Investigation of the Defect Structure of Congruent and Fe-Doped LiNbO3 Powders Synthesized by the Combustion Method
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cheong, S.W.; Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nat. Mater. 2007, 6, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Ederer, C.; Spaldin, N.A. Magnetoelectrics: A new route to magnetic ferroelectrics. Nat. Mater. 2004, 3, 849–851. [Google Scholar] [CrossRef] [PubMed]
- Eerenstein, W.; Mathur, N.D.; Scott, J.F. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Scholl, A.; Zavaliche, F.; Lee, K.; Barry, M.; Doran, A.; Cruz, M.P.; Chu, Y.H.; Ederer, C.; Spaldin, N.A.; et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 2006, 5, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Aillerie, M.; Bourson, P.; Mostefa, M.; Abdi, F.; Fontana, M.D. Photorefractive damage in congruent LiNbO3. Part I. zinc doped lithium niobate crystals. J. Phys. Conf. Ser. 2013, 416, 012001. [Google Scholar] [CrossRef]
- Aillerie, M.; Bourson, P.; Mostefa, M.; Abdi, F.; Fontana, M.D. Photorefractive damage in congruent LiNbO3. Part II. magnesium doped lithium niobate crystals. J. Phys. Conf. Ser. 2013, 416, 012002. [Google Scholar] [CrossRef]
- Volk, T.; Wöhlecke, M. Lithium niobate: Defects, Photorefraction and Ferroelectric Switching; Springer: Berlin, Germany, 2009. [Google Scholar]
- Kong, Y.; Liu, S.; Xu, J. Recent advances in the photorefraction of doped lithium niobate crystals. Materials 2012, 5, 1954–1971. [Google Scholar] [CrossRef]
- Manikandan, M.; Saravana Kumar, K.; Aparnadevi, N.; Praveen Shanker, N.; Venkateswaran, C. Multiferroicity in polar phase LiNbO3 at room temperature. J. Magn. Magn. Mater. 2015, 391, 156–160. [Google Scholar] [CrossRef]
- Díaz-Moreno, C.; Farias, R.; Hurtado-Macias, A.; Elizalde-Galindo, J.; Hernandez-Paz, J. Multiferroic response of nanocrystalline lithium niobate. J. Appl. Phys. 2012. [Google Scholar] [CrossRef]
- Zeng, F.; Sheng, P.; Tang, G.S.; Pan, F.; Yan, W.S.; Hu, F.C.; Zou, Y.; Huang, Y.Y.; Jiang, Z.; Guo, D. Electronic structure and magnetism of Fe-doped LiNbO3. Mater. Chem. Phys. 2012, 136, 783–788. [Google Scholar] [CrossRef]
- Song, C.; Wang, C.Z.; Yang, Y.C.; Liu, X.J.; Zeng, F.; Pan, F. Room temperature ferromagnetism and ferroelectricity in cobalt-doped LiNbO3 film. Appl. Phys. Lett. 2008, 92, 262901. [Google Scholar] [CrossRef]
- Abdi, F.; Fontana, M.D.; Aillerie, M.; Bourson, P. Coexistence of Li and Nb vacancies in the defect structure of pure LiNbO3 and its relationship to optical properties. Appl. Phys. A: Mater. Sci. Process. 2006, 83, 427–434. [Google Scholar] [CrossRef]
- Abrahams, S.C.; Marsh, P. Defect structure dependence on composition in lithium niobate. Acta Crystallogr. Sect. B Struct. Sci. 1986, 42, 61–68. [Google Scholar] [CrossRef]
- Iyi, N.; Kitamura, K.; Izumi, F.; Yamamoto, J.K.; Hayashi, T.; Asano, H.; Kimura, S. Comparative study of defect structures in lithium niobate with different compositions. J. Solid State Chem. 1992, 101, 340–352. [Google Scholar] [CrossRef]
