Ageing, Shocks and Wear Mechanisms in ZTA and the Long-Term Performance of Hip Joint Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization Methods
3. Results
3.1. Surface and Subsurface Damage
3.2. Mechanical Properties
4. Discussion
4.1. Ageing, Shocks and Wear Mechanisms of ZTA Hip Joints
4.2. Long-Term Performance of ZTA Hip Joints
5. Conclusions
- The material exhibits an excellent resistance to hydrothermal ageing that does not affect its wear or mechanical performances on the surface.
- Friction effects applied during hip-walking simulator test create non-homogenous wear features on the femoral head surface; the degree of wear degradation is low compared with that induced by shocks and raises the question of the relevance of the ISO 14242-1 standard wear test for ceramic hip implants.
- Shocks under micro-separation release wear debris of various shapes and sizes through inter and intra-granular cracks and affect the implant hardness in the first μm in depth; we might see a threshold in the intensity of shocks between 6 and 9 kN, above which the Young’s modulus is affected.
- The occurrence of the phase transformation is not detrimental when it is mechanically induced as a response of cracks formation; on the contrary, it toughens the material.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dumbleton, J.H.; Manley, M.T.; Edidin, A.A. A literature review of the association between wear rate and osteolysis in total hip arthroplasty. J. Arthroplast. 2002, 17, 649–661. [Google Scholar] [CrossRef]
- Essner, A.; Sutton, K.; Wang, A. Hip simulator wear comparison of metal-on-metal, ceramic-on-ceramic and crosslinked UHMWPE bearings. Wear 2005, 259, 992–995. [Google Scholar] [CrossRef]
- Fisher, J.; Jin, Z.; Tipper, J.; Stone, M.; Ingham, E. Presidential guest lecture: Tribology of Alternative Bearings. Clin. Orthop. 2006, 453, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Piconi, C.; Streicher, R.M. 40 Years of Ceramic-on-Ceramic THR Bearings. Semin. Arthroplast. 2013, 24, 188–192. [Google Scholar] [CrossRef]
- Boutin, P. Total arthroplasty of the hip by fritted aluminum prosthesis. Experimental study and 1st clinical applications. Rev. Chir.Orthop.Reparatrice Appar. Mot. 1971, 58, 229–246. [Google Scholar]
- Willmann, G. Ceramic femoral head retrieval data. Clin. Orthop. 2000, 379, 22–28. [Google Scholar] [CrossRef]
- Piconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Biomaterials 1999, 20, 1–25. [Google Scholar] [CrossRef]
- Chevalier, J. What future for zirconia as a biomaterial? Biomaterials 2006, 27, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Deville, S.; Chevaliera, J.; Fantozzia, G.; Bartoloméb, J.F.; Requenab, J.; Moyab, J.S.; Torrecillasc, R.; Díazc, L.A. Low-temperature ageing of zirconia-toughened alumina ceramics and its implication in biomedical implants. J. Eur. Ceram.Soc. 2003, 23, 2975–2982. [Google Scholar] [CrossRef]
- Haraguchi, K.; Sugano, N.; Nishii, T.; Miki, H.; Oka, K.; Yoshikawa, H. Phase transformation of a zirconia ceramic head after total hip arthroplasty. J. Bone Joint Surg. Br. 2001, 83, 996–1000. [Google Scholar] [CrossRef] [PubMed]
- Deville, S.; Chevalier, J.; el Attaoui, H. Atomic Force Microscopy Study and Qualitative Analysis of Martensite Relief in Zirconia. J. Am. Ceram. Soc. 2005, 88, 1261–1267. [Google Scholar] [CrossRef]
- Chevalier, J.; Cales, B.; Drouin, J.M. Low-temperature aging of Y-TZP ceramics. J. Am. Ceram. Soc. 1999, 82, 2150–2154. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Kocagöz, S.; Arnholt, C.; Huet, R.; Ueno, M.; Walter, W.L. Advances in zirconia toughened alumina biomaterials for total joint replacement. J. Mech. Behav. Biomed. Mater. 2014, 31, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Perrichon, A.; Reynard, B.; Gremillard, L.; Chevalier, J.; Farizon, F.; Geringer, J. Effects of in vitro shocks and hydrothermal degradation on wear of ceramic hip joints: Towards better experimental simulation of in vivo ageing. Tribol. Int. 2016, 100, 410–419. [Google Scholar] [CrossRef]
- Perrichon, A.; Reynard, B.; Gremillard, L.; Chevalier, J.; Farizon, F.; Geringer, J. A testing protocol combining shocks, hydrothermal ageing and friction, applied to Zirconia Toughened Alumina (ZTA) hip implants. J. Mech. Behav. Biomed. Mater. 2017, 65, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Dennis, D.A.; Komistek, R.D.; Northcut, E.J.; Ochoa, J.A.; Ritchie, A. ‘In vivo’ determination of hip joint separation and the forces generated due to impact loading conditions. J. Biomech. 2001, 34, 623–629. [Google Scholar] [CrossRef]
- Lombardi, A.V.; Mallory, T.H.; Dennis, D.A.; Komistek, R.D.; Fada, R.A.; Northcut, E.J. An in vivo determination of total hip arthroplasty pistoning during activity. J. Arthroplast. 2000, 15, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Uribe, J.; Geringer, J.; Forest, B. Shock machine for the mechanical behaviour of hip prostheses: A description of performance capabilities. Lubr. Sci. 2012, 24, 45–60. [Google Scholar] [CrossRef]
- ISO Standard 14242-1. Implants for Surgery—Wear of Total Hip-Joint Prostheses. Part 1: Loading and Displacement Parameters for Wear-Testing Machines and Corresponding Environmental Conditions for Test, International Organization for Standardization: Geneva, Switzerland, 2012.
