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Abstract: Wearable sensors have great potential uses in personal health monitoring systems, in which
textile-based electrodes are particularly useful because they are comfortable to wear and are skin
and environmentally friendly. In this paper, a hybrid textile electrode for electrocardiogram (ECG)
measurement and motion tracking was introduced. The hybrid textile electrode consists of two parts:
A textile electrode for ECG monitoring, and a motion sensor for patient activity tracking. In designing
the textile electrodes, their performance in ECG measurement was investigated. Two main influencing
factors on the skin-electrode impedance of the electrodes were found: Textile material properties,
and electrode sizes. The optimum textile electrode was silver plated, made of a high stitch
density weft knitted conductive fabric and its size was 20 mm × 40 mm. A flexible motion sensor
circuit was designed and integrated within the textile electrode. Systematic measurements were
performed, and results have shown that the hybrid textile electrode is capable of recording ECG
and motion signals synchronously, and is suitable for ambulatory ECG measurement and motion
tracking applications.
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1. Introduction

With the miniaturization of electronics, improvements in performance of low-power microprocessors,
and the development of artificial intelligence, personal health monitoring systems are becoming
possible. Wearable electronics, wireless communications, textile sensors, mobile computing,
and cloud computing are becoming increasingly important in personal health monitoring systems.
Wearable sensors and textile electrodes are particularly suitable for some long-term health monitoring
applications, such as electrocardiogram (ECG) measurement and motion tracking.

Textile electrodes are usually made of conductive yarns by weaving, knitting or embroidering
processes; or by coating or printing conductive polymers on non-conductive fabrics. In the studies of
textile electrodes, most textile electrodes are knitted structure [1–3]. Priniotakis et al. [4] compared
the knitted and woven textile electrodes by using an electrochemical cell; the results show that the
knitted structure has the lowest contact resistance. Woven and embroidered textile electrodes have also
been researched with some success [5]. However, there is no consistent conclusion as to which type of
textile structure (knit, woven, embroidered) performs best in ECG recording, because it involves many
factors, such as the structure of the fibers and yarns, the fabric density, and the manufacturing process.
The conductive material type for making the textile electrode is another important factor that affects
the performance of the electrode. Many studies have used silver plated textile materials to make textile
electrodes [2,5,6]. Other conductive materials have also been studied [7–10]. Rattfalt [11] made textile
electrodes with 100% stainless steel and 20% stainless steel, which showed the acceptable stability of
electrode potentials. However, stainless steel is highly direct current voltage (DC) polarizable and
very alloy dependent [12]. Jang et al. [13] explored the possibilities of copper (Cu) sputtered fabric as
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ECG electrode. Conductive polymers have also been used for making textile electrodes. Pani et al. [14]
made textile electrodes with poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)
coated woven fabric to monitor ECG signals.

Compared with conventional silver/silver chloride (Ag/AgCl) rigid metal electrodes, textile
electrodes have the advantage of being soft, flexible and breathable, allowing the wearer to feel more
comfortable than conventional metal plate electrodes in long-term monitoring. In addition, as textile
electrodes can be easily integrated into a garment by weaving, knitting or sewing, there is no need
for any adhesive to attach on the body, so they are skin friendly (no skin irritation or discomfort) and
environmentally friendly (electrodes are reusable). Based on these advantages, many researchers have
used textile electrodes in the development of wearable ECG systems [7,15–18].

In this paper, a hybrid textile electrode is proposed. It consists of two parts: A textile electrode
for ECG measurement, and a motion sensor for patient activity tracking. Although there are some
studies that combine motion sensors and textile electrodes into a wearable system [17–20], this is the
first time that the motion sensor is directly integrated into the textile electrode. There are good reasons
for designing this hybrid textile electrode. First of all, motion signals that recorded in synchrony with
ECG signals are beneficial in the diagnosis of heart disease. Some studies [21–24] have found that
heavy physical exertion can be the trigger of the onset of arrhythmia and acute myocardial infarction.
Furthermore, changes in posture (sitting up or standing up) may also be the cause of arrhythmia,
known as postural tachycardia syndrome (PoTS) [25]. Therefore, the motion signals recorded in
synchronization with the ECG signals can help the cardiologist find the cause of the heart disease
by providing information about the patient’s physical activity when the ECG shows an abnormality.
Moreover, tracking daily physical activity and ECG can also help prevent the sudden death in patients
with coronary heart disease, because some studies have shown that sudden death is related to physical
exertion [26–28]. Secondly, since the hybrid textile electrode is placed on the patient’s chest to measure
the ECG, the motion sensor on the hybrid electrode can also obtain information about the patient’s
respiration by tracking the movement of the chest while the patient remains stationary (sitting or
standing). The measured respiration along with the ECG can also be used to diagnosis a common
heart disease—respiratory sinus arrhythmia.

