plots showing open-loop gain of grid-side current control with and without AD
schemes: (a) low frequency region (Lg = 4.8 mH, f res = 1.521 kHz, KP = 0.09, KD = 0.041 (green diagram),
KD = 0.115 (red diagram)); and (b) high resonant frequency (Lg = 0 mH, f res = 2.119 kHz, KP = 0.06,
KD = 0.02 (green diagram), KD = 0.055 (red diagram)).

4.2. Capacitor Current Feedback Active Damping with Reduced Computation Delay

To remove the open-loop unstable poles (mitigation of the non-minimum phase characteristic)
and widen the effective damping region, a CCF AD method with reduced computation delay has been
presented in [42], which is realized by shifting the capacitor current sampling instant towards PWM
reference update instant. Using this model-independent method, as will be shown later, the embedded
virtual impedance is formed in a wider frequency range more like a resistor; thus, high robustness
against the variation of grid impedance is obtained. Since the fundamental component of the capacitor
current has no contribution in resonance damping performance, the capacitor current can be sampled
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before the PWM reference update instant [42]. To this end, the capacitor current is sampled at the time
instant of λTs (0 < λ < 1).

Figure 21a indicates the control block diagram of CCF AD with reduced computation delay
scheme in s-domain. Corresponding filter equivalent circuit by applying this AD method can also
be seen in Figure 21b. As it is clear in Figure 21b, a virtual parallel RL damper can be specifically
incorporated into the original filter plant with damper parameters derived as:

Zv(jω) = Req(ω)||jXeq(ω)

Req(ω) = L1
Cf×KD×KPWM×cos((λ+0.5)×ωTs)

, Xeq(ω) = L1
Cf×KD×KPWM×sin((λ+0.5)×ωTs)

(45)
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Figure 21. Block diagram and filter equivalent circuit of the digitally controlled LCL-filtered
grid-connected inverter with the improved CCF AD scheme by reduced computation delay:
(a) control diagram representation; and (b) filter equivalent circuit.

Based on Equation (45), it is clear that both Req and Xeq, which are frequency dependent, can be
positive or negative. The boundary of frequency that Req and Xeq are positive or negative, as shown in
Figure 22, is dependent on λ and can be respectively derived and denoted as follows:

fR =
fs

4(λ+ 0.5)
(46)

fX =
fs

2(λ+ 0.5)
(47)

Obviously, for the λ = 1 (synchronous sampling scheme), f R = f s/6, f X = f s/3, which discussed
previously in Section 3. In Figure 22 and Equation (46), it can be observed that compared with the
synchronous sampling scheme, reduction of computation delay by shifting the capacitor current
sampling instant (0 < λ < 1) causes increase in the frequency range in which the Req is positive
(f s/6 < f R < f s/2). In addition, with a smaller λ, the virtual impedance behaves more like the virtual
resistor. According to the analysis presented in Section 3, it can be well found that to get rid of
the open-loop unstable poles; f R should be higher than f res [42]. Therefore, for the high LCL-filter
resonant frequencies, a smaller λ would be preferable. Clearly, the ideal case can be achieve when
λ = 0. However in practice, λ is not necessarily so small since it is chosen based on a specific f res that
usually constrained by the harmonic attenuation requirements [40]. Thus, for f res < f s/4, a positive Req

in the range (0, f s/4) is desirable, which can be obtained by choosing λ = 0.5 (Figure 22b). This case is
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considered in the following section to show how the damping performance is improved by reducing
the computation delay.Energies 2016, 9, 642 25 of 30 

 

6/sf 3/sf 2/sf
 

(a) (b) (c) 
Figure 22. Curves of Req and Xeq as the function of frequency: (a) λ = 0.25; (b) λ = 0.5; and (c) λ = 0.75. 

Performance of Resonance Damping with Reduced Computation Delay 

To evaluate performance of resonance damping with reduced computation delay, the open-loop 
gain expression of Figure 21a is required, which is given as Equation (48) in z-domain: 

]e)([1
)()()(

)(
)()(

sλ
cZOHDDC

cICDC
1

2
open_loop sT

i

i

e sGZKV

zGzGzGVz

zi

zi
zG −

−

×××+
×××==  (48)

where: 

)1)ωcos(2(
)λωsin()ω)λ1sin((

ω
1]e)([

sres
2

sressres

1res

λ
cZOH

s

+−
+×−×

×
−=−

Tzzz

TTz

L

z
sGZ sT

i  (49)

In addition, the open-loop gain (inner proportional CCF loop only) for this AD control scheme 
can be obtained as: 

0]e)([1 sλ
cZOHDCD =×××+ − sT
i sGZVK (50)

