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Abstract: Solar farm suitability in remote areas will involve a multi-criteria evaluation (MCE) process,
particularly well suited for the geographic information system (GIS) environment. Photovoltaic (PV)
solar farm criteria were evaluated for an island-based case region having complex topographic and
regulatory criteria, along with high demand for low-carbon local electricity production: Ulleung
Island, Korea. Constraint variables that identified areas forbidden to PV farm development were
consolidated into a single binary constraint layer (e.g., environmental regulation, ecological protection,
future land use). Six factor variables were selected as influential on-site suitability within the
geospatial database to seek out increased annual average power performance and reduced potential
investment costs, forming new criteria layers for site suitability: solar irradiation, sunshine hours,
average temperature in summer, proximity to transmission line, proximity to roads, and slope. Each
factor variable was normalized via a fuzzy membership function (FMF) and parameter setting based
on the local characteristics and criteria for a fixed axis PV system. Representative weighting of
the relative importance for each factor variable was assigned via pairwise comparison completed
by experts. A suitability index (SI) with six factor variables was derived using a weighted fuzzy
summation method. Sensitivity analysis was conducted to assess four different SI based on the
development scenarios (i.e., the combination of factors being considered). From the resulting map,
three highly suitable regions were suggested and validated by comparison with satellite images to
confirm the candidate sites for solar farm development. The GIS-MCE method proposed can also
be applicable widely to other PV solar farm site selection projects with appropriate adaption for
local variables.

Keywords: solar farm; suitability analysis; geographic information systems (GISs); multi-criteria
evaluation (MCE); fuzzy sets; Ulleung Island

1. Introduction

In recent years, interest in sustainable energy supplies has been growing rapidly as world demand
for energy is expected to increase rapidly in the coming decades [1]. As a result of recent international
commitments to Conference of Parties 21 (COP21) in Paris, that energy must be supplied by low-carbon
strategies [2]. For the past decade, the adoption of solar energy has expanded to local-scale off-grid
islands in many countries [3–7], off-grid mining areas [8–10], as well as extensive inland areas for the
generation of electricity with lower CO2 emissions.

Korea, which is a peninsula, has more than 3000 islands of different sizes. Many of them do not
have electrical power grid systems connected with the mainland, using diesel fuel and local engines
to generate electricity at a point source. Diesel power generation is typical of island communities
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globally, yet the cost of operation is exceedingly high compared to the mainland due to the high
transportation cost of fossil fuels [11]. Additionally, a diesel fuel supply for power generation
contributes substantially to regional carbon emissions and local environmental pollution including
methane (CH4), sulfur oxides (SO2), nitrous oxide (N2O), chlorofluorocarbons (CFCs), and volatile
organic compounds (VOCs) [12,13]. To address this challenge in Korea, the national government has
developed strategies for new sustainable renewable energy systems for the islands with objectives of
low-carbon, localized electricity production [14,15]. Ulleung Island was chosen to be the first candidate
to become a “green island,” and is well known for its tourism industry [16]. As a consequence, the
Korean government initiated the “Green Ulleung Island Design Project” to develop all possible clean
renewable energy systems (e.g., photovoltaic (PV), solar heat, wind power, geothermal, biomass,
and hydropower) including an energy storage system (ESS) for the island that will generate 100%
of its electricity demand by 2030. In particular, a PV system was chosen by a preference survey of
the residents, conducted by the Ministry of Knowledge Economy of Korea, to examine the question
“Which renewable energy source is most suitable considering the environmental condition of the island
and the economic feasibility and maintenance aspects of the system?” [15]. We have thus chosen to use
the island context of Ulleung Island to explore a multi-criteria evaluation (MCE) process for PV solar
farm suitability in a complex locale.

Here, we frame the specific term locale to refer to the contextual constraints in space/time with
respect to the local solar resource, the local environmental conditions (also ecosystems), the local
energy/resource costs, and the local policies. In essence, all solar project development is local, and
specific knowledge of locale is essential for a rewarding project development process. Spatial and
temporal constraint variables will restrict or reduce access to solar development. Local knowledge of
social and environmental/ecosystems factors from locale can increase annual system performance and
reduce long-term risks of system failures [11]. For the development of PV farms in a specific region
such as a volcanic island hosting a robust tourism industry, suitability analysis is an indispensable
process enabled by the geographic information system (GIS) environment. In this case, site selection
analysis has been based on a wide range of information to seek to maximize the profitability for
project developers, while minimizing risk by offering non-trivial solutions to two selective project
design goals: (1) increasing average annual power performance; and (2) reducing balance of system
(BoS) costs.

Table 1 summarizes prior investigations that explored suitability assessments and site selection
analyses for PV systems, in particular those using a MCE method in a GIS environment. Two criteria
are grouped from variables used in GIS-based solar farm site selection studies. One is “constraint
variables” that restrict site selection, and the other is “factor variables” that enable selective project
goals by assessing the suitability of the non-constraint areas by identifying values with high suitability
for development of a solar farm. Associated variables for each criterion are listed as well. Variables
with high counts suggest important variables or generally applicable variables, while variables with
low counts suggest less important variables or location-specific variables.
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Table 1. Summary of factor variables and constraint variables used in previous geographic information system (GIS)-based solar farm site selection studies.

