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Abstract: Varying speed conditions bring a huge challenge to incipient fault detection of rolling
element bearings because both the change of speed and faults could lead to the amplitude fluctuation
of vibration signals. Effective detection methods need to be developed to eliminate the influence
of speed variation. This paper proposes an incipient fault detection method for bearings under
varying speed conditions. Firstly, relative residual (RR) features are extracted, which are insensitive
to the varying speed conditions and are able to reflect the degradation trend of bearings. Then,
a health indicator named selected negative log-likelihood probability (SNLLP) is constructed to fuse
a feature set including RR features and non-dimensional features. Finally, based on the constructed
SNLLP health indicator, a novel alarm trigger mechanism is designed to detect the incipient fault.
The proposed method is demonstrated using vibration signals from bearing tests and industrial wind
turbines. The results verify the effectiveness of the proposed method for incipient fault detection of
rolling element bearings under varying speed conditions.

Keywords: incipient fault detection; varying speed; alarm trigger mechanism; adaptive threshold;
rolling element bearings

1. Introduction

Rolling element bearings play a vital role in various industrial fields such as aviation, energy,
and metallurgy. They generally work under varying speed conditions, which brings great challenges
to the health monitoring and performance degradation evaluation of bearings [1]. For instance, the
rotating speed of wind turbines changes because of time-varying wind speed and grid control over the
long term. In such operation conditions, vibration signals always show non-stationary characteristics.
Both amplitudes and frequency components of vibration signals change with time [2,3]. Traditional
health monitoring methods generally assume that the change of vibration signals is just caused by
faults of mechanical equipment [4]. Therefore, these methods are unsuitable to health monitoring in the
varying speed conditions. Aiming for the issue of incipient fault detection of rolling element bearings
under varying speed conditions, new health monitoring methods should be developed. Basically,
there are two crucial factors determining the accuracy of incipient fault detection under varying speed
conditions: health indicator extraction and alarm trigger mechanism.

In the incipient fault detection process, a health indicator is always desired to effectively
compress the large amount of vibration signals and reflect the degradation trend of rotating machinery.
Many studies have been conducted on constructing such health indicators. Niu et al. [5] exploited
self-organizing map neural networks to extract a minimum quantization error fusion indicator for
methane compressor health monitoring. Soualhi et al. [6] used the Hilbert–Huang transform to extract
Hilbert spectral density as a health indicator to track the degradation of the critical components of
bearings. Li et al. [7] extracted a compressed acoustic emission indicator based on the empirical model
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decomposition for gear fault detection. Guo et al. [8] proposed a recurrent neural network based health
indicator for remaining useful life prediction of bearings. Javed et al. [9] extracted a novel indicator
based on trigonometric functions and cumulative transformation to monitor the degradation trend
of cutting tools and bearings. Qian et al. [10] applied recurrence quantification analysis to extract
recurrence plot entropy indicators for monitoring bearing performance degradation. Picot et al. [11]
proposed a statistic-based spectral health indicator to detect bearing faults. These indicators are able
to reflect the degradation trend of rotating machinery, but they are hard to avoid being influenced
by the operation condition change. On the contrary, indicators such as kurtosis are insensitive to the
change of speed condition, but they are unable to reflect the degradation trend of rotating machinery.
Generally speaking, a desirable monitoring indicator should predominantly satisfy the following
two requirements: (1) being insensitive to the change of operation conditions; and (2) reflecting
the degradation degree of fault severity quantitatively. Considering the shortcoming of existing
indicators, it is necessary to extract new health indicators for the incipient fault detection under
varying speed conditions.

After constructing health indicators, an alarm trigger mechanism is needed to judge whether
incipient faults occur on rotating machinery or not. Various fault trigger mechanisms have been
designed to deal with this problem. Ginart et al. [12] presented a fault trigger mechanism based
on constant alarm threshold for fault detection of rotating machinery. Li et al. [7] detected gearbox
faults using a probability trigger mechanism, i.e., if more than a given percentage of features are
greater than a fixed fault detection threshold, then it is believed that the incipient fault happens.
Loutas et al. [13] employed an alarm trigger mechanism based on a heuristic threshold for health
monitoring of gearboxes. Li et al. [14] proposed an adaptive continuous trigger mechanism, which is
regarded that the incipient fault has occurred when several continuous indicator values exceed the 3σ
interval. Jin et al. [15] employed a combined alarm trigger mechanism to successfully detect faults
of cooling fans and motor bearings. These approaches have good performance in the fault detection.
However, they still have several shortcomings. For instance, in the probability trigger mechanism, the
percentage is calculated based on all of the historical measurements, which changes little when a new
indicator value above the threshold appears. In the continuous trigger mechanism, several continuous
indicator values above the threshold often occur in the significant faults stage, but seldom happen in
the incipient fault stage.

