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Abstract:



Carbon fiber reinforced polymer laminates are increasingly used in the aerospace and civil engineering fields. Identifying cracks in carbon fiber reinforced polymer laminated beam components is of considerable significance for ensuring the integrity and safety of the whole structures. With the development of high-resolution measurement technologies, mode-shape-based crack identification in such laminated beam components has become an active research focus. Despite its sensitivity to cracks, however, this method is susceptible to noise. To address this deficiency, this study proposes a new concept of multi-resolution modal Teager–Kaiser energy, which is the Teager–Kaiser energy of a mode shape represented in multi-resolution, for identifying cracks in carbon fiber reinforced polymer laminated beams. The efficacy of this concept is analytically demonstrated by identifying cracks in Timoshenko beams with general boundary conditions; and its applicability is validated by diagnosing cracks in a carbon fiber reinforced polymer laminated beam, whose mode shapes are precisely acquired via non-contact measurement using a scanning laser vibrometer. The analytical and experimental results show that multi-resolution modal Teager–Kaiser energy is capable of designating the presence and location of cracks in these beams under noisy environments. This proposed method holds promise for developing crack identification systems for carbon fiber reinforced polymer laminates.
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1. Introduction


Carbon fiber reinforced polymer (CFRP) laminates are increasingly utilized in the aerospace and civil engineering fields for their low weight, high strength, and high stiffness [1,2,3]. During the long-term operation of CFRP laminated beam components, such as aircraft wings and wind turbine blades, cracks can occur on their surfaces, jeopardizing the integrity and safety of the whole structures [4,5,6]. Thus, identifying cracks in CFRP laminated beam is of great significance [7,8,9,10,11,12].



Commonly, physical properties such as strain [13,14], electrical resistance [15,16], and eddy current [17,18], can be utilized to identify cracks in CFRP laminates; changes in those physical properties can designate the presence and location of cracks. In contrast, dynamic characters, such as mode shapes, have lower capability to identify cracks in CFRP laminated beams because they are less sensitive to cracks than the aforementioned physical properties [19,20]. To tackle this deficiency, dynamic quantities such as modal curvature and modal strain energy were developed from the mode shape. Pandey et al. [21] proposed the modal curvature, which is the second-order derivative of a mode shape, to represent the crack-caused loss in bending stiffness, whereby cracks in beams can be identified by the change in the modal curvature. The modal curvature method has been further developed by many researchers in the last two decades [22,23,24,25,26,27,28,29,30,31,32,33,34]. The modal strain energy method is another method developed from mode shapes. Cracks can cause changes in modal strain energy, and in turn they can be identified by such changes [32,35,36,37,38,39]; recently, modern signal processing methods such as wavelet transform (WT) [40,41,42,43,44,45,46,47,48,49] and fractal dimension (FD) [50,51,52,53,54] have been applied to mode shapes for crack identification by characterizing the crack-caused singularities therein. Recent attention to crack identification methods relying on mode shape has focused on the robustness of the methods to environmental noise interference [30,33]. To precisely localize cracks, very small spatial sampling intervals matching the width of a crack are required, whereby noise components inevitably involved in densely-sampled mode shapes can cause intense noise interference, masking actual crack-caused changes [55,56]. Hence, developing noise-robust methods relying on mode shapes with the aim of precisely identifying cracks in CFRP laminated beams is the current research interest.



With this concern, this study proposes a physical concept modal Teager–Kaiser energy (M-TKE) derived from the mode shape. The M-TKE is the point-wise energy of a mode shape calculated by the Teager–Kaiser energy (TKE) operator, which features high sensitivity to structural damage. To enhance the noise robustness of the M-TKE, it is transformed to multi-resolution modal Teager–Kaiser energy (MRM-TKE) by the WT-based multi-resolution analysis (MRA) [57,58].



The rest of this paper is organized as follows. Section 2 introduces the fundamental theories of the MRA and the TKE operator. Section 3 proposes the M-TKE based on the TKE operator, and further develops it to the MRM-TKE by the MRA. Section 4 numerically proves the concept of the MRM-TKE to identify cracks in beams. Section 5 experimentally validates the applicability of the MRM-TKE to identification of cracks in CFRP laminated beams, whose modes shapes are precisely acquired via non-contact measurement using a scanning laser vibrometer (SLV). Section 6 presents the conclusions of this study.