- Li, Y.; Schmidt, W.G.; Sanna, S. Intrinsic LiNbO3 point defects from hybrid density functional calculations. Phys. Rev. B 2014, 89. [Google Scholar] [CrossRef]
- Li, Y.; Schmidt, W.G.; Sanna, S. Defect complexes in congruent LiNbO3 and their optical signatures. Phys. Rev. B 2015, 91. [Google Scholar] [CrossRef]
- Schirmer, O.F.; Imlau, M.; Merschjann, C.; Schoke, B. Electron small polarons and bipolarons in LiNbO3. J. Phys. Condens. Matter 2009, 21. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.G.; Chiu, M. Substitution site of the Fe3+ impurity in crystalline LiNbO3. Phys. Rev. B 1994, 49, 12556–12558. [Google Scholar] [CrossRef]
- Peterson, G.E.; Glass, A.M.; Negran, T.J. Control of the susceptibility of lithium niobate to laser-induced refractive index changes. Appl. Phys. Lett. 1971, 19, 130–132. [Google Scholar] [CrossRef]
- Bush, T.S.; Catlow, C.R.A.; Chadwick, A.V.; Cole, M.; Geatches, R.M.; Greaves, G.N.; Tomlinson, S.M. Studies of cation dopant sites in metal oxides by EXAFS and computer-simulation techniques. J. Mater. Chem. 1992, 2, 309. [Google Scholar] [CrossRef]
- Olimov, K.; Falk, M.; Buse, K.; Woike, T.; Hormes, J.; Modrow, H. X-ray absorption near edge spectroscopy investigations of valency and lattice occupation site of Fe in highly iron-doped lithium niobate crystals. J. Phys. Condens. Matter 2006, 18, 5135–5146. [Google Scholar] [CrossRef]
- Vitova, T.; Hormes, J.; Falk, M.; Buse, K. Site-selective investigation of site symmetry and site occupation of iron in Fe-doped lithium niobate crystals. J. Appl. Phys. 2009, 105. [Google Scholar] [CrossRef]
- Gog, T.; Schotters, P.; Falta, J.; Materlik, G.; Grodzicki, M. The lattice position of Fe in Fe-doped LiNbO3. J. Phys. Condens. Matter 1995, 7, 6971–6980. [Google Scholar] [CrossRef]
- Mignoni, S.; Fontana, M.D.; Bazzan, M.; Ciampolillo, M.V.; Zaltron, A.M.; Argiolas, N.; Sada, C. Micro-Raman analysis of Fe-diffused lithium niobate waveguides. Appl. Phys. B Lasers Opt. 2010, 101, 541–546. [Google Scholar] [CrossRef]
- Clark, M.G.; DiSalvo, F.J.; Glass, A.M.; Peterson, G.E. Electronic structure and optical index damage of iron-doped lithium niobate. J. Chem. Phys. 1973, 59, 6209–6219. [Google Scholar] [CrossRef]
- Schirmer, O.F.; Imlau, M.; Merschjann, C. Bulk photovoltaic effect of LiNbO3:Fe and its small-polaron-based microscopic interpretation. Phys. Rev. B 2011, 83. [Google Scholar] [CrossRef]
- Kurz, H.; Krätzia, E.; Keune, W.; Engelmann, H.; Gonser, U.; Dischler, B.; Räuber, A. Photorefractive centers in LiNbO3, studied by optical-Mössbauer-and EPR-methods. Appl. Phys. 1977, 12, 355–368. [Google Scholar] [CrossRef]
- Shah, R.R.; Kim, D.M.; Rabson, T.A.; Tittel, F.K. Characterization of iron-doped lithium niobate for holographic storage applications. J. Appl. Phys. 1976, 47, 5421–5431. [Google Scholar] [CrossRef]