Due to the absence of conductive gel/paste, textile electrodes usually have much higher and more
unstable skin-electrode impedance than conventional Ag/AgCl wet electrodes. And the complexity
and instability of fabric structure itself also make the characteristics of textile electrodes different from
conventional metal plate electrodes. Therefore, in this paper, the electrical properties of the dry textile
electrode at the skin-electrode interface were first studied. Based on that, the electrode material and
size were investigated, and an optimum textile electrode was made. In order to integrate a motion
sensor with a textile electrode, a small flexible printed circuit board (FPCB) was designed. A hybrid
textile electrode was finally fabricated by integrating an optimum textile electrode with the small
flexible motion sensor circuit board.

2. The Skin-Electrode Interface of Textile Electrode

Textile electrodes, like conventional metallic plate electrodes, are in contact with human skin
as electrical conductors. The difference from metallic plate electrodes is that the conductive metal
is electroplated onto the textile substance or blended into the yarn. Therefore, the electrochemical
reactions occurring at the interface between the conventional metal electrode and the skin also occur
at the interface between the textile electrode and the skin. The interface is called the skin-electrode
interface. Neuman [29] proposed an equivalent circuit for modelling the electrical characteristics of the
skin-electrode interface for conventional metal electrodes, as shown in Figure 1.
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Figure 1. The electrical equivalent circuit of the skin-electrode interface [29].

In the case of dry textile electrodes, although they do not have a conductive gel/paste on the
electrode surface, the skin moisture and perspiration can also be considered as a thin electrolyte
layer between the textile electrode and the skin. “Dry” electrodes are really only dry when first
applied, skin moisture and perspiration will quickly accumulate under the electrode [30]. Therefore,
the equivalent circuit for conventional metal electrodes is also applicable to textile electrodes.
According to the equivalent circuit, the skin-electrode impedance of the textile electrode ZTextile
can be calculated as follows:

ZTextile = Rs +
Rd

1 + jωRdCd
+ Rsub +

Re

1 + jωReCe
, (1)

where Rd represents the charge transfer resistance and Cd represents the capacitance across the
electrode-electrolyte interface, Re represents the resistance of epidermis layer, Ce represents the
capacitance induced by the nonconductive stratum corneum layer, Rs represents the resistance of the
sweat, Rsub represents the overall resistance of the tissue underneath the epidermis layer.

The skin-electrode impedance of the dry textile electrode is usually much higher than the
conventional wet electrode. In most cases, the value of ZTextile is up to several hundred kΩ. Due to the
fact that the human skin has a highly nonhomogeneous multi-layered structure, the electrical properties
of the skin vary along different body parts, which also mean that the skin-electrode impedances of
the two electrodes at different skin locations are generally different. Webster [29] has found that the
impedance imbalance introduces noise into ECG signals. Olsen [31] has found that the impedance
imbalance was typically 50 percent of the individual skin-electrode impedance. Therefore, the most
effective way to reduce the impedance imbalance of dry textile electrodes is to reduce the skin-electrode
impedance. Thus, the optimum textile electrode should be made of a material having low skin-electrode
impedance characteristics.

3. Electrode Material

Various materials have been used to produce conductive textiles that are either embedded into
fabrics as conductive yarns, or plated with electrically conductive components, such as carbon, copper,
nickel, or silver. However, when choosing materials that will come into contact with the human skin,
as in the case of ECG electrodes, their biocompatibility becomes very important as the electrode is
directly applied onto the human body. Different from most other materials, silver is not only innocuous
to human skin, but also antibacterial [32–35]. Therefore, conductive fabrics made from silver plated
nylon yarns are favored for making textile electrodes by weaving or knitting. When compared with
woven fabrics, knitted fabrics usually are more flexible, stretchable, and can take up easily the curvature
of the body when attached. So, in this paper, four different knitted conductive fabrics made from
silver plated nylon yarn were considered as electrode materials, shown in Table 1, and their electrical
properties were investigated on a skin dummy. Electrode material TE1 is a silver plated knitted fabric
purchased from Shieldex (MedTex P-130, Shieldex, Bremen, Germany), material TE2 is made of 4 ply
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silver plated nylon yarn (235/34 dtex 4-ply, Shieldex, Bremen, Germany), material TE3 is made of 2 ply
silver plated nylon yarn (117/17 dtex 2-ply, Shieldex, Bremen, Germany) and material TE4 is a silver
plated spacer fabric purchased from Shieldex (Spacer Fabric B, Shieldex, Bremen, Germany). Figure 2
shows the scanning electron microscope (SEM) micrograph of a silver plate nylon yarn. The average
diameter of a silver plated nylon monofilament is about 0.028 mm.