- Chevalier, J.; Grandjean, S.; Kuntz, M.; Pezzotti, G. On the kinetics and impact of tetragonal to monoclinic transformation in an alumina/zirconia composite for arthroplasty applications. Biomaterials 2009, 30, 5279–5282. [Google Scholar] [CrossRef] [PubMed]
- ISO Standard 13356-2008. Implants for Surgery—Ceramic Materials Based on Yttria-Stabilitzed Tetragonal Zirconia (Y-TZP), International Organization for Standardization: Geneva, Switzerland, 2008.
- Clarke, D.R.; Adar, F. Measurement of the Crystallographically Transformed Zone Produced by Fracture in Ceramics Containing Tetragonal Zirconia. J. Am. Ceram. Soc. 1982, 65, 284–288. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef]
- Gaillard, Y.; Jiménez-Piqué, E.; Soldera, F.; Mücklich, F.; Anglada, M. Quantification of hydrothermal degradation in zirconia by nanoindentation. Acta Mater. 2008, 56, 4206–4216. [Google Scholar] [CrossRef]
- Jang, B.-K. Influence of low indentation load on Young’s modulus and hardness of 4 mol% Y2O3–ZrO2 by nanoindentation. J. Alloy. Compd. 2006, 426, 312–315. [Google Scholar] [CrossRef]
- Guicciardi, S.; Shimozono, T.; Pezzotti, G. Ageing effects on the nanoindentation response of sub-micrometric 3Y-TZP ceramics. J. Mater. Sci. 2007, 42, 718–722. [Google Scholar] [CrossRef]
- Cattani-Lorente, M.; Scherrer, S.S.; Ammann, P.; Jobin, M.; Wiskott, H.W.A. Low temperature degradation of a Y-TZP dental ceramic. Acta Biomater. 2011, 7, 858–865. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Tabares, J.A.; Jiménez-Piqué, E.; Anglada, M. Subsurface evaluation of hydrothermal degradation of zirconia. Acta Mater. 2011, 59, 473–484. [Google Scholar] [CrossRef]
- Chowdhury, S.; Vohra, Y.K.; Lemons, J.E.; Ueno, M.; Ikeda, J. Accelerating aging of zirconia femoral head implants: Change of surface structure and mechanical properties. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 81B, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Catledge, S.A.; Cook, M.; Vohra, Y.K.; Santos, E.M.; McClenny, M.D.; Moore, K.D. Surface crystalline phases and nanoindentation hardness of explanted zirconia femoral heads. J. Mater. Sci. Mater. Med. 2003, 14, 863–867. [Google Scholar] [CrossRef] [PubMed]
- Walter, W.L.; Insley, G.M.; Walter, W.K.; Tuke, M.A. Edge loading in third generation alumina ceramic-on-ceramic bearings: Stripe wear. J. Arthroplast. 2004, 19, 402–413. [Google Scholar] [CrossRef]
- Bergmann, G.; Deuretzbacher, G.; Heller, M.; Graichen, F.; Rohlmann, A.; Strauss, J.; Duda, G.N. Hip contact forces and gait patterns from routine activities. J. Biomech. 2001, 34, 859–871. [Google Scholar] [CrossRef]
- Zeng, P.; Rainforth, W.M.; Inkson, B.J.; Stewart, T.D. Characterization of worn alumina hip replacement prostheses. J. Biomed.Mater. Res. B Appl. Biomater. 2012, 100B, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Clarkea, I.C.; Greenb, D.D.; Williamsa, P.A.; Kuboc, K.; Pezzottid, G.; Lombardie, A.; Turnbullf, A.; Donaldsong, T.K. Hip-simulator wear studies of an alumina-matrix composite (AMC) ceramic compared to retrieval studies of AMC balls with 1–7 years follow-up. Wear 2009, 267, 702–709. [Google Scholar] [CrossRef]