- Ciampolillo, M.V.; Zaltron, A.; Bazzan, M.; Argiolas, N.; Sada, C. Quantification of iron (Fe) in lithium niobate by optical absorption. Appl. Spectmsc. 2011, 65, 216–220. [Google Scholar] [CrossRef]
- Ciampolillo, M.V.; Zaltron, A.; Bazzan, M.; Argiolas, N.; Sada, C.; Bianconi, M. Lithium niobate crystals doped with iron by thermal diffusion: Relation between lattice deformation and reduction degree. J. Appl. Phys. 2010, 107, 084108. [Google Scholar] [CrossRef]
- Li, Y.Y.; Chen, H.L.; Kuo, C.L.; Hsieh, P.H.; Hwang, W.S. Raman spectra and ferromagnetism of nanocrystalline Fe-doped Li0.43Nb0.57O3+δ. Ceram. Int. 2016, 42, 10764–10769. [Google Scholar] [CrossRef]
- Sanson, A.; Zaltron, A.; Argiolas, N.; Sada, C.; Bazzan, M.; Schmidt, W.G.; Sanna, S. Polaronic deformation at the Fe2+/3+ impurity site in Fe:LiNbO3 crystals. Phys. Rev. B 2015, 91, 9. [Google Scholar] [CrossRef]
- Kuo, C.L.; Chang, Y.S.; Chang, Y.H.; Hwang, W.S. Synthesis of nanocrystalline lithium niobate powders via a fast chemical route. Ceram. Int. 2011, 37, 951–955. [Google Scholar] [CrossRef]
- Kuo, C.L.; Chen, G.J.; Chang, Y.S.; Fu, J.X.; Chang, Y.H.; Hwang, W.S. Thermal behavior of the nonstoichiometric lithium niobate powders synthesized via a combustion method. Ceram. Int. 2012, 38, 3729–3733. [Google Scholar] [CrossRef]
- Kuo, C.L.; Chen, G.J.; Hsi, C.S.; Wang, J.W.; Chang, Y.S.; Li, Y.Y.; Hwang, W.S. Raman spectra and dielectric properties of the nanocrystalline Li0.43Nb0.57O3+δ. Ceram. Int. 2014, 40, 4639–4642. [Google Scholar] [CrossRef]
- Chick, L.A.; Pederson, L.R.; Maupin, G.D.; Bates, J.L.; Thomas, L.E.; Exarhos, G.J. Glycine-nitrate combustion synthesis of oxide ceramic powders. Mater. Lett. 1990, 10, 6–12. [Google Scholar] [CrossRef]
- Markovic, D.; Kusigerski, V.; Tadic, M.; Blanusa, J.; Antisari, M.V.; Spasojevic, V. Magnetic properties of nanoparticle La0.7Ca0.3MnO3 prepared by glycine–nitrate method without additional heat treatment. Scr. Mater. 2008, 59, 35–38. [Google Scholar] [CrossRef]
- Carruthers, J.R.; Peterson, G.E.; Grasso, M.; Bridenbaugh, P.M. Nonstoichiometry and crystal growth of lithium niobate. J. Appl. Phys. 1971, 42, 1846. [Google Scholar] [CrossRef]
- Wöhlecke, M.; Corradi, G.; Betzler, K. Optical methods to characterise the composition and homogeneity of lithium niobate single crystals. Appl. Phys. B: Lasers Opt. 1996, 63, 323–330. [Google Scholar] [CrossRef]
- Powell, C.J. Recommended Auger parameters for 42 elemental solids. J. Electron. Spectrosc. Relat. Phenom. 2012, 185, 1–3. [Google Scholar] [CrossRef]
- Blümel, J.; Born, E.; Metzger, T. Solid state NMR study supporting the lithium vacancy defect model in congruent lithium niobate. J. Phys. Chem. Solids 1994, 55, 589–593. [Google Scholar] [CrossRef]
- Gomes, M.A.B. The Electrochromic Process at Nb2O5 Electrodes Prepared by Thermal Oxidation of Niobium. J. Electrochem. Soc. 1990, 137, 3067. [Google Scholar] [CrossRef]