Table 1. The properties of the four selected conductive knitted fabrics.

Electrode Materials Components Structure
Fabric

Thickness
(mm)

Yarn
Diameter

(mm)
Wales/cm Courses/cm

TE1
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3.1. Experimental Method

The electrical properties of human skin have great variations and dependent upon time and
location of the skin [36]. Thus, a skin dummy (Figure 3a) is used to measure the skin-electrode
impedance to avoid the unwanted impedance variation induced by the human skin. The design of
the skin dummy is based on Westbroek’s electrochemical cell [4,37,38], which consists of a Polyvinyl
chloride (PVC) tube filled with 0.9% of NaCl solution to simulate the body fluid. Two polyvinylidene
fluoride (PVDF) membranes are installed on the two open ends of the PVC tube to simulate the skin
barrier between the body fluid and the textile electrodes. The PVDF membranes were obtained from
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Merck® (Darmstadt, Germany), and are the same membranes that were used in P.J. Xu’s [39] dynamic
evaluation system. The pore size of the PVDF membranes in our evaluation system is 100 nm, as this
size is large enough to allow the electrolyte to flow freely through the perforated membrane [40].
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Figure 3. Skin-electrode impedance measurement on a skin dummy: (a) Skin dummy; (b) test setup.

Four textile electrodes made from materials TE1, TE2, TE3 and TE4 were tested on the skin
dummy, as shown in Table 1. The structure of the textile electrodes used in the measurement, shown in
Figure 4, it consists of two parts: A square area of size 15 mm × 15 mm, which is the electrode surface
that is in contact with the skin dummy; a rectangular area of size 7 mm × 50 mm is the electrode wire
that is connected to an impedance meter. In the measurement, the textile electrode is placed on the
top surface of the skin dummy and is fixed with a weight of 100 g, which applied a force of 0.98 N
to the electrode. A self-adhesive Ag/AgCl electrode is placed on the bottom surface to serve as a
reference electrode. A high-precision LCR-Bridge meter (HM8118, HAMEG instruments, Mainhausen,
Germany) is used in this system to measure the impedance. Two measurements were done in here.
First, impedances were measured at the frequency of 100 Hz, and measurements were last for one
hour. Second, impedances were measured within a frequency range of 20 Hz to 20 kHz when the
skin-electrode impedance is stabilized. Measurements were performed in a conditioned laboratory
where the room temperature was controlled at 20 ± 2 ◦C and the relative humidity at 65 ± 2%.
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3.2. Results and Discussion

As shown in Figure 5, the skin-electrode impedances of all four textile electrodes show a similar
trend: Impedances are rapidly decreasing within the first few minutes and then gradually become
stable. However, their differences are also noticeable. In the first few minutes of measurement,
the electrode TE1 has the fastest impedance drop among the four electrodes, and its impedance
tends to be stable in the shortest time. Moreover, after the stabilization period, the skin-electrode
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impedances of the four electrodes are different, from the highest to the lowest impedance TE2, TE3,
TE4, TE1 respectively.Materials 2018, 11, x FOR PEER REVIEW  6 of 18 
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Figure 5. Skin-electrode impedance in 1 h.

Figure 6 shows the skin-electrode impedance over the frequency range. The impedance of the
four electrodes is frequency-dependent: As the frequency increases, the impedance decreases, which is
consistent with the capacitive behavior of the skin-electrode interface. However, the differences in
these four electrode materials are also clearly shown in the impedance curves. Electrode TE1 has the
smallest impedance, as well as the smoothest impedance-frequency curve.
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Figure 6. Skin-electrode impedance versus frequency.

The difference in skin-electrode impedance can be explained by the stitch density of these fabrics.
As demonstrated in Table 1, the four electrode materials are all made of silver plated yarn, and they
are all made by knitting. Textile Electrodes TE1, TE2, TE3 are all weft knitted structures, electrode
TE4 is a knitted 3D spacer structure, but its surface layer is also weft knitted, as shown in Figure 7.
The most significant difference between these four fabrics is their stitch density and the yarn diameter.
Electrode TE1 has the highest stitch density and the smallest yarn diameter, whilst electrode TE2 has
the lowest stitch density and the largest yarn diameter. The measured skin-electrode impedance is
positively related to the yarn diameter and negatively related to stitch density.
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Figure 7. Knitted fabric structure.