2. Fundamental Theories


2.1. MRA


By the theory of the MRA [49,58], an orthonormal, compactly supported wavelet basis of space [image: there is no content] of measureable, square integral functions is formed by dilating and translating a mother wavelet function [image: there is no content]:


[image: there is no content]



(1)




where [image: there is no content] and [image: there is no content] denote sets of real and integer numbers, respectively. [image: there is no content] satisfies the following two-scale equation:


[image: there is no content]



(2)




where [image: there is no content] is a scaling function that is dilated and translated as


[image: there is no content]



(3)




and [image: there is no content] satisfies the following two-scale equation:


[image: there is no content]



(4)




where [image: there is no content] and [image: there is no content] denote quadrature mirror filters and have the relationship:


[image: there is no content]



(5)







Based on the orthonormal base expressed in Equation (1), the space [image: there is no content] can be spanned by


[image: there is no content]



(6)







Equation (6) implies that the analysis and synthesis of an arbitrary signal [image: there is no content] in [image: there is no content] can be, respectively, realized by


[image: there is no content]



(7a)






[image: there is no content]



(7b)







Such wavelets provide a framework for the MRA as stated in the following.



Derived from Equation (7), [image: there is no content] forms a subspace of [image: there is no content], leading to


[image: there is no content]



(8a)






[image: there is no content]



(8b)







For all [image: there is no content], [image: there is no content] are orthogonal to each other, from which [image: there is no content] is expressed as


[image: there is no content]



(9)




where [image: there is no content] denotes summing vector spaces. On the other hand, [image: there is no content] forms a subspace of [image: there is no content], which leads to [image: there is no content]. Thus, [image: there is no content] in [image: there is no content] can be represented as


[image: there is no content]



(10)







Substituting [image: there is no content] into Equation (9) results in


[image: there is no content]



(11)







Thus, a sequence of closed subspace [image: there is no content] nested as


[image: there is no content]



(12)




forms the MRA of [image: there is no content].



Based on the above definitions, a signal [image: there is no content] in the subspace [image: there is no content] with the finest resolution can be decomposed into the first to the N-th level:


[image: there is no content]



(13)




where [image: there is no content] is the approximation of [image: there is no content] at level [image: there is no content] in [image: there is no content], and [image: there is no content] is the detail of [image: there is no content] at level [image: there is no content] in [image: there is no content]. Equation (13) can be implemented by the discrete wavelet transform (DWT) [43]; the fundamental discrete wavelet, the Haar wavelet, is utilized for the MRA in this study. The scaling function [image: there is no content] and mother wavelet function [image: there is no content] of the Haar wavelet are:


[image: there is no content]



(14a)






[image: there is no content]



(14b)




whose quadrature mirror filters are


[image: there is no content]



(15a)






[image: there is no content]



(15b)








2.2. TKE Operator


The TKE operator was proposed by Kaiser to measure the point-wise energy of a signal [57]. Let [image: there is no content] be a discretized cosine signal:


[image: there is no content]



(16)




where [image: there is no content] is the amplitude, [image: there is no content] is the sampling number, [image: there is no content] is the initial phase, and [image: there is no content] is the frequency specified by [image: there is no content], with [image: there is no content] being the analog frequency and [image: there is no content] the sampling frequency. The signal values at three successive points are:


[image: there is no content]



(17)







According to the trigonometric identities, the signal values in Equation (17) have the following relationship:


[image: there is no content]



(18)







Kaiser found that the left side of Equation (18) can be used to measure the point-wise energy of an oscillating signal, and this nonlinear operator is defined as the TKE operator, denoted [image: there is no content] [57]:


[image: there is no content]



(19)




accordingly, the [image: there is no content] is called the TKE hereafter in this study.



The TKE operator is sensitive to change in the local frequency and amplitude of a signal [57]. To illustrate this property, consider a frequency-modulated (FM) signal (Figure 1a) and an amplitude-modulated (AM) signal [image: there is no content] (Figure 1b), whose Teager–Kaiser energies are calculated by Equation (19) and shown in Figure 1c,d, respectively. It can be seen that Teager–Kaiser energy can sensitively reflect changes in local frequency (Figure 1c) and amplitude (Figure 1d) in signals.