- Bahl, M.K. ESCA studies of some niobium compounds. J. Phys. Chem. Solids 1975, 36, 485–491. [Google Scholar] [CrossRef]
- Steiner, P.; Höchst, H.Z. X-ray excited photoelectron spectra of LiNbO3: A quantitative analysis. Z. Phys. B: Condens. Matter 1979, 35, 51–59. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Kovács, L.; Wohlecke, M.; Jovanović, A.; Polgár, K.; Kapphan, S. Infrared absorption study of the OH vibrational band in LiNbO3 crystals. J. Phys. Chem. Solids 1991, 52, 797–803. [Google Scholar] [CrossRef]
- Kushwaha, S.K.; Maurya, K.K.; Vijayan, N.; Bhagavannarayana, G. Crystalline perfection, EPR, prism coupler and UV-VIS-NIR studies on Cz-grown Fe-doped LiNbO3: A photorefractive nonlinear optical crystal. CrystEngComm 2011, 13, 4866. [Google Scholar] [CrossRef]
- Ohira, M.; Chen, Z.; Kasamatsu, T.; Shiosaki, T. Crystal growth of LiNbO3:Fe and its photorefractive properties. Jpn. J. Appl. Phys. 1991, 30, 2326–2329. [Google Scholar] [CrossRef]
- Dai, L.; Su, Y.Q.; Wu, S.P.; Guo, J.J.; Xu, C.; Xu, Y.H. Influence of Li/Nb ratios on defect structure and photorefractive properties of Zn: In: Fe: LiNbO3 crystals. Opt. Commun. 2011, 284, 1721–1725. [Google Scholar] [CrossRef]
- Xu, C.; Yang, C.; Dai, L.; Sun, L.; Xu, Y.; Cao, L. Influence of Li and Nb ratios on the defect structure and exposure energy in LiNbO3:Fe:Mn:Zr crystals. J. Alloys Compd. 2011, 509, 4167–4170. [Google Scholar] [CrossRef]
- Caciuc, V.; Postnikov, A.V.; Borstel, G. Ab initiostructure and zone-center phonons inLiNbO3. Phys. Rev. B 2000, 61, 8806–8813. [Google Scholar] [CrossRef]
- Margueron, S.; Bartasyte, A.; Glazer, A.M.; Simon, E.; Hlinka, J.; Gregora, I.; Gleize, J. Resolved E-symmetry zone-centre phonons in LiTaO3 and LiNbO3. J. Appl. Phys. 2012, 111, 104105. [Google Scholar] [CrossRef]
- Repelin, Y.; Husson, E.; Bennani, F.; Proust, C. Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations. J. Phys. Chem. Solids 1999, 60, 819–825. [Google Scholar] [CrossRef]
- Ridah, A.; Bourson, P.; Fontana, M.D.; Malovichko, G. The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3. J. Phys.: Condens. Matter 1997, 9, 9687–9693. [Google Scholar] [CrossRef]
- Sanna, S.; Neufeld, S.; Rüsing, M.; Berth, G.; Zrenner, A.; Schmidt, W.G. Raman scattering efficiency in LiTaO3 and LiNbO3 crystals. Phys. Rev. B 2015, 91, 22. [Google Scholar] [CrossRef]
- Sidorov, N.V.; Serebryakov, Y.A. Investigation of structural peculiarities of impure lithium niobate crystals by Raman spectroscopy. Vib. Spectrosc. 1994, 6, 215–223. [Google Scholar] [CrossRef]
- Vitalij Pecharsky, P.Z. Fundamentals of Powder Diffraction and Structural Characterization of Materials, Second Edition; Springer: New York, NY, USA, 2009. [Google Scholar]
- Zotov, N.; Boysen, H.; Schneider, J.; Frey, F. Application of combined neutron and X-ray powder diffraction refinements to the structure of congruent lithium niobate. Mater. Sci. Forum 1994, 166–169, 631–636. [Google Scholar] [CrossRef]