Variables EPA [17] Carrión
et al. [18]

Charabi and
Gastli [19] Uyan [20] Sánchez-Lozano

et al. [21]
Watson and
Hudson [22] Raw Count

Factor variables

Solar irradiation X X X - X X 5
Diffuse irradiation - X - - - - 1

Equivalent sun hours - X - - - - 1
Average temperature - X - - X - 2

Road access X X X X X X 6
Grid connection 1 X X X X X 5

Slope X X X X X X 6
Aspect (orientation) - X - - X X 3

Minimum suitable areas X - - - X - 2
Agrological capacity - - - - X - 1

Constraint
variables

Urban areas X X X X X X 6
Residential areas X X X X X 5

Wildlife designations 2 X X - X X X 5
Hydrographic areas 3 X X X X X - 5

Touristic sites 4 - - X X X X 4
Landscape designations 5 X X - - X X 4

Traffic areas - X X X - - 3
Sand/dusk risk - - X - - - 1

Land subsidence X - - - - - 1
Soil erosion X - - - - - 1

1 Substation, transmission line, power line; 2 Bird protection zone, paleontological sites; 3 River, dams, flood area, water courses, streams; 4 Historical areas, cultural heritage,
archeological sites; 5 Visual impact, scenic sites.
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Pohekar and Ramachandran [23] and Wang et al. [24] have reviewed a variety of methods of
multi-criteria decision analysis (MCDA) used in sustainable energy planning such as site selection.
Diverse techniques have been explored to assess site suitability, including the analytic hierarchy
process (AHP) techniques [18,20,22], the fuzzy logic ordered weight averaging (FLOWA) model [19],
the technique for order preference by similarity to an ideal solution (TOPSIS) [25], and elimination and
choice translating reality (ELECTRE) method [21]. Most methods, including the FLOWA model, can
employ only a monotonic linear standardization function or simple scoring technique which is most
appropriate for national-scale assessment in initial stage of land planning. The fuzzy set method can
provide a variety of membership functions suited for the characteristics of each factor variable related
with PV suitability. Relatively little work has been developed for the fuzzy membership function
(FMF, not fuzzy combinational operator or fuzzy logic) of assessing PV solar farm site suitability.
The FMF, first developed by Zadeh [26], makes it possible to represent and process uncertain data or
incomplete rules in the GIS environment and information described in a common language and for
which no certainty degree can be determined [27]. The value of representing and processing uncertain
data or incomplete rules in GIS for solar is particularly important, as region-scale scenarios rarely hold
complete regional data sets with respect to solar project factors. Hence, the use of FMF was deemed
appropriate for this regional-scale study.

In addition, factor variables can have different intensities of importance to the spatio-temporal
evaluation process of PV project site suitability. The AHP technique is a commonly used weighted
summation method in an MCE because of its precision and ease of use. Hence the AHP technique was
applied in this study by weighting factor variables to generate a single PV suitability index (SI).

The objective of this research is to explore an MCE method via GIS-enabled FMF and AHPs
for selecting highly suitable PV solar farm areas (e.g., high solar utility). The locale of the work
is an island-based case with complex topographic and regulatory criteria, and with high demand
for low-carbon local electricity production. This study comprises the following stages: (1) identify
constraint variables that restrict site selection, along with factor variables that enable selective project
goals; (2) assess PV SI relative to the scale and spatial extent of the study area using the MCE method
incorporating FMF and AHP techniques; (3) conduct a sensitivity and validation study to obtain a
reliable suitability layer to facilitate the decision-making process for the design of a green island.

2. Methodology

Figure 1 presents a flow chart showing a GIS-based PV solar farm site suitability analysis
model designed based on the four-step procedure (definition of objectives, specification of criteria,
establishment of the decision rule, and determination of the goal) in a general MCE [28–30].
The objective of this research was to find the most suitable sites that maximize the annual electricity
production and minimize the potential investment costs. Investigations and data collection on the
study area were conducted (Section 2.1). Numerous factor variables and constraint variables were
selected (Sections 2.2 and 2.3), fuzzy sets and AHP technique were used to establish decision rules
(Sections 2.4 and 2.5), and sensitivity analyses based on the development scenarios were conducted to
compare the results and to obtain the final goal (Section 2.6). ArcMap 10.1 Software (ESRI, Redlands,
CA, USA) was used for processing and analysis of the data since it can perform a large array of
functions associated with GIS-based MCE. All data files used in this study were converted from vector
file or set to raster with a resolution of 5 m in consideration of the extent of the study areas.
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Figure 1. Flow chart of photovoltaic (PV) solar farm site suitability analysis model designed based on
the four phases of multi-criteria evaluation (MCE) process in a GIS environment.

2.1. Study Area

As seen in Figure 2a, Ulleung Island is a roughly pentagonal volcanic island located in the East Sea,
approximately 130.3 km east of the Korean Peninsula, with a maximum elevation of 984 m above sea
level. The exposed land mass area covers approximately 72 km2 (11.3 km in length and 12.4 km in
width) and supports approximately 10,800 inhabitants in 4500 households [31]. Most of the island
has a complex topography that is very steep (Figure 2b), except for the Nari Basin to the north and
residential areas. Most rock slopes along the coastal road are very steep (>55◦ inclination) and are
weathered due to the environment exposed to close range of seawater. As such, rock slope failure
and rock-fall problems occasionally happen [32]. The island is composed of volcanic rock such as
basalt, trachyte, and andesite. The soil is very fertile and favorable for a clean water supply. Most
of the land consists of forests, fields, and farmland. Ulleung Island has a seasonal oceanic climate
(cool summer and warm winter), with an annual average temperature of 12 ◦C. There are numerous
natural monuments and cultural assets designated by the provincial office and thus the island is known
for its tourist attractions.

For the last decade, Ulleung Island has had an annual energy consumption of up to approximately
10,000 TOE (tonnage of oil equivalent), including petroleum, liquefied petroleum gas, electricity, and
anthracite. The amount of electricity used reached 54,036 MWh in 2014 and electricity consumption
is estimated to increase every year due to growing tourism [15]. The dominant source of electricity
for several decades has been diesel generators. Problems associated with the use of diesel fuel have
been its shipping cost from the mainland and environmental pollution. As mentioned above, therefore,
the Korean government announced the plan to develop Ulleung Island into the green, low-carbon,
energy-independent island with sustainable energy sources.
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Figure 2. Study area: (a) geographical location and distributions of topography of Ulleung Island; and
(b) vertical profile of A–A’ section showing very steep and complex topography (x-axis units span is
approximately 5× that of the y-axis).