Figure 1. FM (a) and AM (b) signals; and their respective TKE (c,d).



[image: Materials 10 00656 g001]








3. MRM-TKE for Identifying Cracks in Beams under Noisy Environments


This section proposes the M-TKE, from which the MRM-TKE, with stronger robustness to noise interference, is further developed by the WT-based MRA.



3.1. M-TKE


A mode shape of a Timoshenko beam can be expressed as [59]:


[image: there is no content]



(20)




where [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] are unknowns to be solved. [image: there is no content] and [image: there is no content] are parameters related to the natural frequency (the higher the natural frequency is, the lager are [image: there is no content] and [image: there is no content]). For a high-order mode shape, Equation (20) can be further written as [60,61]:


[image: there is no content]



(21)




where [image: there is no content] is the beam length. [image: there is no content] in Equation (21) can be divided into two terms, the decaying term [image: there is no content] and the steady-state term [image: there is no content]:


[image: there is no content]



(22a)






[image: there is no content]



(22b)







The value of the decaying term [image: there is no content] exponentially decays from the boundaries at [image: there is no content] and [image: there is no content]. The distance from boundaries to the locations where [image: there is no content] approximates zero is defined as the boundary-effect interval, denoted as [image: there is no content]. As per Equation (22a), the higher the mode order is, the larger is [image: there is no content], and then the smaller are the boundary-effect intervals. Outside the boundary-effect intervals, [image: there is no content] dominates the high-order mode shape component, [image: there is no content] contributes little to it. Hence, such high-order mode shape components can be approximately represented as [image: there is no content]:


[image: there is no content]



(23)




where [image: there is no content], [image: there is no content]. The discrete form of [image: there is no content] in Equation (23) can be written as:


[image: there is no content]



(24)




where [image: there is no content] with [image: there is no content] being the spatial sampling frequency. The TKE of the mode shape [image: there is no content], namely the M-TKE, can be calculated by Equation (17):


[image: there is no content]



(25)







By Equation (18), [image: there is no content] approximates a constant of [image: there is no content]:


[image: there is no content]



(26)







Owing to the sensitivity of the TKE operator to changes in the local frequency and amplitude of signals (shown in Figure 1), the M-TKE can be sensitive to slight changes in [image: there is no content] and [image: there is no content] caused by cracks, whereby cracks can be clearly identified by such changes.




3.2. MRM-TKE


Noise components are inevitably involved in measured mode shapes, and Kaiser has proved that the TKE operator is very prone to noise interference [57]; therefore, the vulnerability of the M-TKE to noise interference can hamper its applicability in identifying cracks under noisy environments. To overcome this deficiency, the M-TKE is ameliorated by the WT-based MRA, whereby the MRM-TKE has stronger noise robustness. In accordance with the MRA introduced in Section 2, [image: there is no content] can be decomposed into the N-th approximation [image: there is no content] and the first to j-th details [image: there is no content] ([image: there is no content]) by Equation (13), and the M-TKE can be expressed as:


[image: there is no content]



(27)







By discarding the details [image: there is no content] up to a satisficing level [image: there is no content] that contain noise components and substituting the retained approximation [image: there is no content] that contains damage features for [image: there is no content] in Equation (25), the MRM-TKE is defined, denoted as [image: there is no content]:


[image: there is no content]



(28)







In contrast to the M-TKE with one-fold resolution, the resolution of the MRM-TKE is adjustable by the level [image: there is no content], whereby noise components in the M-TKE can be eliminated at a satisficing level in the MRM-TKE; synchronously, crack features in the MRM-TKE can be retained for crack identification. It is worth mentioning that the MRM-TKE method is a non-baseline method, requiring no structural baseline information such as temperature, materials, geometry, and boundary conditions.





4. Proof of Concept


Without loss of generality of the MRM-TKE method, the concept of the MRM-TKE to identify cracks is proven on beams of general materials and boundary conditions with emphasis on its noise robustness.