To deal with the aforementioned problems, this paper proposes an incipient fault detection
method for rolling element bearings under varying speed conditions. The major contributions of this
method are: (1) relative residual (RR) features based on extreme learning machine (ELM) are proposed,
which are insensitive to the varying speed conditions and are able to better reflect the degradation
trend of bearings; (2) a health indicator, i.e., selected negative log-likelihood probability (SNLLP), is
constructed to fuse multiple features; and (3) an alarm trigger mechanism is established to improve
the accuracy of incipient fault detection based on the analysis of the fault typical behavior.

The rest of this paper is organized as follows. Section 2 describes the basic theory of ELM and
Gaussian mixture model (GMM), respectively. In Section 3, the proposed incipient fault detection
method is introduced in detail. In Section 4, the health state of the industrial wind turbine is monitored
to further verify the effectiveness of the proposed method. Some concluding remarks are drawn in
Section 5.

2. Brief Introduction to ELM and GMM

2.1. Extreme Learning Machine

ELM was proposed by Huang for single hidden layer feedforward neural networks (SLFNs) [16].
The learning speed of the feedforward neural network is constrained by gradient-based iterative
learning algorithms. Unlike many other popular learning algorithms, the learning speed of ELM is fast
because input weights and hidden neuron biases are randomly generated [17]. ELM has been widely
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used for regression and classification issues by virtue of few parameters tuning, fast learning speed
and good generalization performance.

The output of SLFNs with L hidden nodes can be expressed as:

fL(x) =
L

∑
i=1

βiG(ai, bi, x), (1)

where ai is the weight vector connecting input nodes and the ith hidden node, bi is the bias of the ith
hidden node, βi is the weight connecting the ith hidden node to the output node and G(ai, bi, x) is the
output of the ith hidden node with respect to the input x. The architecture of SLFNs is shown in the
Figure 1.
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The N samples { (xi, ti)}N
i=1 are used to train parameters of SLFNs, where xi is an n× 1 input

vector and ti is a m× 1 target vector.
Then, Equation (1) can be rewritten as

Hβ = T, (2)

where

H =

 h(x1)
...

h(xN)

 =

 G(a1, b1, x1) . . . G(aL, bL, x1)
... . . .

...
G(a1, b1, xN) . . . G(aL, bL, xN)


N×L

, (3)

β =

 βT
1
...

βT
L


L×m

and T =

 tT
1
...

tT
L


N×m

, (4)

The number of hidden nodes L is always less than the number of training samples, which means
that the training error cannot be exactly zero but can approach zero. ELM randomly generates the
input weight ai and the hidden node bias bi, so the output weight βi is just needed to be solved, which
is estimated as

β̂ = H+T, (5)

where H+ is a Moore–Penrose generalized inverse of the H matrix.
For a given training sample set { (xi, ti)}N

i=1 and L hidden nodes, the solution process of ELM
parameters is listed as:

Step 1: Randomly generate the hidden layer parameters (ai, bi), i = 1, . . . , L.
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Step 2: Select an infinitely differentiable function as the activation function for hidden nodes and
then calculate the output matrix of hidden layer H.

Step 3: Calculate the output weight β : β̂ = H+T.

2.2. Gaussian Mixture Model

GMM has strong robustness and excellent computing performance to model the complicated
internal distribution characteristic contained in the data by using several Gaussian mixture
components [18]. This characteristic makes it very suitable to smooth the probability distribution
of arbitrary shape. Therefore, the GMM has been widely used in image background extraction and
speech recognition in recent years [19].

