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Abstract: Sand improvements using organic agents have shown promising results. Polyacrylamide
is one possible organic agent, which has been shown to influence the shear strength, stiffness, soil
remediation, and erosion resistance of geomaterials. In this study, we explored the shear wave velocity
(S-wave) and water retention curves of unsaturated sands containing polyacrylamide solutions.
The shear wave velocity was measured during the water retention curve measurement tests according
to the variation of the degree of saturation. The experimental setup was verified through comparison
of the measured water retention curves with the published data. The results show that (1) the S-wave
velocity of saturated sands increases with polyacrylamide concentration; (2) as the degree of saturation
decreases, the S-wave velocity increases; (3) near the residual water (or polyacrylamide solution)
saturation, the S-wave velocity increases dramatically; (4) as the degree of saturation decreases,
the S-wave velocity at unsaturated conditions increases with any given water (or polyacrylamide
solution) saturation, like the water retention curves; (5) the S-wave velocity increases with the increase
in capillary pressure; and (6) the predicted S-wave velocity at a given degree of saturation is slightly
overestimated, and the modification of the equation is required.
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1. Introduction

Soil improvements using organic agents such as polyacrylamide, xanthan gum, and surfactants
have been developed which have shown promising results at improving the shear strength, stiffness,
soil remediation, and erosion resistance of geomaterials [1–9]. Amongst them, polyacrylamide (PAM)
influences irrigation through increased water infiltration and decreased erosion by its capacity to
absorb and store water [10–13]. Additionally, polyacrylamide (PAM) has been shown to increase
structural stability [14].

Most soils are under unsaturated conditions in nature. In unsaturated soils, the capillary pressure
(Pc) is determined by the difference between the air- and water-pressures, which is affected by water
saturation (Sw) in soils. Equation (1) shows the most popular theoretical equation [15] to represent the
relation between water saturation (Sw) and capillary pressure (Pc) in unsaturated soils.

Pc = Po

[(
Sw − Sr

1− Sr

)− 1
m
− 1

]1−m

(1)
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where Pc is the capillary pressure, Po is the capillary air entry pressure, Sw is the water saturation, Sr is
the residual water saturation, and m is the fitting parameter.

The relation between water saturation (Sw) and capillary pressure (Pc) in unsatureated soils
influences the relative permeability of fluids [16–22], water storage capacity of the soils [23], shear
strength [24–26], as well as the stiffness and volume change [27–31].

However, the stiffness changes of unsaturated sands containing polyacrylamide (PAM) solution
have not yet been understood. Thus, in this study we investigate the water (or polyacrylamide solution)
saturation (Sw) and capillary pressure (Pc) relations as well as explore the stiffness of unsaturated
sands through shear wave velocity measurements.

2. Experimental Study

2.1. Materials

Commercial polyacrylamide (Acros Organics) was used in this study. The polyacrylamide
is a linear polymer produced by acrylamide, whose chemical structure is (C3H5NO)n (Figure 1).
Ottawa sand F-75 mixed with a variety of polyacrylamide concentrations (i.e., 0, 2, 5, and 7.5 g/L)
were prepared. More than 95% of the sands were within the range of 0.2 mm–0.5 mm (particle size).
The effective size of the sand, D10, was 0.14 mm, and its coefficients of uniformity (Cu) and curvature
(Cc) were 1.46 and 1.01, respectively.
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Figure 2 shows the experimental setup for the water retention curve (or soil-water characteristic 
curve) tests including the bender elements to measure the shear wave velocity. One stainless steel 
plate with 50 kPa air-entry pressure (diameter = 8.03 cm and thickness = 2.0 cm) was placed on the 
bottom of the chamber (inner diameter, ID = 7.62 cm and height = 8.92 cm). The polyacrylamide 
saturated sands were packed in the chamber (volume of sand = 251.7 cm3, dry bulk density = 1.64 g/cm3) 
with constant porosity n = 0.381 kept for all tests. For the perfect saturation, the wetting method was 
used. One fifth of the chamber was filled with the polyacrylamide solution first and soils were then 
placed into the polyacrylamide solution, which was repeated until the chamber was filled with sand. 
Another stainless steel plate was placed on the top of the sand. Two bender elements were attached 
to stainless steel plates that were located on the top and bottom of the sands, which acted as a source 
and a receiver, respectively. The shear wave generated by the source bender element connected to a 
function generator (33210A, Agilient, Santa Clara, CA, USA) (square wave of frequency = 20 Hz and 
amplitude = 10 V) traveled through the soils, and arrived at the other bender element that acted as 
the signal receiver. The receiver bender element was connected to the filter amplifier (3364, Krohn-Hite, 
Brockton, MA, USA), which in turn was connected to the digital oscilloscope (DSO6014A, Agilent, 
Santa Clara, CA, USA). A total of 2048 signals were stacked to reduce the influence of uncorrelated 
noise. The travel time of the shear wave was determined using the digitized signal as recorded by 
the oscilloscope, while the tip-to-tip distance (the distance from the tip of the source bender element 
to the tip of the receiver bender element) was used as the travel distance [32].  
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Figure 1. Chemical structure of polyacrylamide.