4.1. Free Vibration of Timoshenko Beams with Cracks


Cracks in a beam are modeled as linear rotational springs with the bending constant of each crack determined by the fracture mechanics principle [62,63]:


[image: there is no content]



(29)




where [image: there is no content] is the Young’s modulus, [image: there is no content] is the moment of inertia, [image: there is no content] is the bending constant of the spring, [image: there is no content] is the beam thickness, [image: there is no content] is the crack depth ratio with [image: there is no content] the crack depth, and [image: there is no content] is the dimensionless local compliance function:


[image: there is no content]



(30)







As illustrated in Figure 2, the beam is divided into [image: there is no content] segments by [image: there is no content] cracks with each adjacent pair of segments being linked by a crack.


Figure 2. Analytical model of n-crack beam with n being 3.



[image: Materials 10 00656 g002]






According to the theory of Timoshenko beams, governing equations for the flexural vibration of the i-th beam segment are [59]:


[image: there is no content]



(31a)






[image: there is no content]



(31b)




where [image: there is no content] is the transverse deflection; [image: there is no content] is the slope of deflection due to the bending; and [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] are the Young’s modulus, shear modulus, moment of inertia, material density, cross-sectional area, and the shear coefficient for the cross-section, respectively.



Solutions to Equation (31) consist of spatial and temporal parts:


[image: there is no content]



(32a)






[image: there is no content]



(32b)




where [image: there is no content] is the angular frequency of vibration, [image: there is no content] is the imaginary unit, and [image: there is no content] and [image: there is no content] are the amplitudes of transverse deflection and rotational angle of the i-th beam segment, respectively. Substituting Equation (32) into Equation (31), with the coordinate variables [image: there is no content] and [image: there is no content], geometric and material variables [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], yields the equations [64]:


[image: there is no content]



(33a)






[image: there is no content]



(33b)







Let [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], the solutions of [image: there is no content] and [image: there is no content] can be expressed as [65,66,67]:


[image: there is no content]



(34a)






[image: there is no content]



(34b)







Compatible conditions of displacement, slope, moment, and shear force in the crack locations [image: there is no content] can be expressed as [67]:


Wi=Wi+1|ζ=ζi, Wi′−Wi+1′=−EIKLθi′|ζ=ζi,θi′=θi+1′|ζ=ζi, Wi′−θi=Wi+1′−θi+1|ζ=ζi.



(35)







Without loss of generality, boundaries at each end of the beam are simulated by a pair of linear springs, by which the boundary conditions at each end can be expressed as [68]:


[image: there is no content]



(36a)






[image: there is no content]



(36b)




where [image: there is no content] and [image: there is no content] are constants of springs providing translational and rotational restraints, respectively. Equation (36) can be further written as [68]:


[image: there is no content]



(37a)






[image: there is no content]



(37b)




where parameters [image: there is no content] and [image: there is no content]. According to Equation (37), four common boundary conditions can be represented: for a simply supported (SS) end, [image: there is no content] and [image: there is no content] produce boundary conditions with [image: there is no content] and [image: there is no content]; for a free (F) end, [image: there is no content] and [image: there is no content] produce boundary conditions with [image: there is no content] and [image: there is no content]; for a free-shear (FS) end, [image: there is no content] and [image: there is no content] produce boundary conditions with [image: there is no content] and [image: there is no content]; and for a clamped (C) end, [image: there is no content] and [image: there is no content] produce boundary conditions with [image: there is no content] and [image: there is no content].



Substituting Equation (34) into the four equations of boundary conditions at the two ends and [image: there is no content] equations of compatible conditions at the crack locations, a group of simultaneous equations with respect to [image: there is no content] can be obtained:


[image: there is no content]



(38)




where [image: there is no content] is a column vector of [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] ([image: there is no content]), and [image: there is no content] is a [image: there is no content] matrix. To achieve nontrivial solutions, the determinant of [image: there is no content], [image: there is no content], is set to zero to produce the frequency equation:


[image: there is no content]



(39)







Solving Equation (39) produces a sequence of natural frequencies [image: there is no content] [69]; provided with [image: there is no content], the corresponding coefficient vector [image: there is no content] can be derived from Equation (38); substituting [image: there is no content] and [image: there is no content] into Equation (34a), the m-th mode shape can be obtained.