- Etschmann, B.; Ishizawa, N.; Streltsov, V.; Oishi, S. A synchrotron X-ray diffraction analysis of near-stoichiometric LiNbO3. Z. Kristallogr. Cryst. Mater. 2001, 216, 8. [Google Scholar] [CrossRef]
- Chernaya, T.S.; Volk, T.R.; Verin, I.A.; Simonov, V.I. Threshold concentrations in zinc-doped lithium niobate crystals and their structural conditionality. Crystallogr. Rep. 2008, 53, 573–578. [Google Scholar] [CrossRef]
- Lehnert, H.; Boysen, H.; Frey, F.; Hewat, A.; Radaelli, P. A neutron powder investigation of the high-temperature structure and phase transition in stoichiometric LiNbO3. Z. Kristallogr. Cryst. Mater. 1997, 212, 10. [Google Scholar] [CrossRef]
- De Miguel-Sanz, E.M.; Carrascosa, M.; Arizmendi, L. Effect of the oxidation state and hydrogen concentration on the lifetime of thermally fixed holograms in LiNbO3:Fe. Phys. Rev. B 2002, 65, 16. [Google Scholar] [CrossRef]
Sample | Tc1 (°C) | Xc (%) | Tc2 (°C) | Xc (%) |
---|---|---|---|---|
LN41 | 1169.48 | 49.17 | 1066.31 | 46.54 |
LN42 | 1172.84 | 49.25 | 1067.89 | 46.58 |
LN43 | 1172.31 | 49.24 | 1066.58 | 46.55 |
FLN-A-43 | 1171.86 | - | 1066.43 | - |
FLN-B-43 | 1171.24 | - | 1061.23 | - |
FLN-C-43 | 1170.01 | - | - | - |
FLN-D-43 | 1171.86 | - | - | - |
FLN-E-43 | 1170.00 | - | - | - |
Sample | Fe/Nb (mol %) |
---|---|
FLN-A-43 | 0.560 |
FLN-B-43 | 0.765 |
FLN-C-43 | 1.299 |
FLN-D-43 | 1.856 |
FLN-E-43 | 3.314 |
LN43 | Results of Iyi et al. [17] | Nb Vacancy Model | Mixed-Vacancy Model | Li Vacancy Model | ||||
Formula | [Li0.951Nb*0.0098] [Nb]O3 | [Li0.9748Nb*0.0252] [Nb0.9798]O3 | [Li0.9748Nb*0.0101] [Nb0.9950]O3 | [Li0.9748Nb*0.0050] [Nb]O3 | ||||
a (Å) | 5.1499 (1) | 5.14643 (3) | 5.14643 (1) | 5.14642 (8) | ||||
c (Å) | 13.8647 (4) | 13.84307 (4) | 13.84306 (6) | 13.84305 (8) | ||||
volume (Å3) | 318.45 | 317.52 (3) | 317.52 (3) | 317.52 (2) | ||||
UisoLi/Nb* | 0.0134 (3) | 0.0543 (2) | 0.0200 (3) | 0.0096 (2) | ||||
UisoNb | 0.0053 (7) | 0.0063 (9) | 0.0062 (1) | 0.0061 (5) | ||||
UisoO | 0.0069 (3) | 0.0012 (4) | −0.0007 (4) | −0.0013 (6) | ||||
χ2 | 1.924 | 1.075 | 1.021 | 1.009 | ||||
Rwp | 0.05 | 0.0686 | 0.0668 | 0.0664 | ||||
Rp | 0.0382 | 0.0464 | 0.0445 | 0.0440 | ||||
R(f2) | 0.0168 | 0.0400 | 0.0355 | 0.0342 | ||||
FLN-E-43 | Model by Equation (5) | Model by Equation (6) | Model by Equation (7) | Model by Equation (8) | Model by Equation (9) | |||
Formula | [Li0.9415Fe0.0333 Nb*0.0101][Nb0.9950]O3 | [Li0.9415Fe0.0333 Nb*0.0076][Nb0.9975]O3 | [Li0.9415Fe0.0333 Nb*0.0050][Nb]O3 | [Li0.9263Fe0.0330 ][Nb0.9950]O3 | [Li0.9415 Fe0.0333 Nb*0.0050][Nb]O3 | |||
a (Å) | 5.14605 (0) | 5.14604 (7) | 5.14604 (3) | 5.14603 (2) | 5.14604 (4) | |||
c (Å) | 13.84494 (0) | 13.84492 (5) | 13.84491 (1) | 13.84486 (4) | 13.84491 (5) | |||
volume (Å3) | 317.51 (9) | 317.51 (8) | 317.51 (7) | 317.51 (5) | 317.51 (8) | |||
UisoLi/Nb*/Fe | 0.0226 (5) | 0.0183 (0) | 0.0140 (3) | 0.0050 (7) | 0.0144 (1) | |||