2.2. Experimental Procedure

Figure 2 shows the experimental setup for the water retention curve (or soil-water characteristic
curve) tests including the bender elements to measure the shear wave velocity. One stainless steel plate
with 50 kPa air-entry pressure (diameter = 8.03 cm and thickness = 2.0 cm) was placed on the bottom
of the chamber (inner diameter, ID = 7.62 cm and height = 8.92 cm). The polyacrylamide saturated
sands were packed in the chamber (volume of sand = 251.7 cm3, dry bulk density = 1.64 g/cm3) with
constant porosity n = 0.381 kept for all tests. For the perfect saturation, the wetting method was
used. One fifth of the chamber was filled with the polyacrylamide solution first and soils were then
placed into the polyacrylamide solution, which was repeated until the chamber was filled with sand.
Another stainless steel plate was placed on the top of the sand. Two bender elements were attached to
stainless steel plates that were located on the top and bottom of the sands, which acted as a source
and a receiver, respectively. The shear wave generated by the source bender element connected to a
function generator (33210A, Agilient, Santa Clara, CA, USA) (square wave of frequency = 20 Hz and
amplitude = 10 V) traveled through the soils, and arrived at the other bender element that acted as the
signal receiver. The receiver bender element was connected to the filter amplifier (3364, Krohn-Hite,
Brockton, MA, USA), which in turn was connected to the digital oscilloscope (DSO6014A, Agilent,
Santa Clara, CA, USA). A total of 2048 signals were stacked to reduce the influence of uncorrelated
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noise. The travel time of the shear wave was determined using the digitized signal as recorded by the
oscilloscope, while the tip-to-tip distance (the distance from the tip of the source bender element to the
tip of the receiver bender element) was used as the travel distance [32].Materials 2017, 10, 401  3 of 8 
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Figure 2. Experimental setup for water retention curve and S-wave velocity measurement tests.

The hanging water column method [33–35] was used to simulate the capillary pressure (Pc)-water
saturation (Sw) relation. The bottom portion of the sand chamber was connected to a vertical PVC
tube (ID = 8.0 mm). The capillary pressure (Pc) was controlled by the elevation change of the air-water
interface in the PVC tube. For each capillary pressure, the shear wave velocity was measured.
During the shear wave velocity measurements, the valve located between the sand chamber and
the vertical PVC tube was closed to avoid vibration effects by the bender element on the capillary
pressure (Pc)-water saturation (Sw) relation. The top portion of the PVC tube and the soil chamber
were simply vented to the room air to maintain the atmospheric pressure condition [34].

3. Results and Discussion

Figure 3 shows the water retention curves (or soil-water characteristic curve) and shear wave
(S-wave) velocity at different polyacrylamide concentrations.
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Figure 3. Cont.
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Figure 3. Water retention curve and S-wave velocity results. The black points represent the capillary
pressure-degree of saturation in this study. The blue points present S-wave velocity changes according
to the variation of the degree of saturation. The continuous line represents the results from the
van-Genuchten model. (a) De-ionized water; (b) 2.5 g/L polyacrylamide solution; (c) 5.0 g/L
polyacrylamide solution and (d) 7.5 g/L polyacrylamide solution.

3.1. Water Retention Curves

The four water retention curves show a good consistency with the van Genuchten models
(Equation (1)). The m-values for the van Genuchten models have a range of 0.93–0.94, which are
obtained from a previous study [36]. The values measured in this study are shown as data points,
and then the continuous curves are fitted using the van Genuchten models (Equation (1)) in Figure 3.
The results show three clear zones; the capillary saturation, desaturation, and residual saturation zones,
similar to previous studies [37–39]. As the polyacrylamide concentration increases, (1) the capillary
air-entry pressure increases; (2) the residual water saturation values in the air-water system are about
0.05, which is consistent with the previous studies [40,41]; (3) the residual water (or polyacrylamide
solution) saturation increases due to the higher bonding strength between the polyacrylamide solution
and the silica sand surface [7,9] that also causes the strength of the sand containing the polyacrylamide
solution to increase [6,8]; and (4) the water retention curves shift to higher capillary pressure with any
given water saturation.

3.2. Shear Wave Velocity

The measured shear wave (S-wave) velocities are plotted with the water retention curves in
Figure 3, which shows that the general trends of the S-wave velocity are quite similar to the water
rentention curves. The S-wave velocity increases with the decrease in the degree of saturation, which
is consistent with the previous studies [42,43]. Additionally, the results present no change of the
S-wave velocity in the capillary saturation zone, a small increase in the S-wave velocity in desaturation
zone, and a dramatic increase in the S-wave velocity in the residual saturation zone with increased
capillary pressure. Figure 4a compares the S-wave velocity change according to the variation of
the degree of saturation at different polyacrylamide concentrations. The results show that (1) the
S-wave velocity of the water-saturated soils is 110 m/s, which is consistent with a previous study [42];
(2) the S-wave velocity of saturated soils increases with increasing polyacrylamide concentration;
(3) as the degree of saturation decreases, the S-wave velocity increases; (4) near the residual water
(or polyacrylamide solution) saturation, the S-wave velocity increases dramatically; and (5) as the
degree of saturation decreases, the S-wave velocity at unsaturated conditions increases with any given
water (or polyacrylamide solution) saturation, like the water retention curves.
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Figure 4. Degree of saturation and capillary pressure effects on the S-wave velocity. (a) S-wave velocity
variation of unsaturated soils at different polyacrylamide concentrations; (b) S-wave velocity changes
according to the variation of capillary pressure.

