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Abstract: This paper reports the effects of carbon nanofibers (CNFs) on nanoscaled mechanical
properties of cement composites. CNFs were added to cement composites at the filler loading of
0.2 wt % (by wt. of cement). Micrographs based on scanning electron microscopy (SEM) show
that CNFs are capable of forming strong interfacial bonding with cement matrices. Experimental
results using nanoindentation reveal that the addition of CNFs in cement composites increases the
proportions of high-density calcium-silicate-hydrate gel (HD-CSH) compared to low-density CSH gel.
It was also found that the inclusion of CNFs increases the compressive strength of cement composites.
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1. Introduction

Plain cement composites suffer from low tensile strength and limited strain capacity. This gives
rise to the formation of nano-cracks under relatively low tensile loads. These nano-cracks have a
high impact on the durability of cement matrices. Konsta-Gdoutos et al. [1] have shown that the
incorporation of carbon nanotubes (CNTs) as the reinforcing material can control the nanoscaled cracks.
In particular, the embedded CNTs were found to improve mechanical properties of nano-composites
significantly [2,3]. Carbon nanofibers (CNFs) exhibit a similar potential as effective reinforcements
in cement composites. This is because they possess excellent material properties such as high
stiffness, tensile strength, excellent electrical, and thermal conductivities and corrosion resistance [4–6].
Moreover, the physical configuration of CNFs presents a number of exposed edges along the surface,
which may establish p areas of interactions with hydration products of cements [7,8].

The reinforcing capabilities of CNFs in cement composites have not been fully realized as
done in the case of CNTs. This is mainly due to the challenge in achieving proper fibre to matrix
interaction [9]. Nevertheless, most research on cement composites reinforced with CNFs to date
has focused on the macroscopic properties but little research has been conducted on the nanoscaled
mechanical properties, which are believed to highly impact the macro-scaled properties of materials
such as strength, durability, and fracture behavior. In this study, nanoscaled mechanical properties of
cement composites reinforced with CNFs were investigated with the aid of nanoindentation technique.
Compressive tests were also performed to assess the effects of CNFs on the macroscopic strength of
cement composites.

2. Experimental Methods

2.1. Materials and Mixing

Ordinary Portland cement (OPC) was supplied by Swan Cement, Perth, Western Australia. CNFs
used were as-received from US Research Nanomaterials, Inc., Houston, TX, USA, which were produced
by chemical vapor deposition (CVD) method. The properties of CNFs used are summarised in Table 1.
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OPC/CNF composites with 0.2 wt % of cement were investigated, as compared with those neat OPC.
The loading of 0.20 wt % is selected based on the existing literature [10,11] to offer the optimization
of the properties of nanocomposites. The water–cement ratio used was 0.4 for both cases. Previous
research has shown that a polycarboxylate-based superplasticiser effectively dispersed CNTs with
minimal effects on the hydration time [12]. Therefore, it was added at 0.10 wt % and 0.40 wt % of
cement in OPC and OPC/CNF composites, respectively. The superplasticiser was added to a plastic
beaker with water and stirred until a visually mixed solution was obtained. The CNF solution was
then ultrasonicated. The mechanical mixing was subsequently performed using a small rotary mixer.

Table 1. Properties of CNF used.

Parameters Values

Purity >99.9%
Outside diameter 200–600 nm

Length 5–50 µm
Specific surface area 18 m2/g

Electrical conductivity >100 s/cm

2.2. Sample Preparation

The cube samples (50 mm) were prepared for compression test. For the nanoindentation, relatively
small cube samples (10 mm) were prepared. All cast samples were kept in a temperature-controlled
(20 ◦C) curing room and demolded after 24 h. After the demolding process, the samples were
bath-cured in lime-saturated water and kept in the curing room. The compression tests were performed
after 7, 28, and 56 days, respectively. Small flat broken pieces resulting from compression tests were
collected for SEM. Samples for nanoindentation were ground and polished using silicon carbide papers
with reduced gradations of 52, 35, 22, and 15 µm to expose sample surfaces. Further, samples were
impregnated using red-pigmented epoxy resin to provide structural support to fragile porous cement
matrices. Once impregnated, samples were put through a final stage of grinding and polishing using
reduced carbide papers of 52, 35, 22, and 15 µm, as well as diamond suspensions of reduced gradations
of 9, 6, 3, 1, and 0.05 µm on a polishing cloth. Samples were then mounted onto sample disks, further
placed into samples trays, and installed into the indenter prior to nanoindentation tests.

2.3. Test Methods

2.3.1. SEM

Tescan Mira3 (Brno, Czech Republic) Field Emission Scanning Electron Microscope (SEM)
was used to observe the CNF dispersion and interfacial bonding features between CNFs and
cement matrices.