Theoretically, arbitrary data can be expressed by M Gaussian probability density functions

p(xi|Φ) =
M

∑
j=1

αjNj(xi, µj, ∑j), (6)

where αj is the weight of the jth mixture component that satisfies the constraint
M
∑

j=1
αj = 1 and

0 ≤ αj ≤ 1, j = 1, 2, . . . , M. Nj(xi, uj, ∑ j) is a unimodal Gaussian probability density function, which
is expressed as

N
(

x; u, ∑
)
=

1√
(2π)n|∑|

exp
[
−1

2
(x− u)T∑

−1
(x− u)

]
, (7)

where x is the n-dimensional data vector, u is a n× 1 mean vector and ∑ is a n× n covariance matrix.
To a N × D dimensional training sample set X = {x1, x2, . . . , xN}T , the sample set is used to

estimate the GMM parameters ϕj =
(

xi, uj, ∑ j

)
with the aid of the expectation–maximization (EM)

algorithm. The solution process of the GMM parameters is listed as follows:
Step 1: The K-means clustering algorithm is first utilized to initialize GMM parameters xj0, uj0, ∑ j0.
Step 2: To each training data xi, estimate the probability produced by each unimodal Gaussian

probability density function. The probability produced by the jth Gaussian mixture component is
expressed as

βij =
αjNj(xi; Φ)

∑M
k=1 αk Nk(xi; Φ)

, 1 ≤ i ≤ n, 1 ≤ j ≤ M; (8)

Step 3: Update parameters xj, uj, ∑ j.

αj =
∑N

i=1 βij

N
, uj =

∑N
i=1 xiβij

∑N
i=1 βij

, ∑j =
∑N

i=1 βij
(
xi − uj

T)(xi − uj
T)T

∑N
i=1 βij

; (9)

Step 4: Repeatedly iterate Steps 2 and 3 to update the parameters xj, uj, ∑ j until∣∣∣p (X|Φ) k+1 − p (X|Φ) k
∣∣∣ < ε, where p (X|Φ) k and p (X|Φ) k+1 are the probability density of kth

and (k+1)th iteration, respectively.
Once the final parameters are determined, the GMM that is trained by the sample set has been

constructed. Then, the trained GMM can be used to evaluate the membership degree of new data
relative to the training sample set, which is able to be denoted by the p(xi|Φ) .

3. Proposed Incipient Fault Detection Method

The flowchart of the proposed method is shown in Figure 2. It is composed of three modules, i.e.,
RR extraction, health indicator construction and incipient fault detection.

In the RR features extraction module, real-time vibration signals acquired from rotating machinery
are de-noised by singular value decomposition (SVD) to enhance weak incipient fault characteristics.
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Then, dimensional features are extracted from the de-noised signals. Since the dimensional features
are easily influenced by speed variation, RR features are proposed to reduce the interference and better
reflect the health degradation trend of bearings. In the health indicator construction module, a feature
set is made up of RR features and non-dimensional features. Then, some features are selected from
the feature set using degradation evaluation metrics, and the dimension of these selected features
is further reduced by orthogonal locality preserving projections (OLPP). A novel health indicator
called SNLLP is constructed based on GMM to comprehensively quantify performance degradation of
bearings. In the incipient fault detection module, based on the SNLLP indicator, the incipient fault
is detected by the proposed alarm trigger mechanism. More details about these three modules are
presented as follows.
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3.1. RR Features Extraction

In the RR features extraction module, at first, real-time vibration signals are acquired from sensors
attached on rolling element bearings. Since bearing fault characteristics, especially in the incipient stage,
are always submerged in strong background noise, SVD is employed to cancel the noise imbedded
in vibration signals [20]. Then, original features are extracted from the de-noised signals in time
domain, frequency domain and time-frequency domain. Generally, these features are classified into
two classes, i.e., dimensional features and non-dimensional features. Many dimensional features are
always able to directly reflect the health degradation trend of bearings at a constant speed condition,
but the amplitudes of these features are also susceptible to varying speed conditions. To explore the
relationships between the speed and dimensional features, varying speed experiments of bearings are
executed in a test rig.

The experimental system is shown in Figure 3. The test rig includes two bearings, a 3-hp motor
for driving bearing operation. The motor rotating speed is controlled by a speed controller, which
allows the tested bearing to operate under various speeds. Accelerometers are fixed on end cap closing
to the tested bearing. The sampling frequency is 25.6 kHz. Data acquisition equipment is utilized
to collect the vibration signals of bearings in normal and fault states via increasing the motor speed
from 20 Hz to 40 Hz. The speed keeps stable for a period after increasing each 0.5 Hz. Under each
constant-speed period, 10 sets of vibration signals are acquired. Each set of vibration signal contains
76,800 data points, i.e., 3 s. Figure 4 shows the variation of standard deviation of inverse hyperbolic
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cosine (Std of IHC) [9] and root mean square(RMS) values with the increase of speed under normal
and fault states. From Figure 4, two obvious rules could be concluded:

• There is an approximately linear relationship between the motor speed and the extracted features
whether in the normal state or fault state.