2.2. Identification of Constraint Variables

Table 2 lists eight constraint variables, their references, and the data source of the original data,
selected based on a review of literature, local characteristics, and accessibility to the geo-referencing
database. The areas and detailed explanation of each constraint factor layer can be identified in
Figure A1 in Appendix A. Constraint variables in this case indicate conditions or areas where a
PV solar energy development could not occur due to domestic protection laws and conservation
regulations from the environmental, ecological, and engineering perspectives. Because PV systems
have been recognized as a sustainable technology that can minimize the impact on local environments,
areas such as environmental protection zones, ecological conservation zones, geo-technically high
risk zones, and other limited development zones designated by local laws or regulations have been
identified and removed from the selection process.

The eight vector-type constraint variables were spatially merged to generate a unified constraint
polygon layer to create unified infeasible areas. This process makes it possible to create an output
that combines all the characteristics of the input layers within one geographic area. The unified
constraint polygon layer was then converted to a binary raster layer with a resolution of 5 m that
has only values of 0 and 1. That is to say, a constraint raster layer was classified using a binary scale,
where 0 represented the presence of a constraint and therefore was infeasible for development, and
1 represented the absence of a constraint and thus was potentially feasible for a development. The
constraint layer will be used to exclude the constraint areas from each fuzzy index layer and final
suitability layer.
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Table 2. List of constraint variables and their referential rationale, original data extension, and
data source of the original data. NSIC: National Spatial Information Clearinghouse of Korea; EGIS:
Environmental Geographic Information Service of Korea; and WAMIS: Water Management Information
System of Korea.

No. Constraint Variable Threshold Reference Data Source

C1 Residential areas Itself Regulation NSIC

C2 Land use plan (urban, natural
environment conservation areas) Itself Regulation EGIS

C3 Tourist sites (historical areas,
cultural heritage and archeological sites) Itself Regulation EGIS

C4 Landscape designations
(visual impact, scenic sites) Itself Regulation EGIS

C5 Wildlife designations (birds protection zones,
paleontological sites) Itself Regulation EGIS

C6 Hydrographic areas (lakes, protection areas of
source water, rivers, streams, water courses) 10 m buffer Regulation WAMIS

C7 Slope failure zone (rock fall) 10 m buffer Local characteristics Site investigation

C8 Elevation >492 m National low NSIC

2.3. Identification of Factor Variables

Table 3 summarizes the six factor variables, their references, and the data source of the original
data. The detailed explanation and the rationale of each factor variables and factor layer can
be identified in Figure B1 in Appendix B. Selected factor variables should contain locale-specific
characteristics that inform annual average power production and systems costs; e.g., local climate,
meteorology, economics, and topography. Taking this into account, six factor variables were determined
based on a review of literature, local characteristics, and accessibility to the geo-referencing database.
The aspect (azimuth) of the landscape was not considered a dominant factor variable for this study,
as ground-mounted PV systems may be installed facing the south on flat terrain or fairly steep slope
areas where ground does not orient towards the south (For this reason, slope gradient factor variable
was considered to identify flat terrain or gentle slope). This differs from rooftop-mounted PV systems.

Table 3. List of factor variables, original data extension, and data source of the original data.
KMA: Korea Meteorological Administration; and KEPCO: Korea Electric Power Corporation.

No. Factor Variable Original File Extension Data Source

F1 Solar irradiation
(kWh/m2/day) Grid Modeled using digital elevation

model (DEM) and modified
using KMA measured data

(1 year for solar irradiation and
average temperature, 20 years

for sunshine hours)

F2 Equivalent
sunshine hours (h) Grid

F3 Average temperature
in summer (◦C) Point

F4
3D path distance

from nearest
transmission line (m)

Polyline Digitized and calculated
from KEPCO data

F5 3D path distance from
nearest road (m) Polyline Calculated from NSIC data

F6 Slope (◦) Grid Calculated using DEM

All factor layers were extracted or generated to raster format with a grid cell of 5 m to keep
uniformity with the unified constraint layer for the map algebraic analysis. A digital elevation model
(DEM), which is a 3D representation of a surface of terrain with regularly gridded cells, was created
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from contour data to be used as the basic data to derive the factor layer. Detailed data processing and
the rationale for each factor layer were followed.

2.4. Application of Fuzzy Sets to Factor Variables

The factor variables each can have unique ranges, and thus each must be normalized for use
within the MCE. Here, we apply a normalization method of FMFs. FMF enables to standardize the
input raster into a 0 to 1 scale, indicating the strength of a membership in a data set, based on a
specified fuzzification algorithm. To evaluate the degree of membership of a factor variable in a fuzzy
set, numerous types of FMF have been developed and reported in the literature [33]. In Figure 3, we
present the types of FMF used in this study. Determination of an FMF shape should be done with
care, informed by physical constraints of the original data and the impact of these data on PV system
performance and system costs, as the FMF shape can directly influence PV suitability. Here, all of the
scaled factor variables contributed using an increasing or decreasing function based on the type of
evidence and how each factor variable contributes to overall increased PV system performance and
decreased system costs. The authors have sought out and removed conflicting evidence in function
behavior and resulting performance changes.
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(monotonically increasing function); (b) fuzzy small (monotonically decreasing function); and (c) fuzzy
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The shape can be determined via the type of function, direction and its parameter settings as an
FMF is a mathematical function. A monotonically increasing function (i.e., fuzzy large which makes a
positive contribution seen in Figure 3a is useful when larger input values have a higher membership
(higher PV suitability in this study). In contrast, a monotonically decreasing function (i.e., fuzzy small
which makes a negative contribution seen in Figure 3b, fuzzy linear decreasing of Figure 3c) is used
when smaller input values have a higher membership. Additional parameters depend on the type
of selected function. For example, midpoint (m) and spread (s) parameters should be incorporated
for fuzzy large and fuzzy small models whereas min and max parameters are required for fuzzy
linear models. The defined midpoint identifies the crossover point (assigned a membership of 0.5).
The spread parameter defines the shape of function by determining the degree of fuzzy membership
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value change near midpoint. The larger the spread parameter value, the steeper the fuzzification
around the midpoint. In other words, increasing the spread causes the fuzzy membership curve to
become steeper. A fuzzy value of 1 means full membership in the specified fuzzy set (interpreted as
the most suitable location for PV sites in this study), with membership decreasing to 0, indicating it is
not a member of the fuzzy set (interpreted as not being a suitable location for PV sites).