4.2. Crack Identification


A general beam with the dimensions of length 500 mm, width 30 mm, and depth 10 mm is taken as a specimen. Three cracks are introduced at locations x = 125 mm ([image: there is no content]), 275 mm ([image: there is no content]), and 375 mm ([image: there is no content]), with depths of 2.5 mm ([image: there is no content]), 2 mm ([image: there is no content]), and 3 mm ([image: there is no content]), respectively. Three scenarios associated with three common types of boundary conditions are considered: SS-SS, C-F, and C-SF boundary conditions for the sixth, seventh, and eighth modes, respectively.



The sixth, seventh and eighth sampled mode shapes [image: there is no content] associated with the SS-SS, C-F, and C-FS boundary conditions (Figure 3) are produced following the procedure given in Section 4.1 with 501 uniformly distributed sampling points. The corresponding M-TKE [image: there is no content] is obtained by Equation (25), and shown in Figure 4 with values in boundary-effect interval ([image: there is no content]) vanished. It can be seen in Figure 4a,b that three peaks in [image: there is no content] evidently indicate the presence of three cracks and clearly pinpoint the cracks at [image: there is no content], 0.55, and 0.75, which correspond to the actual crack locations [image: there is no content], [image: there is no content], and [image: there is no content]; in Figure 4c, only two peaks appear at [image: there is no content] and [image: there is no content] because the location of the second crack at [image: there is no content] is close to one of the nodes, and it is hard to identify such cracks because vibration near a node is always of close-to-zero amplitude [27,70]. Thus, under a noise-free environment, the M-TKE is capable of identifying cracks in beams. For actually measured mode shapes, however, noise components are inevitably incorporated. To simulate a normal noisy environment, white Gaussian noise is added to the [image: there is no content] to produce noisy mode shapes of 60 dB signal-to-noise ratio (SNR) [33]; the lower the SNR is, the noisier is the mode shape. The corresponding noise-contaminated [image: there is no content] is obtained and shown in Figure 5, where intense noise interference considerably masks crack-caused peaks in the [image: there is no content]. Thus, susceptibility to noise severely hampers the capability of the M-TKE to identify cracks in beams under noisy environments.


Figure 3. (a) Sixth; (b) seventh; and (c) eighth mode shapes of SS-SS, C-F, and C-FS beams.



[image: Materials 10 00656 g003]





Figure 4. M-TKE for the (a) sixth; (b) seventh; and (c) eighth noise-free mode shapes.



[image: Materials 10 00656 g004]





Figure 5. M-TKE for the (a) sixth; (b) seventh; and (c) eighth mode shapes with 60 dB SNR.
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To eliminate noise interference, the second-level ([image: there is no content]) approximations [image: there is no content] are extracted from the mode shapes [image: there is no content] by Equation (13), as shown in Figure 6; then the MRM-TKE [image: there is no content] is obtained by Equation (28), as shown in Figure 7 with values in the boundary-effect interval ([image: there is no content]) vanished. It can be seen from Figure 7 that noise interference is basically eliminated and crack-caused peaks can be clearly identified. In Figure 7a,b, three damage-induced peaks stand out obviously and clearly pinpoint the cracks at [image: there is no content], 0.55, and 0.75, which correspond to the actual crack locations [image: there is no content], [image: there is no content], and [image: there is no content]; in Figure 7c only two peaks appear at [image: there is no content] and [image: there is no content] because of the node effect mentioned before. Thus, demonstrably superior to the M-TKE, the MRM-TKE features much stronger robustness to noise interference and is capable of identifying cracks in beams under noisy environments.


Figure 6. The second-level approximations of the (a) sixth; (b) seventh; and (c) eighth mode shapes with 60 dB SNR.