2.3.2. Nanoindentation

In nanoindentation tests were carried out using Agilent Nano Indenter G200 (Keysight
Technologies, Inc., Santa Rosa, CA, USA), In these tests, a controlled load was applied on material
surfaces in order to induce local deformation. Using well-established equations based on the principles
of elastic contact theory [13], reduced elastic modulus and hardness were calculated. The applied
load and the corresponding displacement were continuously monitored during the test. This resulted
in a typical load-displacement curve (Figure 1a). The interaction between the indenter tip and the
specimen surface during the indentation process is illustrated in Figure 1b. The slope at the beginning
of the unloading curve is defined as the contact stiffness (S), which is given by

S =
dP
dh

(1)
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where P is the indentation load and h is the indentation depth.
The initial part of the unloading curve is fitted by a power law equation

S =
2β√

π
(

1
Er

)
−1√

Ac (2)

where Er is the reduced modulus, Ac is the contact area of the indenter, and β is a constant for the
indenter geometry.
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Figure 1. Typical indentation process (a) load-displacement curve; (b) Interaction between indenter
and specimen.

Er is related to the elastic modulus of the sample (E) and the elastic modulus of the indenter (Ei)
by the equation

1
Er

=
1− v2

E
+

1− v2
i

Ei
(3)

where ν and νi are Poisson’s ratios of the sample and the indenter, respectively.
For the Berkovich indenter, the Ei and νi are known to be 1140 GPa and 0.07 [14]. Therefore,

the reduced elastic modulus, Er can be defined as

Er =

√
π

2β

S√
Ac

(4)

The hardness is defined by

H =
Pmax

Ac
(5)

where Pmax is the peak load.
The nanoindentation machine used in this study was fitted with a Berkovich indenter tip.

The calibrated contact area function was derived from indentation tests conducted previously on a
fused quartz standard specimen. All tests were programmed in such a way that the loading started
when the indenter came into contact with the test surface. The load was maintained for 30 s at
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the pre-specified maximum value before unloading. The unloading data for the lower indentation
depth (i.e., hp = 300–400 nm) was used to determine the reduced modulus and hardness values of
the indentation point. Information on the nanoscaled mechanical properties was obtained from a
matrix of 320 indents on the surface of the samples. The selected indent spacing was 20 µm. Each
test area was selected by manual inspection using the indenters built in the microscope attached to
the nanoindentation machine. The experimental data (i.e., Young’s modulus) were then statistically
analyzed to produce a frequency histogram.

2.3.3. Nanoscratch

The nanoscratch tests were carried out using Agilent Nano Indenter G200 (Keysight Technologies,
Inc., Santa Rosa, CA, USA) by moving the indenter tip. This was made when the indenter tip was
in contact with the specimen surface. The Berkovich tip was used to conduct pre- and post-scratch
scans of the surface with a force of 5 µN at a rate of 2 µm/s. Data were recorded during these scans
at a rate of 5 points/µm. A scratch length of 100 µm was scratched at each focused site, with the
indentation tip used to scan the approach and parting zones of the scratch site at 20 µm each. During
the scratching step, a velocity of 2 µm/s was used to apply a maximum load of 50 mN, which is
imposed perpendicular to the plane of sample faces.

2.3.4. Compressive Strength Test

The compressive strength was determined in accordance to AS 1012.9-2014 [15]. This was
performed using a Multifunctional Control Console (MCC8) machine (Milan, Italy). A total of three
specimens were used for the testing at 7, 28, and 56 days. This was calculated from the maximum force
applied on the specimen divided by the cross-sectional area of the specimen.

3. Results and Discussion

3.1. SEM Characterisation

The SEM image shown in Figure 2 depicts the bridging of cracks by CNFs. The yielding of
CNFs at failure is shown in Figure 3. It can be seen that the individual end strands of the fibers are
well entrenched within the surrounding hydration products, which suggests that strong interfacial
bonding with good interactions between CNFs and cement matrices has been achieved. The theoretical
interpretation can be due to the desirable physical characteristics possessed by CNFs, including
exposed edge planes to allow for interfacial interactions with hydration products. The magnification
of SEM images does not allow for fiber structures to be viewed, but the practical interactions with
hydration products provides clear evidence to support the current study. The observations made are
based upon the localized SEM images produced, which are indicative only of a very small portion of
the specimens. Hence, a global visualization of fractured morphological structures is required for the
future research work.
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Figure 3. Yielding of CNFs at failure.

3.2. Nanoindentation

The indentation moduli are plotted against their probability of occurrences. Four normal
distributions corresponding to the four phases (pores, low-density calcium silicate hydrate,
high-density calcium silicate hydrate, and calcium hydroxide) are fitted to the probability plots
of the elastic modulus of cement composites. For OPC and OPC/CNF composites, nanoindentation
data obtained are in good agreement with the data available in the literature, as can be seen in Table 2.
Figures 4 and 5 show the frequency plots of elastic modulus for OPC and OPC/CNF composites,
respectively. The elastic modulus values greater than 45 GPa are not included in this plot. This is
because values greater than 45 GPa can be attributed to the clinker phases. From Figures 4 and 5,
it can be seen that, for plain cement composites, the mean peak of the elastic frequency plot falls in the
low-density CHS gel region (10–25 GPa). When CNFs were added, the high-density CSH gel region
(25–30 GPa) was more pronounced. This indicates an increase in the high-density CSH gel compared
to low-density CSH gel.
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Table 2. Values of elastic moduli from literatures (mean ± SD).