The shape of FMF form for solar and climate factors (F1, F2, F3) was set to maximize electricity
production capacity considering scientific relationships, such as correlations between the factor value
and PV energy performance, whereas the shape of FMF form of proximity to infrastructure factors
(F4, F5) and topography factors (F6) was set to minimize transmission losses and initial construction
costs taking account of location-specific socio-economic conditions. In case we can only find a linearly
decreasing relationship between a certain factor value and its PV suitability, Fuzzy Linear decreasing
function opposed to Fuzzy Small function was adopted in this study. Detailed parameter values and
their rationale were presented at the results section. Consequently, all the original factor values were
normalized to a scale between 0 and 1. Thus far, each created fuzzy membership index layer continues
to have equal importance if used to derive synthetic PV suitability.

2.5. Application of the Analytic Hierarchy Process Method to Factor Variables

The AHP technique, first suggested by Saaty [34], is an expert system that compares a number
of variables by assigning a weight of importance relative to each factor variable being considered.
Ten experts were solicited to assign a weight to each factor variable by completing a comparison matrix
based on their experience, knowledge obtained from past research, or site investigations. Each expert
contributor for this study (listed in the acknowledgments) has either worked in the field addressing
solar PV energy site selection for several years or has pursued years of advanced research studies in
the field of solar PV energy and/or site selection. The experts included a solar energy conversion
system professional, PV potential assessment specialists, an energy economist, an urban designing
professional, and experienced GIS analysts who had investigated study areas, and the second author
who is a solar PV researcher and educator.

Pairwise comparison refers to the process of comparing several factors or elements in pairs
to judge which factors is preferred (relative importance) or two factors are identically important
in certain problem. Thus, it simplifying a complex problem and facilitating the determination of
reasonable weights for multiple factors. In a pairwise comparison, the sum of weights of all criteria is
1. For example, in the case of four criteria (i.e., Factors A–D), a 4 × 4 matrix is required to determine
the weights of the four criteria (Equation (1)).

Matrix :


C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44

 =


1 CAB CAC CAD

CBA 1 CBC CBD
CCA CCB 1 CCD
CDA CDB CDC 1

 (1)

Each element of the pairwise comparison matrix indicates the value of the relative importance of
the one factor to another factor, assigned using the intensity of importance scale of 1 to 9 [34] described
in Table 4. For instance, if Factor A is much more important than Factor B in predicting a subsidence
event, then a determined relative intensity value of 5 is assigned to CAB. As the matrix is symmetrical,
only the upper triangular half of the pairwise comparison matrix requires completion; the remaining
elements are the reciprocals of the upper triangular half. The value of the diagonal elements of the
matrix is 1.
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Table 4. Fundamental scale for pairwise comparison to implement AHP technique (after Saaty [34]).

Intensity of Importance Definition Explanation

1 Equal importance Two activities contribute equally to the objective

3 Moderate importance Experience and judgment slightly
favor one activity over another

5 Strong importance Experience and judgment strongly
favor one activity over another

7 Very strong or
demonstrated importance

An activity is favored very strongly over another;
its dominance demonstrated in practice

9 Extreme importance The evidence favoring one activity over another
is of the highest possible order of affirmation

2, 4, 6, 8 For compromise between
the above values

Sometimes one needs to interpolate a
compromise judgment numerically because

there is no good word to describe it

When all element values of the pairwise comparison matrix were determined, a priority matrix,
the normalized vector of the number of criteria, can be calculated according to:

P =


p1

p2

p3

p4

 =


wA
wB
wC
wD

 =
1
4
×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4
∑

j=1

c1j
c0j

4
∑

j=1

c2j
c0j

4
∑

j=1

c3j
c0j

4
∑

j=1

c4j
c0j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where C0j =

4

∑
i=1

Cij (2)

where each element represents the weighting value of each criterion. The relative weight for each
factor is determined within the range from 0 to 1; a higher weight indicates a greater contribution of
the factor to PV suitability.

To identify the degree of consistency in assigning the values of elements in the pairwise
comparison matrix, a consistency ratio (CR) can be used. The CR indicates the degree that participants’
opinions are consistent in scoring of the pairwise comparison matrix and demonstrates the qualities
of the causal factor of the PV suitability (in this case). The CR is defined as the ratio between the
consistency index (CI) (Equation (4)) of the matrix and a random index (RI) shown in Equation (5).
The RI can be assigned based on the number of criteria, using an appropriate value, as shown in
Ishizaka and Labib [35]. In general, a CR value less than 0.1 is considered to indicate a valid comparison.

M = C × P =


m1

m2

m3

m4

 (3)

CI =


4
∑

i=1

mi
pi

4

− 4

4 − 1
(4)

CR = CI/RI (5)

When the judgments of experts were different for a specific element of the comparison matrix,
geometric mean values were used to combine preferences for each element to minimize the
multiplicative error in calculating comparison matrix, as suggested in Ishizaka and Labib [35].
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2.6. Identification of Suitability Index and Sensitivity Analysis

The PV solar farm SI was calculated for the entire grid of pixel digital numbers using a weighted
sum method combining six fuzzy membership index layers with the weight of each factor being
derived by the AHP technique (Equation (6)). The resulting cardinal scores for each alternative can be
used to rank, screen, or choose an alternative [24]. Prior to aggregation of the six layers, each fuzzy
membership index layer and the binary constraint layer were multiplied using the overlay method to
exclude unified constraint areas from the suitability layer. This binary constraint layer behaves in a
Boolean manner in the processing, to mask out areas from the model. A suitability map for the entire
study area had the potential to have a maximum value of 1 (high suitability), and a minimum value of
0 (low suitability). This process makes it possible to create an integrated suitability layer that combines
all the characteristics of the input layers within one geographic area.