UisoNb | 0.0071 (7) | 0.0071 (5) | 0.0071 (2) | 0.0070 (1) | 0.0071 (3) | |||
UisoO | 0.0010 (8) | 0.0007 (5) | 0.0004 (3) | 0.0011 (6) | 0.0004 (2) | |||
χ2 | 1.377 | 1.368 | 1.361 | 1.343 | 1.363 | |||
Rwp | 0.0788 | 0.0786 | 0.0784 | 0.0778 | 0.0784 | |||
Rp | 0.0562 | 0.0560 | 0.0558 | 0.0555 | 0.0558 | |||
R(f2) | 0.0331 | 0.0324 | 0.0316 | 0.0297 | 0.0318 |
Atom Type | Site | Model | x | y | z |
---|---|---|---|---|---|
Li/Nb*/Fe | 6a | Results of Iyi et al. [15] | 0 | 0 | 0.2809 (0) |
LN43 in Nb vacancy model | 0 | 0 | 0.2828 (9) | ||
LN43 in the mixed-vacancy model | 0 | 0 | 0.2809 (8) | ||
LN43 in Li vacancy model | 0 | 0 | 0.2803 (8) | ||
FLN-E-43 in Equation (5) | 0 | 0 | 0.2838 (8) | ||
FLN-E-43 in Equation (6) | 0 | 0 | 0.2836 (8) | ||
FLN-E-43 in Equation (7) | 0 | 0 | 0.2833 (8) | ||
FLN-E-43 in Equation (8) | 0 | 0 | 0.2828 (7) | ||
FLN-E-43 in Equation (9) | 0 | 0 | 0.2834 (8) | ||
Nb | 6a | Results of Iyi et al. [15] | 0 | 0 | 0 |
LN43 in Nb vacancy model | 0 | 0 | 0 | ||
LN43 in the mixed-vacancy model | 0 | 0 | 0 | ||
LN43 in Li vacancy model | 0 | 0 | 0 | ||
FLN-E-43 in Equation (5) | 0 | 0 | 0 | ||
FLN-E-43 in Equation (6) | 0 | 0 | 0 | ||
FLN-E-43 in Equation (7) | 0 | 0 | 0 | ||
FLN-E-43 in Equation (8) | 0 | 0 | 0 | ||
FLN-E-43 in Equation (9) | 0 | 0 | 0 | ||
O | 18b | Results of Iyi et al. [15] | 0.0481 (0) | 0.3433 (0) | 0.0638 (0) |
LN43 in Nb vacancy model | 0.0476 (7) | 0.3432 (11) | 0.06391 (25) | ||
LN43 in the mixed-vacancy model | 0.0467 (7) | 0.3429 (11) | 0.0639790 (0) | ||
LN43 in Li vacancy model | 0.0464 (7) | 0.3427 (11) | 0.06403 (24) | ||
FLN-E-43 in Equation (5) | 0.0475 (9) | 0.3427 (14) | 0.06462 (31) | ||
FLN-E-43 in Equation (6) | 0.0473 (9) | 0.3426 (14) | 0.06466 (31) | ||
FLN-E-43 in Equation (7) | 0.0471 (9) | 0.3426 (14) | 0.06468 (31) | ||
FLN-E-43 in Equation (8) | 0.0468 (9) | 0.3424 (14) | 0.06474 (31) | ||
FLN-E-43 in Equation (9) | 0.0472 (9) | 0.3426 (14) | 0.06467 (31) |
LN43 | Results of Iyi et al. [15] | Nb Vacancy Model | Mixed-vacancy Model | Li Vacancy Model |
---|---|---|---|---|
Bond length (Å)a | ||||
Nb-O1,2,3 | 1.879 (2) | 1.879 (5) | 1.879 (5) | 1.880 (5) |
Nb-O4,5,6 | 2.126 (3) | 2.123 (4) | 2.125 (4) | 2.125 (4) |
Li-O4,5,6 | 2.254 (5) | 2.236 (10) | 2.257 (9) | 2.264 (9) |
Li-O7,8,9 | 2.061 (3) | 2.066 (5) | 2.053 (4) | 2.049 (4) |
Li-Nb | 3.038 (6) | 3.007 (13) | 3.034 (11) | 3.042 (11) |
3.0609 (14) | 3.0527 (29) | 3.0588 (26) | 3.0607 (26) | |
3.369 (3) | 3.378 (6) | 3.366 (5) | 3.362 (5) | |
Distance of Li-vacancy-Nb | 3.895 (6) | 3.91600 (7) | 3.88962 (6) | 3.88131 (7) |
Bond Angle (˚) | ||||
O1-Nb-O2 | 99.65 (11) | 99.64 (14) | 99.60 (13) | 99.58 (13) |
O4-Nb-O5 | 79.91 (9) | 80.03 (16) | 80.14 (15) | 80.19 (15) |
O2-Nb-O5 | 165.91 (12) | 166.00 (21) | 166.10 (21) | 166.15 (21) |
O1-Nb-O5 | 90.06 (12) | 90.01 (9) | 89.96 (9) | 89.95 (9) |
O3-Nb-O5 | 88.65 (10) | 88.61 (8) | 88.61 (8) | 88.61 (8) |
O4-Li-O5 | 74.54 (17) | 75.3 (4) | 74.62 (35) | 74.41 (34) |