[image: Materials 10 00656 g006]





Figure 7. MRM-TKE for the (a) sixth; (b) seventh; and (c) eighth mode shapes with 60 dB SNR.
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4.3. Noise Tolerance


To demonstrate the noise tolerance of the MRM-TKE, a broader range of noise levels with decreasing SNRs of 55 dB, 50 dB, and 45 dB are considered; the corresponding results are shown in Figure 8, Figure 9 and Figure 10, respectively. At the noise level of 55 dB SNR, the MRM-TKE appears slightly noisier than the results for the 60 dB SNR (Figure 7), and the crack-caused peaks can still clearly identify the three cracks in the SS-SS beam and the C-F beam (Figure 8a,b), and the first and the third cracks in the C-FS beam (Figure 8c); at the noise level of 50 dB SNR, noise interference becomes more intense, but peaks can be still identified (Figure 9) by increasing the level of the approximation to [image: there is no content]; at the noise level of 45 dB SNR, noise interference becomes severe, and peaks are just distinguishable (Figure 10) when the level of the approximation is further increased to [image: there is no content]. Thus, noise level of 45 dB SNR can be regarded as the limit of the noise tolerance of the MRM-TKE for the given scenarios.


Figure 8. MRM-TKE for the (a) sixth; (b) seventh; and (c) eighth mode shapes with 55 dB SNR.



[image: Materials 10 00656 g008]





Figure 9. MRM-TKE for the (a) sixth; (b) seventh; and (c) eighth mode shapes with 50 dB SNR.



[image: Materials 10 00656 g009]





Figure 10. MRM-TKE for the (a) sixth; (b) seventh; and (c) eighth mode shapes with 45 dB SNR.



[image: Materials 10 00656 g010]






Modal curvature method [21], one of the most commonly used methods for crack identification in beams, is employed for comparison. Modal curvatures at the limit noise level of 45 dB are shown in Figure 11. It can be seen in Figure 11 that similar to the results of the M-TKE (Figure 5), damage features can be barely identified due to intense noise interference. Thus, MRM-TKE features stronger noise robustness than the commonly utilized modal curvature for crack identification in beams.


Figure 11. Modal curvatures for the (a) sixth; (b) seventh; and (c) eighth mode shapes with 45 dB SNR.



[image: Materials 10 00656 g011]








5. Experimental Validation


The applicability of the MRM-TKE to the identification of cracks is experimentally validated on a CFRP laminated beam, whose modes shapes are acquired via non-contact measurement using a SLV.



5.1. Setup


A CFRP laminated beam of length 500 mm, width 10 mm, and depth 1.5 mm, consisting of five plies each 0.3 mm in thickness, is taken as an experimental specimen. The dimensions of the beam are shown in Figure 12 in millimeters. As shown in Figure 12, the beam is clamped at the left end with the fixing area spanning 10 mm from the left edge. Four damage scenarios, Scenarios I, II, III and IV, are considered. First, three through-width cracks are manufactured in the first two plies on the surface, about 0.5 mm ([image: there is no content]) in depth between the first and the second plies. In Scenario I, the fourth mode is considered; in Scenario II, the fifth mode is considered. Then, all three cracks are increased to about 0.9 mm ([image: there is no content]) in depth through the third ply. In Scenario III, the fourth mode is considered and, in Scenario IV, the fifth mode is considered. The first, second, and third cracks, indicated by dashed lines in Figure 12, occur at locations 113 mm, 221 mm, and 365 mm from the left edge, respectively.


Figure 12. Dimensions in millimeters of cracked beam with shaker and measurement points.
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A vibration shaker (4809, B&K, Nærum, Denmark), attached to the cracked side of the beam, 15 mm from its left edge, acts as an actuator to excite the beam. When the beam vibrates under harmonic excitation at the fourth natural frequency of 241.79 Hz, the SLV (PSV-400, Polytec, Waldbronn, Germany) is used as a sensor to scan the intact side of the beam to acquire the operating deflection shape (ODS), that can be regarded as the fourth mode shape for this lightly-damped beam [71]. The SLV scans over 499 measurement points uniformly distributed on the intact surface, 10 mm through 496 mm from the left edge; the dimensionless locations for the first, second, and third cracks in the scanning length are [image: there is no content], [image: there is no content], and [image: there is no content], respectively. Figure 13 shows the experimental setup including the SLV and the shaker along with a zoomed-in view of the crack in the CFRP laminated beam.