• The fitting-regression lines of the features under the fault state have a larger slope than those
under a normal state, which means that the bearing in the fault state is more susceptible to speed
than the bearing in the normal state.
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In order to reduce the influence of the time-varying speed to dimensional features, the dimensional
features are transformed to a set of RR features using ELM to reflect the degradation trend of rotating
machinery under varying speed conditions. The process of RR feature extraction is shown in Figure 5.

Step 1: The speed condition parameters in the normal state dt ∈ RB×1 is used as the input of the
trained model and the dimensional feature in the normal state Ft ∈ RB×1 is utilized as the output of
the trained model to train the ELM empirical model of the normal behavior, where B is the number of
training samples.

Step 2: The new captured operating speed d(t) is used as the input of the trained model. The ELM
model estimation output value of d(t) can be obtained as ŷ = f (d).
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Step 3: The RR feature is constructed as RR = (y− ŷ)/ŷ, where y is the actual feature value
extracted from the measured vibration signal.
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Feature values in the fault state will deviate from the distribution of those in the normal state,
leading to statistically abnormal changes in RR values. Therefore, faults can be detected by evaluating
the extracted RR values.

To evaluate the effectiveness of the proposed RR features, experimental data are further analyzed.
As described above, vibration signals of bearings in normal and fault states within the 20–40 Hz speed
range are first de-noised by the SVD. Then, Std of IHC and RMS are selected from the dimensional
features to demonstrate the performance of corresponding RR features. The Std of IHC and RMS
values in the normal state and corresponding speed parameters are used to train the ELM empirical
model. The performance of the extracted RR features feature in the normal and fault state is shown
in Figure 6. It is seen that the amplitudes of RR features in the normal state are close to 0 and stay
stable. In the same fault degree, the amplitudes of RR features are greater than 0. In addition, they are
still stable without being influenced by the speed variation obviously. The results indicate that RR
features can well recognize the normal and fault state of bearings and also have a good resistance to
speed variation.
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3.2. Health Indicator Construction

In this module, GMM-based SNLLP is constructed to provide a fusion health indicator. When the
feature set composed of RR features and non-dimensional features is extracted, an optimal degradation



Materials 2017, 10, 675 8 of 15

feature selection method is required to select the features with useful information about bearing
degradation processes. Good condition monitoring features should be well correlated to bearing
degradation progresses, monotonous increasing or decreasing, robustness to outliers caused by noise,
etc. Therefore, correlation, monotonicity and robustness metrics are utilized here for optimal feature
selection. An integrated metric about these three evaluation metrics is used [21]:

J = w1Corr(F) + w2Mon(F) + w3Rob(F), (10)

s.t.

{
wi > 0

∑
i

wi = 1, i = 1, 2, 3 , (11)

where J is total degradation evaluation score whose values belong to the interval [0, 1], Corr(F, T) is
the correlation metric, Mon(F) is the monotonicity metric, Rob(F) is the robustness metric and wi
is the weight of each metric. Three degradation evaluation metrics are computed by virtue of the
following equations:

Corr(F, T) =
|K ∑k FT(tk)tk −∑k FT(tk)tk|√[

K ∑k FT(tk)
2 − (∑k FT(tk))

2
][

K ∑k tk
2 − (∑k tk)

2
] , (12)

Mon(F) =
1

K− 1

∣∣∣∣∣∑k
δ(FT(tk+1)− FT(tk))−∑

k
δ(FT(tk)− FT(tk+1))

∣∣∣∣∣, (13)

Rob(F) =
1
K ∑

k
exp

(
−
∣∣∣∣ FR(tk)

F(tk)

∣∣∣∣), (14)

where F(tk) is the degradation feature value at the time tk, FT(tk) is the trend value which can be
obtained by common smoothness method, FR(tk) is the residual random value, K is the number of
total feature values and δ(·) is the unit step function.