Suitability index = ∑ (Fuzzy membership indexi ×Weighti) (6)

where i indicates the ith factor variable being considered.
Sensitivity analyses were carried out for two reasons. First, analyses were performed to assess

the role of non-unique solutions for site selection given a defined set of criteria. In the process of
developing this feasibility study, we considered the possibility for numerous cases to emerge that
satisfied the criteria for optimal site selection. Under non-unique solution scenarios, the results
would suggest the need for adaptation of the method via additional criteria and interpretations
of the basic data to aid in decision-making strategies. For example, decision-makers may choose
or change a plan to construct new energy infrastructure by considering additional criteria such as
placement of future roads, building development, or planned transmission lines and power substations.
The other reason is that the contribution of specific criteria (or factor variables) to suitability can vary
according to electricity price, subsidy policy, and sector development. For example, as a sector develops
and electricity prices go down with increased infrastructure, then climate criteria may become less
important and location and environment criteria may become more so [18]. Therefore, four different SI
were assessed by excluding the considered factor variables based on these scenarios: (Case 1) even
weight for all factor variables; (Case 2) solar PV energy production factors only; (Case 3) natural
environment factors only; (Case 4) all factors except slope factor. For each case, the remaining factor
variables were kept in the same proportion to one another as produced by the weightings provided by
the experts.

3. Results

3.1. Generation of a Unified Constraint Layer

The unified constraint areas are presented in Figure A2 in Appendix A. A grey region indicates
the location of constraint areas and thus cannot be considered for a PV siting. The constraint region
showed an area of approximately 44.2 km2, which represents 60% of the study area. Most middle and
eastern parts of study area were shown to be constraint areas predominantly because of tourist sites,
landscape designations, and land use (or land use plans) such as urban areas and natural environment
conservation areas. The figure also shows that non-constraint areas where PV siting is possible are
located in relatively low-elevation regions.

3.2. Generation of Factor Layers

Six factor layers were generated from a variety of geospatial data using GIS-based spatial analysis
(Figure B1 in Appendix B). The data showed that the average daily solar irradiation value ran from
0.2 kWh/m2 to 3.7 kWh/m2, the maximum daily sunshine hours was 5.5 h, and the average air
temperature between 9 AM and 4 PM in summer was 20–27 ◦C. The maximum distance from the nearest
transmission line and road were computed to be 2636 m and 1246 m, respectively. The slope layer
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showed that Ulleung Island, being a volcanic island, is very mountainous with complex topography
and a mean slope of approximately 32◦.

3.3. Generation of Fuzzy Index Layers for Factor Variables

Table 5 summarizes the fuzzy membership functions, parameter values, and their references that
were applied for each factor variable to rate the factor scores for the PV site selection in the study area.
As this study is location-specific, it is inappropriate to directly adopt rating standards or scoring rules
used in other studies where the study areas had different environments. To determine the shape of
FMF suited for the characteristics of each factor, parameters were inputted based on their scientific
basis, socio-economic conditions, local characteristics and local regulation. A detailed explanation of
reasons for the assessment of conditions predisposed to high suitability expressed as a fuzzy index is
given below.

Table 5. Applied fuzzy membership functions and the parameters and derived weight for each
factor variable.

Factor Fuzzy Function Spread Midpt Minimum value Maximum value Reference Weight

F1 Fuzzy Large 5 2 - - Min-Max value of Korea 0.3889
F2 Fuzzy Large 5 3.5 - - Min-Max value of Korea 0.2682
F3 Fuzzy Linear - - 27.3 20 Skoplaki and Palyvos [36] 0.0838
F4 Fuzzy Linear - - 3000 0 Local characteristics 0.1151
F5 Fuzzy Linear - - 1600 5 Local characteristics 0.0641
F6 Fuzzy Small 3 9 - - Local law and regulation 0.0799

Solar factor variables (F1, F2) were maximized since electricity production capacity increases with
increasing solar factor values. Therefore, the Fuzzy Large function was applied for both factor layers.
As parameters for two solar factors, a spread type of 5 with a shape similar to a sigmoidal model
was selected and the midpoint was input taking into account the maximum value of observed data
throughout Korea. For example, the maximum average annual solar irradiation value observed in
the past 20 years in numerous cities in Korea was 3.93 kWh/m2/day in Mokpo City [37]. Therefore,
a solar irradiation value of 2 (approximately equal to half of 3.93) was set as the midpoint in this study.
This allows the solar irradiation values of 0, 2, and 4 to be converted into fuzzy values of roughly 0,
0.5, and 1, respectively. For the equivalent sunshine hour factor, a value of 3.5 was set as the midpoint
since the city with the longest annual sunshine duration in South Korea had an average daily sunshine
of 6.26 h/day [38].

The climate factor variable (F3) requires specific temperature conditions to secure high power
output since the cell efficiency and power output can change with varying temperature. In general,
PV efficiency for power generation is linearly decreasing as the cell temperature is increasing [36].
The Fuzzy Linear function is useful if the membership is linearly decreasing at a specific value, so it
was applied for this factor layer. The change of PV efficiency caused by changes in air temperature
is frequently identified using nominal terrestrial environment (NTE) as a standard condition [36].
Based on the suggested air temperature condition of NTE, 20 ◦C was set as the min parameter for
the maximum fuzzy index in the Fuzzy Linear model. A min and max parameter of 20 and 27.3 was
input to the model respectively to define the appropriate decreasing zone taking into account linear
correlation between PV efficiency and temperature.

The proximity to infrastructure factor variables (F4, F5) were minimized since PV sites with close
grid connections or transport links are preferred due to lower potential investment costs. Therefore,
the Fuzzy Linear decreasing function was applied for both factor variable layers. More specifically,
proximity to transmission line can considerably reduce connection costs and/or transmission losses.
A value of 0 was set as the max-parameter to be assigned a fuzzy index of 1 and 3000 was set as the
min-parameter, with a fuzzy index of 0, taking into account the extent of study areas [20]. Proximity
to transport links minimizes additional infrastructure construction and consequential damage to the
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environment. For this factor variable, distance values of 4.5 and 1600 were set as the min and max
parameter, respectively, considering the distribution of road lines in study areas. However, since it is
not possible to build a PV plant on a road, the fuzzy index of road regions (4.5 m on either side of the
center road line) were re-assigned as 0.