Figure 23 illustrates stability analysis of the CCF AD with reduced computation delay based on 
the Bode diagrams of the open-loop gain Gopen_loop(z) and root loci of the inner proportional CCF only 
for frequency range of (fres < fs/4). As shown in Figures 23a and is clear from Equation (45), in the range 
(0, fs/2), with increase of the KD, a higher actual resonance frequency	 ୰݂ୣୱᇱ 	is generated. Since the 
frequency boundary of Xeq is fs/2 (Figure 22b), ୰݂ୣୱᇱ  will only approach to fs/2 but never step over it. 
Also, it can be seen from Figure 23b that how the resonant poles track inside unit circle for fres < fs/4 
to make a damping contribution unless too large damping gain KD is applied (Figure 23b). Obviously, 
there is a maximum useful damping gain, beyond which the stability of overall system will be 
compromised. This value can be obtained so that the magnitude of the transfer function used in root 
locus analysis is equal to unity for a specific pole z0 = j on the root locus, i.e., 

1]e)([
0

sλ
cZOHDCD =×××

=

−

zz

sT
i zGZVK  (51)

By solving Equation (51), KD,m can be found as Equation (52) [42]: 

)ω5.0sin(
)ωcos(ω

sresDC

sres1res
mD, TV

TL
K

×
××=  (52)

If fres < fs/4 and 0 < KD < KD,m, i.e., ୰݂ୣୱᇱ  < fs/4, then Req is positive at ୰݂ୣୱᇱ  (Figure 22b), and no open-
loop unstable pole exists, as seen in Figure 23b. Hence, the phase plot crosses over −180°only at fres in 
the direction of phase decrease as shown in Figure 23a. In addition, if fres < fs/4 and KD = KD,m, i.e.,  ୰݂ୣୱᇱ  = fs/4, then Req is infinite at ୰݂ୣୱᇱ  (Figure 22b), and no open-loop unstable pole exists , as seen in 
Figure 23b. In this case, it has no contribution to the resonance damping performance, and the phase 
plot also crosses over −180° only at fres in the direction of phase decrease (Figure 23a). Based on the 
Nyquist stability criterion [50], to ensure the system stability, the value of 2(N+ − N−) will be equal to 
the number of the open-loop unstable poles, as long as the gain margin at −180° crossover frequency 

6/sf 2/sf4/sf 6/sf 5/sf 52 /sf

Figure 22. Curves of Req and Xeq as the function of frequency: (a) λ = 0.25; (b) λ = 0.5; and (c) λ = 0.75.

Performance of Resonance Damping with Reduced Computation Delay

To evaluate performance of resonance damping with reduced computation delay, the open-loop
gain expression of Figure 21a is required, which is given as Equation (48) in z-domain:

Gopen_loop(z) =
i2(z)
ie(z)

=
z−1VDC × GC(z)× GI(z)× Gic(z)

1 + VDC × KD × ZZOH[Gic(s)× e−λTss]
(48)

where:

ZZOH[Gic(s)e−λTss] =
z− 1

ωres × L1
× zsin((1− λ)×ωresTs) + sin(λωresTs)

z(z2 − 2zcos(ωresTs) + 1)
(49)

In addition, the open-loop gain (inner proportional CCF loop only) for this AD control scheme
can be obtained as:

1 + KD ×VDC × ZZOH[Gic(s)× e−λTss] = 0 (50)

Figure 23 illustrates stability analysis of the CCF AD with reduced computation delay based on
the Bode diagrams of the open-loop gain Gopen_loop(z) and root loci of the inner proportional CCF only
for frequency range of (f res < f s/4). As shown in Figure 23a and is clear from Equation (45), in the
range (0, f s/2), with increase of the KD, a higher actual resonance frequency f ′res is generated. Since
the frequency boundary of Xeq is f s/2 (Figure 22b), f ′res will only approach to f s/2 but never step
over it. Also, it can be seen from Figure 23b that how the resonant poles track inside unit circle for
f res < f s/4 to make a damping contribution unless too large damping gain KD is applied (Figure 23b).
Obviously, there is a maximum useful damping gain, beyond which the stability of overall system will
be compromised. This value can be obtained so that the magnitude of the transfer function used in
root locus analysis is equal to unity for a specific pole z0 = j on the root locus, i.e.,∣∣∣KD ×VDC × ZZOH[Gic(z)× e−λTss]

∣∣∣
z=z0

= 1 (51)

By solving Equation (51), KD,m can be found as Equation (52) [42]:

KD,m =
ωres × L1 × cos(ωresTs)

VDC × sin(0.5ωresTs)
(52)