Phase Elastic Modulus (GPa) References

Pores 9.1 ± 2.3 [16]

Low-density CSH
21.7 ± 2.2 [17]
22.5 ± 5.0 [18]
23.4 ± 3.4 [19]

High-density CSH
29.4 ± 2.4 [17]
30.4 ± 2.9 [18]
31.4 ± 2.1 [19]

Calcium hydroxide 36 ± 3.0 [20]

Clinker 125 ± 25 [21]

Materials 2017, 10, 662  6 of 10 

 

Table 2. Values of elastic moduli from literatures (mean ±SD). 

Phase Elastic Modulus (GPa) References 
Pores 9.1 ± 2.3 [16] 

Low-density CSH 
21.7 ± 2.2 [17] 
22.5 ± 5.0 [18] 
23.4 ± 3.4 [19] 

High-density CSH 
29.4 ± 2.4 [17] 
30.4 ± 2.9 [18] 
31.4 ± 2.1 [19] 

Calcium hydroxide 36 ± 3.0 [20] 
Clinker 125 ± 25 [21] 

 
Figure 4. Frequency plot of elastic modulus for OPC. 

 
Figure 5. Frequency plot of elastic modulus for OPC/CNF composites. 

3.3. Nanoscratch 

The lateral force required by the indenter to displace the material as a function of the scratch 
length is shown in Figure 6. It can be seen that, for both OPC and OPC/CNF composites, the lateral 
force steadily increased from 0 to 15.5 mN in order to displace a scratch length of 100 μm. This 
contradicts the findings obtained by Lahiri et al. [22], in which it was observed that the lateral force 
required to displace the material increases in the presence of CNTs. However, in this study, there 
was a slight variation in the force required to dislocate the material with minor jumps in the lateral 

0.00

0.02

0.04

0.06

0.08

0.10

0 10 20 30 40 50

Pr
ob

ab
ili

ty
 d

en
si

ty

Indentation modulus, GPa

Exp.
Fit
Pores
LD-CSH
HD-CSH
CH

0.00

0.02

0.04

0.06

0.08

0.10

0 10 20 30 40 50

Pr
ob

ab
ili

ty
 d

en
si

ty

Indentation modulus, GPa

Exp.
Fit
Pores
LD-CSH
HD-CSH
CH

Figure 4. Frequency plot of elastic modulus for OPC.
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3.3. Nanoscratch

The lateral force required by the indenter to displace the material as a function of the scratch
length is shown in Figure 6. It can be seen that, for both OPC and OPC/CNF composites, the lateral
force steadily increased from 0 to 15.5 mN in order to displace a scratch length of 100 µm. This
contradicts the findings obtained by Lahiri et al. [22], in which it was observed that the lateral force
required to displace the material increases in the presence of CNTs. However, in this study, there
was a slight variation in the force required to dislocate the material with minor jumps in the lateral
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force (denoted by circles in Figure 6). These small jumps could be due to the presence of CNFs in the
cement matrices.
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Figure 6. Lateral force required by the indenter in OPC and OPC/CNF composites.

Three different scratch profiles corresponding to initial surface profile, displacement profile due
to elastic and plastic deformations, and displacement profile due to post elastic rebound are shown
in Figures 7 and 8 for OPC and OPC/CNF composites, respectively. From the scratch profiles, it is
evident that the indenter penetrated more into the OPC surface compared to OPC/CNF composites.
The deepest penetration in OPC/CNF composites was observed to be less than 1275 nm, as opposed to
over 2000 nm for OPC. The penetration depth is a mechanical response of the material, which means
that a shallow penetration is induced by harder materials. As expected, CNFs as rigid fillers into OPC
make their composites harder to go through by the indenter.
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3.4. Compressive Strength

The compressive strengths of OPC and OPC/CNF composites are illustrated in Figure 9. It can be
seen at all ages inclusion of CNFs in OPC increased the compressive strength, consistently over those
of the OPC. The increase is much higher than that was found by Sanchez and Ince [23], where only a
5% increase was found with the addition of CNFs at 0.5 wt % of cement.
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4. Conclusions

The nanoscaled mechanical properties of cement composites reinforced with CNFs at 0.2 wt %
of cement have been studied as a typical case in this research when compared to OPC. SEM images
show that CNFs successfully induce the phenomenon of crack bridging. According to nanoindentation
tests, it can be concluded that when CNFs are added in OPC, there tends to be an increase in the
high-density CSH gel at the cost of low-density CSH gel. The lateral forces required to displace both
OPC and OPC/CNF composites are identical. However, minor jumps were observed in composites.
The indenter penetrates more into the OPC surface compared to OPC/CNF composites. The inclusion
of CNFs at 0.2 wt % of cement was found to increase the compressive strength of OPC.
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