Topography factor variable (F6) was minimized since a PV plant requires flat terrain or a gentle
slope because of access convenience [39]. Therefore, the Fuzzy Small function was applied to the slope
factor layer. The local government recommends a slope limit value of 18◦ as a standard for PV solar
farm infrastructure as well as large-scale construction in the study areas. Consequently, a value of 9
was set as the midpoint.

The six fuzzy membership index layers (one for each factor variable) that have been created are
illustrated in Figure 4. The scale runs from 0 to 1 (or less) and higher fuzzy index indicates a better
location for a PV plant. Areas with a high fuzzy index in Figure 4 coincide with the regions of high
solar irradiation, longest sunshine hours, moderate air temperature, contiguousness to transmission
lines, proximity to roads, and flatness of terrain.Energies 2016, 9, 648  13 of 23 
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3.4. Computation of Weightings of Each of the Factor Variables

The pairwise comparison completed by the experts indicated that solar irradiation showed the
highest weight among all factors, followed by equivalent sunshine hours, proximity to transmission
line, average daily temperature in summer, slope, and proximity to road (Table 5). In particular,
the weightings significantly favored the solar factor variables (F1, F2), solar irradiation (0.3889) and
equivalent sunshine hours (0.2682), since they are main sources of power production. This opinion
seems to be similar to other published literature. In contrast, expert judgement indicated that the
slope factor variable had a relatively high influence on PV siting compared with other previous
studies [18,20]. This opinion stems from the fact that most regions of Ulleung Island are so rugged and
steep that it is difficult to find flat terrain. The distance from nearest road factor variable did not carry
much weight because the experts judged that the effect of this factor on the economic aspect would be
low compared with the other factor variables considered.

From the values of the pairwise comparison matrix, the calculated CR in the present study
was approximately 0.0144, which is an acceptable level of confidence (<0.1) for assigning weights to
each factor variable. The weighting that was assigned using these results was utilized to aggregate
fuzzy index.

3.5. Generation of Suitability Layers Using a Fuzzy-Analytic Hierarchy Process Integrated Model and
Its Sensitivity Analysis

A suitability layer for a PV solar farm on Ulleung Island was generated by aggregating
six weighted fuzzy membership indices based on Equation (6). Originally, the resulting map showed
the SI to be between 0.09 and 0.92 (rounded off to two decimal places). This enables the ranking of
areas in terms of the possibility of a PV plant relative to the scale and spatial extent of the study area.
In other words, the computed SI does not represent an absolute possibility. Accordingly, the original
map gives a visual interpretation of the seven classes of suitability: most extremely suitable (SI > 0.85)
in red, extremely suitable (0.80–0.85) in orange, very strongly suitable (0.75–0.8) in yellow, strongly
suitable (0.7–0.75) in green, moderately suitable (0.65–0.7) in sky-blue, marginally suitable (a capped
value of 0.65) in blue, and constraint areas in grey (Figure 5).
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The regions with an SI of more than 0.8 (in red and orange) accounted for approximately 1.6% of
the study area. From these, three regions with wide aggregated neighboring extremely suitable areas
were selected as candidate sites for a PV plant via the visual analysis presented in Figure 5 and were
named Site A (western part), Site B (middle part), and Site C (northern part).

The average values of each of the factor values within the three sites were analyzed using zonal
statistics (Table 6). We determined that all three sites have characteristics in common in terms of solar
irradiation, proximity to infrastructure, and slope conditions. Specifically, they were located in areas
of moderate to high daily insolation (2.91–3.04 kWh/m2/day) but not in the regions of the highest
solar irradiation in the study area. Furthermore, these three sites coincide with locations of existing
transmission lines (139–332 m) and roads (<58 m); however, we could not make a clear difference
between proximity to roads between the most extremely suitable region and the rest of the five suitable
regions. Most of these three sites showed a slope condition that had a gentle slope and this was the
distinct difference between “extremely suitable” (SI > 0.8) or the remaining five suitable regions and
other suitable (SI ≤ 0.8) regions. In particular, Site B showed a larger area (0.61 km2) compared with
that of Site A and C. In case of Site B, solar irradiation values were relatively high compared with that
of Site A and C, although the sunshine hour factor showed relatively low values.

Table 6. Statistical summary of average factor variable values and the areas within the three
candidate sites.

Factor Variable Site A Site B Site C

Solar irradiation (kWh/m2/day) 2.91 3.04 2.99
Equivalent sunshine hours (h) 4.57 4.33 4.90

Average temperature in summer (◦C) 25.96 24.70 26.57
3D path distance from nearest transmission line (m) 139.76 332.53 202.32

3D path distance from nearest road (m) 18.15 57.88 34.31
Slope (◦) 3.15 2.68 2.45

Area (km2) 0.04 0.61 0.03

The area for PV installation necessary to produce all the electricity needed on the study area was
calculated with simplified, conservative assumptions (annual energy consumption: 54,036 MWh/year,
PV module capacity: 1000 kWh/kWp/year each, Area per unit module: 6 m2/kWp, and Area ratio
coefficient between module area and land area to account for distance between module racks to avoid
shadowing: 2.5). As a result, it was estimated that an area of approximately 0.81 km2 (1.34× the area
of Site B) would be called for to generate electricity solely with a centralized PV system on Ulleung
Island. While the Green Ulleung Island project will consider all the possible other renewable energy
sources, this survey result for Sites A–C supports the role of PVs as a strong option.