3.3. Capillary Pressure Effects

Figure 4b shows the S-wave velocity variation according to capillary pressure changes. The results
show that the S-wave velocity increases with increased capillary pressure. The S-wave velocity is
determined by the mass density of the soil mass and the stiffness of the granular skeleton [44,45],
which is affected by the degree of saturation. The capillary pressure increases with decreased water
saturation, which causes the increase of the stiffness of the granular skeleton [42]. Thus, the S-wave
velocity increases in line with increases in capillary pressure, as shown in Figure 4b. The S-wave
velocity at a given degree of saturation can be predicted by the S-wave velocity at the saturated
condition (S = 1) considering the change in mass density of the soils using Equation (2) [42].

[Vs]s = [Vs]s=1

[
1 +

2σ′eq

(1 + Ko)σ′v

]β√
e + Gs

eS + Gs
(2)

where, σ′eq is the equivalent stress due to the capillary pressure at a given degree of saturation, σ′v is
the effective vertical stress, e is the void ratio, Gs is the specific gravity, Ko is the coefficient of lateral
earth pressure at rest, S is the degree of saturation, [Vs]s is the S-wave velocity at a given degree
of saturation, [Vs]s=1 is the S-wave velocity at the saturated condition, and β is an experimentally
determined parameter. β is 1/6 for the glass beads and 0.22 for the sandboil sand that is a natural soil
from a paleoliquefaction site in mid-America [42]. The predicted S-wave velocity at a given degree of
water saturation is estimated using Equation (2) within the range of β = 0.10–0.22, and is compared
with the measured S-wave velocity in this study (Figure 5a). The results show that the predicted
S-wave velocity is mostly similar to the measured S-wave velocity when the β-value is 0.167 (Figure 5a),
which is reasonable considering the β-value for the glass beads in a previous study (β = 1/6) [42].

Figure 5b presents the comparison of the predicted S-wave velocity in all polyacrylamide
concentrations with the measured S-wave velocity when the β-value is 0.167. The results show
that the predicted S-wave velocity values of sands containing polyacrylamide solutions are slightly
higher than the measured values (Figure 5b). It implies that the maximum shear modulus (Gmax) of
sands containing polyacrylamide solutions using the predicted S-wave velocity can be overestimated.
Higher polyacrylamide concentrations cause the water (or polyacrylamide solution) retention curves
to shift to higher capillary pressure at a given degree of saturation due to the bonding strength
between the polyacrylamide solutions and the silica soil surfaces, and the higher viscosity of the
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polyacrylamide solutions [4,7,9]. However, the bonding strength by polyacrylamide solutions can
have a slight influence on the increase in the S-wave velocity due to the lower shear stiffness of the
polyacrylamide solutions as fluids. Thus, Equation (2) should be valid for calculating the S-wave
velocity when the fluid in unsaturated soils is only water. The modified equation should be required
for other fluids such as polyacrylamide solutions.
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Figure 5. Comparison of the predicted S-wave velocity with the measured S-wave velocity. (a) β-value
effects on the predicted S-wave velocity; (b) Comparison of the predicted S-wave velocity with the
measured S-wave velocity in all polyacrylamide concentrations.

4. Conclusions

The water retention curves and S-wave velocity were measured in a homogeneous silica sand pack
using an air-water (or polyacrylamide solutions) system with different polyacrylamide concentrations.
Generally, the water retention curves showed that (1) the capillary air entry values increase with
polyacrylamide concentration; (2) the water retention curves shifts to higher capillary pressure at
a given water saturation; and (3) the residual saturation increases with polyacrylamide concentration.
The water retention curves in this study were compared with the theoretical van Genuchten model
using fitting parameters (i.e., m-values) obtained from a previous study, which showed a good
consistency with each other. It implies that the experimental setup in this study is valid for simulating
the water saturation-capillary relation, and for measuring the S-wave velocity.

Additionally, the S-wave velocity was measured according to the variation of the degree of
saturation during the water retention curve measurement tests. The results showed that (1) the
S-wave velocity of saturated sands increases with polyacrylamide concentration; (2) as the degree of
saturation decreases, the S-wave velocity increases; (3) near the residual water (or polyacrylamide
solution) saturation, the S-wave velocity increases dramatically; (4) the S-wave velocity at unsaturated
conditions increases with any given water (or polyacrylamide solution) saturation like the water
retention curves; (5) the S-wave velocity increases with the increase in capillary pressure; and (6) the
predicted S-wave velocity at a given degree of saturation is slightly overestimated, and a new modified
equation needs to be proposed in future studies.
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