- Tipper, J.L.; Hatton, A.; Nevelos, J.E.; Ingham, E.; Doyle, C.; Streicher, R.; Nevelose, A.B.; Fisherb, J. Alumina–Alumina artificial hip joints Part II: Characterisation of the wear debris from in vitro hip joint simulations. Biomaterials 2002, 23, 3441–3448. [Google Scholar] [CrossRef]
- Affatato, S.; Modena, E.; Toni, A.; Taddei, P. Retrieval analysis of three generations of Biolox® femoral heads: Spectroscopic and SEM characterization. J. Mech. Behav. Biomed. Mater. 2012, 13, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Roualdes, O.; Duclos, M.-E.; Gutknecht, D.; Frappart, L.; Chevalier, J.; Hartmann, D.J. In vitro and in vivo evaluation of an alumina–zirconia composite for arthroplasty applications. Biomaterials 2010, 31, 2043–2054. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Rainforth, W.M.; Sun, D.; Wharton, J.A.; Wood, R.J.K. A ‘3-body’ abrasion wear study of bioceramics for total hip joint replacements. Wear 2009, 267, 2122–2131. [Google Scholar] [CrossRef]
- Jiménez-Piqué, E.; Ramos, A.; Muñoz-Tabares, J.A.; Hatton, A.; Soldera, F.; Mücklich, F.; Anglada, M. Focused ion beam tomography of zirconia degraded under hydrothermal conditions. J. Eur. Ceram. Soc. 2012, 32, 2129–2136. [Google Scholar] [CrossRef]
- Uribe, J.; Geringer, J.; Gremillard, L.; Reynard, B. Degradation of alumina and zirconia toughened alumina (ZTA) hip prostheses tested under microseparation conditions in a shock device. Tribol. Int. 2013, 63, 151–157. [Google Scholar] [CrossRef]
Head Name | In Vitro Test | Vm (%) Raman Spectroscopy | Sa (nm) 3D Profilometry |
---|---|---|---|
#PRIST | None | 10 ± 1 | <15 |
#AUT | 360 h in autoclave | 25 ± 3 | <15 |
#SIM | 6 M cycles hip-walking simulator | 15 ± 4 | <15 |
#SH6 | 1.5 M shocks at 6 kN | 35 ± 3 | >30 |
#SH9 | 1.5 M shocks at 9 kN | 40 ± 2 | >30 |
Sample | 300 nm | 600 nm | 900 nm | 1200 nm |
---|---|---|---|---|
#AUT | 2%–0% | 1%–0% | 1%–0% | 1%–0% |
#SIM | 1%–0% | 2%–1% | 2%–0% | 1%–0% |
#SH6 | 15%–2% | 9%–1% | 6%–0% | 4%–0% |
#SH9 | 16%–4% | 10%–4% | 8%–2% | 7%–1% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perrichon, A.; Liu, B.H.; Chevalier, J.; Gremillard, L.; Reynard, B.; Farizon, F.; Liao, J.-D.; Geringer, J. Ageing, Shocks and Wear Mechanisms in ZTA and the Long-Term Performance of Hip Joint Materials. Materials 2017, 10, 569. https://doi.org/10.3390/ma10060569
Perrichon A, Liu BH, Chevalier J, Gremillard L, Reynard B, Farizon F, Liao J-D, Geringer J. Ageing, Shocks and Wear Mechanisms in ZTA and the Long-Term Performance of Hip Joint Materials. Materials. 2017; 10(6):569. https://doi.org/10.3390/ma10060569
Chicago/Turabian StylePerrichon, Armelle, Bernard Haochih Liu, Jérôme Chevalier, Laurent Gremillard, Bruno Reynard, Frédéric Farizon, Jiunn-Der Liao, and Jean Geringer. 2017. "Ageing, Shocks and Wear Mechanisms in ZTA and the Long-Term Performance of Hip Joint Materials" Materials 10, no. 6: 569. https://doi.org/10.3390/ma10060569
APA StylePerrichon, A., Liu, B. H., Chevalier, J., Gremillard, L., Reynard, B., Farizon, F., Liao, J. -D., & Geringer, J. (2017). Ageing, Shocks and Wear Mechanisms in ZTA and the Long-Term Performance of Hip Joint Materials. Materials, 10(6), 569. https://doi.org/10.3390/ma10060569