In the sensitivity analysis, the factor variables that were considered were excluded in the SI
calculation process to obtain four different results. Figure 6 presents four suitability layers, expressed
on a scale with seven classes based on four scenarios. In Case 1 (Figure 6a), the weightings of all
factors were equally changed to 1 to examine the result of a non-weighted fuzzy index summation.
As a result, extremely suitable regions with an SI of more than 0.8 in orange decreased, including
Site B. In Case 2 (Figure 6b), only solar and climate factors (F1, F2, and F3) were considered in order
to identify the most suitable areas only in terms of electricity production. As a result, the area of
regions extremely suitable for PV plants was increased compared with the original results. In Case 3
(Figure 6c), proximity to infrastructure factors (F4, F5) was excluded in the calculation to reflect only
natural environmental factors. This can provide a meaningful result since this exclusion will allow
the identification of potential pathways for future transmission lines or road development to pass
near extremely suitable locations for synthetic renewable energy developments for a green island
as well as PV plant implementations. Due to the aforementioned reason that most of infrastructure
exists on most areas of the six-class suitable regions, however, there was no visible difference from
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the original result. In Case 4 (Figure 6d), the slope factor (F6) was excluded when assessing the SI.
Consequently, the regions which were extremely suitable for PV plants were much more extensive
over entire areas than in the original results. This layer will be useful when the PV project has enough
economic feasibility taking into account land clearing and site construction costs.Energies 2016, 9, 648  16 of 23 
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4. Discussion

4.1. Validation of the Model

Although the suitability layer above showed four regions with most extremely or extremely
suitable classes, they are only results based on the MCE model designed in this study. In other words,
validation for the resulting map is required to determine whether the aforementioned three sites
are really the most suitable or not. Therefore, a validation process was applied to identify whether
the grid cells showing the extremely suitable zones at a certain set of coordinates are actually areas
that are appropriate for PV sites in the real world. The representative extremely suitable zones and
corresponding Google Earth satellite images are shown in Figure 7. From the high-resolution satellite
images, it can be seen that most of the area in the three sites consist of grassland or agricultural areas.
This indicates that the aforementioned three sites on the resulting maps can be used as PV plants in
the real world. However, a building was found on the west side region of Site C (northern part), and it
should be removed at the most extremely suitable areas. Southern part of Figure 5 was observed to be
the most extremely suitable region but an inappropriate region for a PV site in the real world because
it is a harbor area. These examples show that these kinds of small-sized infrastructure or buildings
should be regarded as some level of constraint and checked in the final phase of a detailed ground
site investigation.
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No large-scale PV solar farm exists yet on Ulleung Island, although there are small-scale PV
systems (≤3 kWp each) or rooftop PV developments which were not designed with scientific
investigations [15]. As such, the map results obtained from this study cannot be validated with
existing PV solar farms on Ulleung Island.
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4.2. Location-Specific Slope Condition

The environment of the study areas is intensively different from that of similar studies because
this is a volcanic island with complex topography. Consequently, contrary to what has been found in
previously published literature, slope was a key screening factor in defining the three candidate sites
from the five-class suitable zones in this study. The slope of Ulleung Island showed range of 0◦–83◦

while 0◦–50◦ is the range used in other PV siting studies [25]. In addition, most previous studies [19,22]
proposed a constraint threshold for the slope to be a range of 5◦–10◦. In the case of Ulleung Island,
only 3.42 km2 (5% of total area) has a gently steep terrain of 5◦ or less gradient and only 6.01 km2 (9%)
is 10◦ or less. These percentage numbers are considerably lower than those found in other studies
above. As such, stakeholders or decision makers have to consider other PV systems such as building
rooftops or street lamps as supplements. In the same way that the slope threshold in other studies
does not apply to Ulleung Island, the one used in this study is not directly usable in other island cases
with different topographic characteristics.

5. Conclusions

This study suggested an adaptive MCE-based method to identify suitable areas for centralized
solar PV arrays based on practitioner-informed criteria for a given locale. Here, we have demonstrated
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the method to find three highly suitable regions within the constrained area of Ulleung Island using a
weighted fuzzy summation method within a GIS environment. The results obtained from this study can
potentially contribute to reductions in levelized costs of electricity (LCOE) for regional siting of solar
farms by favoring factor variables that offer the highest values for solar power conversion (high solar
irradiation, longest sunshine hours, and low average air temperature) and lowest cost criteria for BoS
(by proximity to existing transmission lines and roads) for PV installations. Furthermore, this work
indicates that the criteria for suitability can be adapted by local practitioners to be used as a planning
method to minimize the impact on the environment, society, and infrastructure when converting from
fossil fuel combustion to green infrastructure. In this particular study, our approach may aid decision
makers in moving towards a desired goal of having more than 90% of Ulleung Island’s electricity
generated by renewable energy resources, including PV, by 2030.

Nevertheless, there are ways to improve the analysis process for this locale in future work.
The present irradiance data are highly simplified, yet they enable to screen or narrow the appropriate
areas for PV system of the large area of the island. Using the preliminary assessment method here, one
can envisage community planners recommending investments in local ground monitoring stations for
the three sites based on solar irradiance data collected on the identified sites over years, for feasibility
and due diligence steps of solar project development [40]. Better decisions can also be made by taking
into account evolving economic considerations, such as the shifts in public price of land and costs for
land clearing and construction. As with solar monitoring, extensive field surveys must follow for PV
candidate sites in order to identify and validate locally important constraint and factor variables from
the urban planning perspective. In addition, shared analyses of other available low-carbon energy
alternatives can be coupled with a solar siting study, to enable regional planning for renewable energy
diversity in the future.

These findings may be applicable to other areas lacking grid connectivity, as the method used
is highly adaptive, and may be applied to other areas, such as rural West Africa and India with
appropriate informed local practitioner criteria that takes into account locale-specific variables.
With these adaptations, the suggested GIS-based suitability assessment model can be used as an
informative and enabling site selection tool for screening optimal PV sites in other areas of the world.
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Appendix A. Maps Used for Constraint Variables

(C1) Residential areas: This layer was extracted from a land cover map, provided by National
Spatial Information Clearinghouse (NSIC) of South Korea, which consists of coniferous forests, arid
ground, dry field, residential areas (Code 4), bare ground, roads, and grassland. Residential areas are
one of the most frequently used constraint variables in PV site selection analyses.

(C2) Land use plan: Urban (Code 4) and natural environment conservation areas (Code 3) were
extracted from a land use map, provided by Environmental Geographic Information Service (EGIS) of
South Korea, which consists of four different classifications. Natural environment conservation areas
included some parts of tourist sites, landscape designations, and wildlife designations.