In order to select the degradation features that have good performance, the features whose J
have higher scores are primarily selected. The selected degradation features still have redundant
information. Therefore, the dimension of these selected features is further reduced by OLPP. The OLPP
is utilized here to retain the low-dimensional nonlinear manifold structure that is hidden in the data
set and better dig out intrinsic fault information [22]. The former principal components whose total
cumulative contribution rate is above 90% are retained.

At last, the reduced principal components are fused using a GMM-based method [23]. The GMM
is trained by the values of the reduced principal components under the normal state. Then, the trained
GMM is used to online fuse degradation features. For each new captured sample, GMM will generate
p(xi|Φ) using Equation (6), and the SNLLP health indicator is calculated as follows:

SNLLP = − log p( xi|Φ). (15)

3.3. Incipient Fault Detection

In this module, based on the constructed SNLLP health indicator, a new alarm trigger mechanism
is designed to detect the incipient fault based on the analysis of the fault typical behavior. For example,
more abnormal fluctuation would appear in the signals and the amplitude of signals may increase
gradually. The proposed alarm trigger mechanism is composed of two criteria: (1) in a sliding time
window, the number of indicator values above the adaptive threshold has exceeded a safety number;
and (2) the indicator values in the sliding time-window present an increasing trend, which is evaluated
by the Spearman coefficient.
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At first, the adaptive threshold based on the Chebyshev’s inequality is established to identify
outliers. For an SNLLP indicator Im, the mean and Std of its index set at time m are Xm and Sm

respectively. The Chebyshev’s inequality can be expressed as:

P
(∣∣Im − Xm

∣∣ ≥ kSm
)
≤ 1

k2 , ∀k > 1, (16)

where k is threshold tolerance. For a given confidence level 1/k2, the bound interval is expressed
as
[
Xm − kSm, Xm + kSm

]
. Equation (16) means that the probability of Im /∈

[
Xm − kSm, Xm + kSm

]
is

less than 1/k2 [24]. The former partial SNLLP indicators (I1, I2, . . . , Im) are selected to calculate the
initial bound:

Tm = Xm ± kSm. (17)

As a new sample at time m + 1 is captured, judge whether the SNLLP value of the sample belongs
to the bound interval or not. If the sample belongs to the bound interval, it is added into the index set,
i.e., (I1, . . . , Im, Im+1), the bound Tm+1 is recalculated:

Tm+1 = Xm+1 ± kSm+1, (18)

where Xm+1 and Sm+1 are the mean and standard deviation of the index set (I1, . . . , Im, Im+1).
Otherwise, the sample is regarded as an outlier and the bound Tm+1 is not updated.

Since the SNLLP indicator values always perform the gradually increasing trend during the whole
life cycle of bearings, the upper bound is selected as the detection threshold. Compared with random
fluctuation, more abnormal fluctuation would appear when incipient faults occur. Therefore, the first
criterion is defined as follows: the number of indicator values above the adaptive threshold in the
sliding time-window has exceeded a safety number. The safety number is determined by the threshold
tolerance and window length, which can be calculated by the following equation:

Sn =
l

k2 , (19)

where Sn is the safety number and l is the window length.
When incipient faults occur, the indicator always performs the gradually increasing trend.

The Spearman coefficient between the indicator and time is an effective tool to evaluate the
trend [25]. First, indicator {Fi}i=1:N and time {Ti}i=1:N are converted to their ranks { fi}i=1:N and
{ti}i=1:N , and then the Spearman coefficient ρ between { fi}i=1:N and {ti}i=1:N is computed using the
following equality:

ρ =
∑N

i=1

(
fi − f

)(
ti − t

)√
∑N

i=1

(
fi − f

)2
∑N

i=1
(
ti − t

)2
, (20)

where f and t are the means of { fi}i=1:N and {ti}i=1:N , respectively. When {Fi}i=1:N is a monotonous
increasing or decreasing function of {Ti}i=1:N , the Spearman coefficient ρ equals +1 or −1. On the
contrary, if {Fi}i=1:N does not have a good monotonic relation with {Ti}i=1:N , the ρ will be close to 0.