O7-Li-O8 | 109.11 (17) | 108.5 (4) | 109.15 (31) | 109.37 (30) |
O5-Li-O8 | 153.5 (3) | 154.6 (6) | 153.5 (5) | 153.2 (5) |
O5-Li-O7 | 80.91 (12) | 81.16 (13) | 80.97 (13) | 80.90 (12) |
O5-Li-O9 | 89.48 (11) | 89.67 (16) | 89.28 (16) | 89.15 (15) |
FLN-E-43 | Model by Equation (5) | Model by Equation (6) | Model by Equation (7) | Model by Equation (8) | Model by Equation (9) |
---|---|---|---|---|---|
Bond length (Å)a | |||||
Nb-O1,2,3 | 1.881 (6) | 1.882 (6) | 1.882 (6) | 1.882 (6) | 1.882 (6) |
Nb-O4,5,6 | 2.118 (5) | 2.118 (5) | 2.119 (5) | 2.119 (5) | 2.118 (5) |
Li/Fe-O4,5,6 | 2.233 (9) | 2.237 (9) | 2.239 (9) | 2.246 (9) | 2.239 (9) |
Li/Fe-O7,8,9 | 2.068 (5) | 2.066 (5) | 2.064 (5) | 2.060 (5) | 2.065 (5) |
Li/Fe-Nb | 2.993 (11) | 2.997 (11) | 3.000 (10) | 3.007 (10) | 2.999 (11) |
3.0491 (24) | 3.0499 (24) | 3.0506 (24) | 3.0523 (23) | 3.0504 (24) | |
3.385 (5) | 3.383 (5) | 3.382 (5) | 3.378 (5) | 3.382 (5) | |
Distance of Li/Fe-vacancy-Nb | 3.93030 (1) | 3.92752 (7) | 3.92337 (0) | 3.91629 (7) | 3.92198 (4) |
Bond Angle (˚) | |||||
O1-Nb-O2 | 99.25 (17) | 99.24 (17) | 99.22 (17) | 99.19 (17) | 99.23 (17) |
O4-Nb-O5 | 80.37 (20) | 80.40 (20) | 80.43 (20) | 80.48 (20) | 80.42 (20) |
O2-Nb-O5 | 166.53 (27) | 166.56 (27) | 166.59 (27) | 166.65 (27) | 166.58 (27) |
O1-Nb-O5 | 90.06 (11) | 90.06 (11) | 90.05 (11) | 90.03 (11) | 90.05 (11) |
O3-Nb-O5 | 88.74 (10) | 88.74 (10) | 88.74 (10) | 88.74 (10) | 88.74 (10) |
O4-Li/Fe-O5 | 75.5 (4) | 75.4 (4) | 75.3 (4) | 75.1 (4) | 75.3 (4) |
O7-Li/Fe-O8 | 108.33 (30) | 108.43 (31) | 108.52 (30) | 108.73 (30) | 108.49 (30) |
O5-Li/Fe-O8 | 154.8 (5) | 154.6 (5) | 154.5 (5) | 154.2 (5) | 154.6 (5) |
O5-Li/Fe-O7 | 81.20 (12) | 81.17 (12) | 81.15 (12) | 81.10 (12) | 81.15 (12) |
O5-Li/Fe-O9 | 89.70 (16) | 89.64 (16) | 89.59 (16) | 89.46 (16) | 89.60 (16) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-Y.; Chen, H.-L.; Chen, G.-J.; Kuo, C.-L.; Hsieh, P.-H.; Hwang, W.-S. Investigation of the Defect Structure of Congruent and Fe-Doped LiNbO3 Powders Synthesized by the Combustion Method. Materials 2017, 10, 380. https://doi.org/10.3390/ma10040380
Li Y-Y, Chen H-L, Chen G-J, Kuo C-L, Hsieh P-H, Hwang W-S. Investigation of the Defect Structure of Congruent and Fe-Doped LiNbO3 Powders Synthesized by the Combustion Method. Materials. 2017; 10(4):380. https://doi.org/10.3390/ma10040380
Chicago/Turabian StyleLi, You-Yun, Hao-Long Chen, Guo-Ju Chen, Chia-Liang Kuo, Ping-Hung Hsieh, and Weng-Sing Hwang. 2017. "Investigation of the Defect Structure of Congruent and Fe-Doped LiNbO3 Powders Synthesized by the Combustion Method" Materials 10, no. 4: 380. https://doi.org/10.3390/ma10040380
APA StyleLi, Y. -Y., Chen, H. -L., Chen, G. -J., Kuo, C. -L., Hsieh, P. -H., & Hwang, W. -S. (2017). Investigation of the Defect Structure of Congruent and Fe-Doped LiNbO3 Powders Synthesized by the Combustion Method. Materials, 10(4), 380. https://doi.org/10.3390/ma10040380