(C3) Tourist sites: This layer is composed of historical areas and cultural heritage and archeological
sites. It was extracted from separate management areas of an ecological zoning map which represents
four different grades (Grades 1–3, and separate management areas) for the natural environment based
on its ecological value, landscape value, and other aspects.

(C4) Landscape designations: This layer is composed of regions associated with visual impact
and scenic sites. It also was extracted using the same data sources as the tourist sites. These areas were
excluded from PV sites due to environmental protection and ecological conservation.

(C5) Wildlife designations: This layer is composed of bird protection zones and paleontological
sites. It was extracted from Grade 1 (region and topography) of an ecological zoning map for the
conservation and restoration of the natural environment established by regulation. Buffering analysis
was not considered due to the fact that PV development is environmentally benign.

(C6) Hydrographic areas: This layer is composed of lakes, protection areas of source water, rivers,
streams, and water courses. It was extracted from hydrographic and hydrogeological map. Ten-meter
buffering analysis was applied to polyline-type layers (river, streams, and water courses) to represent
their width.

(C7) Slope failure zone: This layer was created from a geological site investigation for rock
slope failures including rock falls along the coast roads. Ten-meter buffering analysis was applied to
surveyed points considering their influence areas (geo-hazard zone). It should be noted that slope
failure is only specific to the region and may not apply to other regions.

(C8) Elevation: This layer was extracted from a DEM which shows a 3D representation of a surface
of the terrain with a regularly gridded cell. The regions above 492 m (50% of maximum elevation)
were regarded as constraint regions based on the national law that building a large-scale infrastructure
in those regions is not permitted.
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Appendix B. Maps Used for Each Factor Variable

(F1) Solar irradiation: This indicates the incident shortwave energy per unit area. Solar irradiation
can affect average annual power performance and thus is regarded as one of the most important
factors in PV suitability analysis. Hence, the most isolated areas are predisposed to high PV suitability.
Two years of officially observed solar irradiation hourly data for Ulleung Island are available for a
few points. However, it is not possible in practice to predict or generate solar irradiation values for
the entire grid of cells of the study areas with limited observed data as solar irradiation can be easily
affected by or vary due to neighboring topographic environments. Therefore, solar irradiance values
were calculated by the summation of direct and diffuse irradiation for the entire grid of cells using
DEM data (raster surface) and ArcMap solar irradiation tools based on methods from the hemispherical
viewshed algorithm [41]. These tools can roughly estimate a simplified average annual solar irradiation
condition (much like one can estimate average annual temperatures) over the grid cells considering
shading effect of neighboring topographic environment and have been frequently used in regional or
national-scale PV potential assessment and solar farm site selection studies [19,22,42–45]. It should be
noted, in reality, the calculation of the annual average irradiation will depend quite strongly on how
the typical weather is in the different seasons. Latitude was set to 37.5◦ decimal degrees in modeling.
A shortwave transmissivity value of τ = 0.45 was input as no published literature on that value of
the study area was available. Subsequently, modeled solar irradiation values were modified using
their correlation with data observed at several points (Automated Synoptic Observing System (ASOS)
and Automated Weather Station (AWS)) in 2010 by the Korea meteorological administration (KMA).
This is reasonable because modification by observed data can decrease the uncertainty of a parameter
(atmospheric transmissivity) input to modeled data.

(F2) Equivalent sunshine hours: This represents the duration (in hours) of direct solar irradiation
that exceeds a direct normal irradiance (DNI) of 120 W/m2. Sunshine hours, one of the most frequently
used factors in PV site selection research, is closely associated with amount of electricity production.
For a reason similar to the one mentioned above, sunshine hours was calculated from DEM data
using solar radiation tools of ArcMap software. Since these tools can identify non-shaded areas based
on local topography and location of sun but not accurate meteorology, the calculated values were
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then modified using a regression equation between modeled sunshine hours and average observed
sunshine hours data at a few points for the past 20 years from the KMA. This makes sense as two
different data areas can be used to complement each other in compiling the sunshine hours layer.
F1 and F2 factor values can be correlated in a certain place, though they may not according to the
topographical environment of study area.
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(F3) Average daily temperature in summer: This refers to the average daily temperature from 9
AM to 4 PM in summer (between summer solstice and autumnal equinox day). Most silicon-based
PV cells or modules’ electrical efficiency is dependent on the cell temperature, which can be affected
by terrestrial environment factors such as irradiance, ambient temperature, wind speed, mounting
method, and material parameters [36]. In particular, a rise in the PV cell temperature causes a decrease
in the voltage and a slight increase in the electric current. The temperature also affects some parameters
such as minority carrier lifetime, carrier mobility, and diffusion and increases recombination in solar
cells [46]. As such, given similar irradiation conditions, higher PV cell temperatures can lead to
decreases in efficiency of power generation. This is why this variable was chosen for this study.
Average daily temperature was obtained from the KMA data observed between 9 AM to 4 PM
(the approximate duration for generating electricity) for 94 days in the summer of 2010 to keep
uniformity with the observation period (year) of the solar irradiation. It is found that the average daily
temperature for other seasons (during autumnal equinox day and summer solstice) showed below the
20 ◦C appropriate for generating electricity.

(F4) 3D path distance from nearest transmission line: This indicates surface length, both horizontal
and vertical distance simultaneously, between a grid cell and nearest existing transmission line.
Proximity to transmission lines is one of the most commonly considered factors relevant to the
potential investment costs. As Ulleung Island has complex topography, 2D Euclidean distance will be
inaccurate when there is a surface that vertically varies greatly. Accordingly, the path distance module
was applied to digitized existing transmission line data to generate 3D surface length from the nearest
transmission line layer.

(F5) 3D path distance from nearest road: This represents 3D distance between a grid cell and the
nearest existing roads. Similar to the above, proximity to roads is also associated with the BoS cost.
Distance from the nearest road layer was generated applying the concept of 3D distance along the
surface in this study.

(F6) Slope: This refers to the degree of topographic incline calculated as the maximum rate of
change between a given cell center and that of its immediate neighbors. Slope, one of the important
factors used for site selection research, is tied up with the pre-construction project costs. Slope was
derived from DEM data using the surface analysis module.
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