Since the gradually increasing trend just performs after the incipient fault occurs, it is not a
wise choice using the Spearman coefficient in all of the historical measurements. Application of the
Spearman coefficient in the sliding time-window is able to increase the sensitivity of detecting the
local increasing trends. Therefore, the second criterion can be defined as follows: the Spearman
coefficient ρ in the sliding time-window is higher than 1/2. When the two criteria above are satisfied
simultaneously, it means that an incipient fault has occurred.
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4. Industrial Data Verification

4.1. Introduction to the Industrial Wind Turbine

In this section, the proposed method is demonstrated on the incipient fault detection of generator
bearings in wind turbines (WTs). As shown in Figure 7, the drivetrain of WTs mainly consists of
blades, gearboxes and generators. Vibration data is acquired from condition monitoring system (CMS).
The sampling frequency of accelerometers in the generator bearing is 25.6 kHz and 102,400 samples
(i.e., 4 s) are recorded about each 4 h. In addition, generator speed information of WTs is collected from
the supervisory control and data acquisition (SCADA) system. Due to the influence of wind speed
and grid control, WT operates under varying speed characteristics. In the monitoring wind farms,
from 25 September 2014 to 9 September 2015, a generator bearing appeared to naturally degenerate.
Vibration signals during the whole lifetime of the bearing are shown in Figure 8.
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Figure 8. Vibration signals of bearing 2.

4.2. RR Features Extraction of WT Bearings

Original features in Table 1 are extracted from de-noised vibration signals of the bearing by SVD,
i.e., 11 time-domain features, nine frequency-domain features and 16 time-frequency-domain features.
In the time-domain features, two features are extracted, which are Std of IHC and standard deviation
of inverse hyperbolic sine (Std of IHS) [9]. In the frequency domain, the harmonic amplitude sum
(HAS) of and the harmonic energy sum (HES) of the ball-pass frequency outer ring (BPFO), ball-pass
frequency inner ring (BPFI) and ball-spin frequency (HAS-BSF) are extracted, respectively. The sum of
the three HAS features and the sum of the three HES features, which are named HASS and HESS, are
calculated as well. In addition, a feature named “power ratio of maximal defective frequency to mean”
(PMM) [26] is used as follows:

PMM =
max(EBPFO, EBPFI, EBSF)

mean(E)
, (21)

where EBPF, EBPFI, EBSF is the energy of BPFO, BPFI and BSF, mean(E) is the mean of entire
frequency energy.
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The 16 time-frequency-domain features are energies (E) and energy ratios (ER) of eight frequency
bands decomposed by three-level wavelet packet decomposition. The db6 is selected as wavelet basis.
The sampling frequency of accelerometers in the generator bearing is 25.6 kHz. Thus, the whole
spectrum is divided into eight frequency bands where each frequency band has a range of 1600 Hz.

Table 1. Original features extracted from the de-noised vibration signals.

Type Time-Domain Frequency-Domain Time-Frequency-Domain

Dimensional indicator

F1: Standard deviation F12: HAS-BPFO F21–F28: E of eight bands
F2: Peak-Peak F13: HAS-BPFI -
F3: Mean-absolute F14: HAS-BSF -
F4: Root mean square F15: HASS -
F5: Std of IHC F16: HES-BPFO -
F6: Std of IHS F17: HES-BPFI -

- F18: HES-BSF -
- F19: HESS -

Non-dimensional indicator

F7: Shape factor F20: PMM F29–F36: ER of eight bands
F8: Crest factor - -
F9: Impulse factor - -
F10: Skewness - -
F11: Kurtosis - -

These 36 original features are classified into 22 dimensional features and 14 non-dimensional
features. For the 22 dimensional features, the detailed information of the corresponding RR features
extraction process is displayed as follows. The former 1000 h features and corresponding speed
parameters under the normal state are used to train the ELM empirical model. Then, for a new extracted
feature and speed parameter, the trained ELM empirical model is utilized to extract the RR online.

In order to evaluate the performance of the proposed RR features, partial features have been
intuitively compared with the corresponding RR features, which are shown in Figure 9. As mentioned
before, the generator speed during the whole life cycle has larger fluctuation due to the influence
of wind speed and grid control. It is seen that, with the generator speed variation in a wide range,
peak-peak (PP) values have a larger and regular fluctuation. Especially when the generator speed
gradually decreases, the PP values also have a decreasing trend around 6000 h. It cannot effectively
reflect the bearing degradation trend at this moment. In contrast, the PP-RR has a small fluctuation
with the change of speed. The amplitudes of PP-RR are stable before 4000 h. It does not have an
obvious decreasing trend with the speed decreasing around 6000 h. The PP-RR presents an increasing
trend during the whole life cycle, which can better reflect the degradation trend of the bearing.
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4.3. SNLLP Health Indicator Construction of WT Bearings