If f res < f s/4 and 0 < KD < KD,m, i.e., f ′res < f s/4, then Req is positive at f ′res (Figure 22b), and no
open-loop unstable pole exists, as seen in Figure 23b. Hence, the phase plot crosses over −180◦only
at f res in the direction of phase decrease as shown in Figure 23a. In addition, if f res < f s/4 and
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KD = KD,m, i.e., f ′res = f s/4, then Req is infinite at f ′res (Figure 22b), and no open-loop unstable pole
exists, as seen in Figure 23b. In this case, it has no contribution to the resonance damping performance,
and the phase plot also crosses over −180◦ only at f res in the direction of phase decrease (Figure 23a).
Based on the Nyquist stability criterion [50], to ensure the system stability, the value of 2(N+ − N−) will
be equal to the number of the open-loop unstable poles, as long as the gain margin at −180◦ crossover
frequency (f res) is greater than 0 dB. Obviously, these findings are exactly the same as the case of
f ′res < f s/6 in conventional proportional CCF AD scheme with the synchronous sampling condition
(λ = 1). For more details regarding the stability conditions, please, refer to the explanations provided
for Figure 10 in Section 3.2 It can be found that a robust damping performance will be achieved using
this control method for f ′res = f s/4 with λ = 0.5.
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Kp = 0.0261; Ki = 3.0769).

In general, using this method, the open-loop unstable poles are removed and with achieving
a stable operation even for the resonance frequency of f s/6, high damping robustness against the
variation of grid impedance is acquired. However, since the capacitor current includes abundant
switching ripples, aliasing might happen if the sampling instant is not properly determined.
Therefore, before applying this damping control structure in practice, a detailed investigation on
the sampling-induced aliasing should be provided. It is demonstrated in [42] that aliased harmonics in
the capacitor current sampling are mainly low-order harmonics. However, given that the LCL-filter
resonance appears in the high-frequency range, these low-frequency harmonics will not affect the
resonance damping performance, and only might affect the tracking performance of grid current
reference. Fortunately these undesirable effects can be suppressed through the current controller with
high low-frequency gains. Also, Pan et al. [42] suggested that for λ ≤ 0.1 and λ = 0.5, the minimum
harmonic contents exist in the capacitor current sampling. Note that in practice, the selected value
of λ is related to the A/D converter and the Digital Signal Processor (DSP) that employed. Another
important implementation issue in the capacitor current sampling is the switching noise. To overcome
this shortcoming, a low-pass filter with a proper cutoff frequency can be installed between the current
sensor and the A/D converter. It is noteworthy that for the delay reduction, the computation delay
can also be compensated with a lead compensator [15]. However, it causes the amplification of
high-frequency noise [42].
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5. Conclusions

This paper has presented a comprehensive investigation and complete theoretical analysis of the
digitally controlled LCL-filtered grid-connected inverter with CCF AD approaches, including sample
and PWM transport delay. At first, using a detailed discrete-time stability analysis for single-loop
grid-side current control scheme under various resonance frequencies without any damping method
and with considering the PWM transport delay effect, three controller operation regions have been
identified. These include a low resonance frequency region (f res < f s/6) where AD is obligatory in order
to damp the LCL resonance and retain closed-loop system stability, a high resonance frequency region
(f res > f s/6) where AD is not needed and the grid-side current feedback only is adequate to design a
stable system with proper selection of the current controller gains, and a critical resonance frequency
(f res = f s/6) where the system will be unstable regardless of the controller that is employed. For the
high resonance frequency region, then, a controller gains selection process is presented to provide
the effective damping effect and greatest control system bandwidth. However, by connecting an
LCL-filter-based inverter system into a weak grid with inductive grid impedance, potential instability
may be trigged if the grid impedance variation reduces the resonance frequency to an unstable region
(f res ≤ f s/6). Thus, in the general case, to address this challenge, CCF AD scheme due to its effective
damping performance and simple implementation, can be useful and effective.

Thus, in this paper, the physical meaning of this damping method and also role that the PWM
transport delays play in the effectiveness of that, are well also clarified. It is shown that with regard
to the delay effects, the damping performance of proportional CCF is modeled as a frequency
dependent virtual impedance which consists of a resistor paralleled with a reactor. If the system
actual resonance frequency is higher than f s/6, where the resistive component of virtual impedance is
negative, open-loop unstable poles are introduced to the present current control loop that lead to a
non-minimum phase treatment for the system closed-loop system and make easier to be unstable due
to the variation of grid impedance. Using different stability analysis, it is shown that to ensure the
system stability, the resonance frequency dependent stringent gain margin requirements along with
the specific damping term (KD) need to be satisfied.

In summary, with the proportional CCF AD scheme, the valid damping region that exhibits high
robustness against the variation of grid impedance is limited only to (0, f s/6). To extend the valid
damping region and ensure robustness against grid impedance variation, two improved CCF AD
methods based on first-order HPF and reduced computation delay mechanism are also introduced
in this paper. Theoretical stability analysis and control parameters tuning of the improved CCF AD
methods are fully explored.
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