Figure 13. Experimental setup.
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5.2. Experimental Results


In Scenario I, the fourth mode shape [image: there is no content] is shown in Figure 14a, from which the M-TKE [image: there is no content] is obtained by Equation (25) and is shown in Figure 14b. In Figure 14b, damage features of [image: there is no content] can be barely identified due to intense noise interference. The second-level ([image: there is no content]) approximation [image: there is no content] is obtained by Equation (13), and is shown in Figure 15a, from which the MRM-TKE [image: there is no content] is obtained by Equation (28) and is shown in Figure 15b, where three crack-caused peaks stand out obviously, clearly pinpointing three cracks at about [image: there is no content], [image: there is no content], and [image: there is no content], agreeing well with the actual locations of the first, second, and third cracks.


Figure 14. The fourth mode shape (a) and M-TKE (b) for Scenario I.
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Figure 15. Second-level approximation of the fourth mode shape (a) and MRM-TKE (b) for Scenario I.
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The results of the experiment validate the contention that the M-TKE lacks noise robustness, whereas the MRM-TKE is robust to noise interference, capable of designating the presence and location of cracks in CFRP laminated beams under noisy environments. Modal curvature for Scenario I is shown in Figure 16 for comparison. It can be seen in Figure 16 that, similar to the analytical results in Figure 11, damage features can be barely identified due to intense noise interference.


Figure 16. Modal curvature for Scenario I.
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For Scenarios II, the fifth mode shape is shown in Figure 17a, and the corresponding MRM-TKE [image: there is no content] is shown in Figure 17b. In Figure 17b, only two peaks appear at [image: there is no content] and [image: there is no content], because the third crack at [image: there is no content] is close to one of the nodes. The reason has been given in Section 4.2 that vibration close to a node is always of close-to-zero amplitude. For Scenarios III and IV with deeper cracks, crack-caused peaks are of larger amplitudes and more evident, which is more beneficial to crack identification. For Scenario III, three peaks clearly identify all three cracks (Figure 18a); and, for Scenario IV, only the first and third cracks can be identified (Figure 18b).


Figure 17. The fifth mode shape (a) and MRM-TKE (b) for Scenario II.
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Figure 18. MRM-TKE for Scenario III (a) and Scenario IV (b).
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It can be seen from the MRM-TKE for Scenarios I to IV that deeper cracks are more evident to be identified by the MRM-TKE because the peak of the MRM-TKE increases with crack depth; cracks close to nodes are hard to identify because of the node effect. In addition, when smaller depths of cracks, e.g., 0.25 mm, are considered, the peaks in the MRM-TKE become less prominent.





6. Conclusions


To identify cracks in CFRP laminated beams under noisy environments, this study proposes a physical concept M-TKE derived from a mode shape, that is sensitive to crack-caused changes in the local frequency and amplitude. To enhance the noise robustness of the M-TKE, it is transformed to the MRM-TKE by the WT-based MRA. The efficacy of this concept is analytically demonstrated by identifying cracks in Timoshenko beams with general boundary conditions; and its applicability is validated in a CFRP laminated beam, whose mode shapes are precisely acquired via non-contact measurement using a SLV. The analytical and experimental results show that the MRM-TKE is capable of designating the presence and location of cracks in CFRP laminated beams under noisy environments. Some conclusions are drawn below:

	
Cracks can cause rapid changes in the M-TKE because the TKE operator is sensitive to slight changes in the local frequency and amplitude of a mode shape. However, the M-TKE is very prone to noise interference and therefore lacks the robustness to identify cracks under noise environments.



	
To enhance the noise robustness of the M-TKE, the MRM-TKE is developed from the M-TKE with the WT-based MRA, whereby noise components in the M-TKE can be eliminated at a satisficing level in the MRM-TKE; synchronously, damage-caused change in the M-TKE can be retained in the MRM-TKE. Thus, the MRM-TKE is capable of identifying cracks in CFRP laminated beams under noisy environments.



	
The MRM-TKE method is a non-baseline method, requiring no structural baseline information such as temperature, materials, geometry, and boundary conditions. The only requirement for the MRM-TKE method is that high-order modes are needed for small boundary-effect intervals.
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