When the feature set composed of RR features and non-dimensional features is obtained, the
metric in Equation (10) is used to select the features that have a good degradation performance.
Generally, the features demonstrating monotonic trends are more desired. Thus, the monotonic metric
is assigned higher weights than the other two metrics, which are chosen as w1 = 0.2, w2 = 0.5, w3 = 0.3,
respectively [21]. The evaluation score J of the 36 features are calculated and shown in Figure 10.
The first half of features that have larger J values is selected.
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Then, OLPP is utilized to remove redundant information in the selected 18 degradation
features. The selected 18 degradation features are reduced as three principal components (PCs).
The dimensionality reduction result is shown in Figure 11a. At last, the GMM-based method is
utilized to fuse the three principal components. The normal data set, i.e., the former 1000 h principal
components is used to construct the GMM model. The fusion result is shown in Figure 11b. It is seen
that, with the fusion of these PCs, SNLLP shows more obvious degradation trends than these PCs and
describes the degradation process of the generator bearing during the whole life cycle comprehensively.
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4.4. Incipient Fault Detection of WT Bearings

Based on the statistic characteristics of the SNLLP values, the incipient faults are detected by
the proposed alarm trigger mechanism in Section 3.3. The former 1000 h SNLLP values are used to
calculate the initial threshold.

To demonstrate the superiority of the proposed method, another two approaches proposed
by Ginart et al. [12] and Li et al. [7], respectively, are applied for comparison. The results of these
approaches are shown in Figure 12. It is seen that as a new measured sample is captured, the adaptive
threshold in our approach is updated continuously. There are some outliers caused by noise locating
out of the adaptive threshold, which are marked by “*”. Ginart’s approach gives a false alarm during
the normal state of the bearing. It is unable to exclude outliers caused by noise disturbance due to
lacking a rational alarm trigger mechanism. Li’s result lags behind our approach seriously because this
approach is based on all historical data. When the incipient fault appears, the change of probability is
slow. However, our proposed alarm trigger mechanism has detected the incipient fault occurrence
in time.Materials 2017, 10, 675 13 of 14 
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Figure 12. The detection result of WT incipient fault. 

5. Conclusions 

Aiming at the health monitoring of bearings under varying speed conditions, this paper 
proposes an accurate incipient fault detection method. Based on the dependence relation analysis 
between speed and dimensional features, RR features based on ELM are proposed to better reflect 
the degradation trend of bearings under varying speed conditions. Then, the SNLLP health 
indicator is constructed to fuse multi-parameter features. Finally, based on the constructed SNLLP 
health indicator, an incipient fault alarm is triggered by the proposed alarm trigger mechanism. The 
proposed method is demonstrated using vibration signals from test rigs of bearings and industrial 
WTs. The results show that the RR features are insensitive to the varying speed conditions and are 
able to quantitatively reflect the degradation trend of bearings. The proposed alarm trigger 
mechanism is more reliable and accurate for the detection of incipient faults compared with two 
other alarm trigger mechanisms. 

Although this study has improved the accuracy of the incipient fault detection for bearings 
under varying speed conditions, the selection number of original features is still set subjectively. 
How to determine the selection number of original features adaptively is still a problem that needs 
to be researched in our future. 
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5. Conclusions

Aiming at the health monitoring of bearings under varying speed conditions, this paper proposes
an accurate incipient fault detection method. Based on the dependence relation analysis between speed
and dimensional features, RR features based on ELM are proposed to better reflect the degradation
trend of bearings under varying speed conditions. Then, the SNLLP health indicator is constructed
to fuse multi-parameter features. Finally, based on the constructed SNLLP health indicator, an
incipient fault alarm is triggered by the proposed alarm trigger mechanism. The proposed method
is demonstrated using vibration signals from test rigs of bearings and industrial WTs. The results
show that the RR features are insensitive to the varying speed conditions and are able to quantitatively
reflect the degradation trend of bearings. The proposed alarm trigger mechanism is more reliable and
accurate for the detection of incipient faults compared with two other alarm trigger mechanisms.

Although this study has improved the accuracy of the incipient fault detection for bearings under
varying speed conditions, the selection number of original features is still set subjectively. How to
determine the selection number of original features adaptively is still a problem that needs to be
researched in our future.
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