According to the geometrical model of a plain knitted fabric, suggested by Munden [41], the basic
structure of a knitted fabric is a loop that consists of parts of circles joined by straight lines, as shown
in Figure 8. This model is based on Peirce’s assumptions [42]: The bending resistance of the yarns was
negligible and that the yarn was circular in cross-section.
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The length of a single loop can be calculated by Equation (2):

l = 2·lAB + 2·lBC (2)

where lAB is the straight length between point A and point B on the loop, lBC is the semicircle length
between point B and point C, c is the course spacing, d is the yarn diameter. Equation (3) is the
calculation of lAB that based on the Peirce’s model of plain weave [43]. Equation (4) is the calculation
of lBC that proposed by Munden [41].

lAB = c

[
1 +

9
16

(
d
c

)2
]

(3)

lBC = 0.544
c2

d
(4)

Noting that the loop is a 3D structure, and the section of the loop between B and C is actually
covered by a higher loop and only the section between A and B and its mirror can directly get contact
with the skin. So, the effective skin contact length in a single loop can be estimated by Equation (5):

l1 = 2c

[
1 +

9
16

(
d
c

)2
]

. (5)
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Therefore, the effective contact area per square centimeter can be estimated by Equation (6):

S = 2·C·W·c
[

1 +
9
16

(
d
c

)2
]
·D, (6)

where W is the number of wales per cm, C is the number of courses per cm, c is the course spacing
equals to 10/C, D is the effective contact width of the yarn and skin. D is related to the yarn diameter,
fiber diameter, and the deformation rate of the yarn and the skin.

According to Equation (6), the stitch density C·W is positively related to the effective skin contact
area. When the stitch density increases, it actually increases the effective skin-electrode contact
area. As we know from the electrical equivalent circuit of the skin-electrode interface in Figure 1,
the skin-electrode interface has both resistive behavior and capacitive behavior. The resistive behavior
can be expressed by Equation (7), and the capacitive behavior can be expressed by Equation (8):

Re = ρ
l
A

, (7)

Ce = ε
A
d

, (8)

where ρ is the electrical resistivity of the material, l is the fabric thickness, A is the skin-electrode contact
area, ε is the permittivity of the dielectric layer, d is the distance between the electrode and the skin.
According to Equations (7) and (8), the increase in the effective skin-electrode contact area will results
in a decrease in resistance and an increase in capacitance and according to Equation (1), reduction
in resistance and increase in capacitance will eventually lead to a reduction in the skin-electrode
impedance. Therefore, increasing the stitch density can effectively reduce the skin-electrode impedance.
In addition, the increased stitch density also helps to accumulate sweat under the electrode, so that the
skin-electrode impedance drops in a shorter time, meaning a shorter impedance stabilization period.

In ECG monitoring, small skin-electrode impedance means small noise interference; a smooth
impedance-frequency curve means that low-frequency signals have less amplitude distortion.
So according to our results, electrode material TE1 shows the best performance among all four
electrode materials, not only because it has the smallest skin-electrode impedance, but also because
it has the smoothest impedance-frequency curve and the shortest impedance stabilization period.
Therefore, conductive fabric TE1 is an optimum material for making the hybrid textile electrode.

4. Electrode Size

The size of the electrode has also been reported as having a significant influence on skin-electrode
impedance and on the ECG signal’s quality [44]. Puurtinen et al. [45] studied different sizes of textile
electrodes and found that the skin-electrode impedance increases with decreasing of the electrode
size. Marozas et al. [9] also found that textile electrodes with a contact area smaller than 4 cm2 might
cause distortions to the signal’s low-frequency spectrum. Therefore, in order to choose the optimum
electrode size of the proposed hybrid electrode, the electrode size and its influence on the ECG signal
have to be investigated.

4.1. Experimental Method

Three different electrode sizes were investigated, the electrodes were all made from conductive
fabric TE1. Conventional wet ECG electrodes (2228, 3M, Minnesota, USA) were also used to
measure the ECG for comparison purposes. Table 2 listed the areas and dimensions of the four
different electrodes.
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Table 2. Electrodes in different size.

Large Textile
Electrode

Medium Textile
Electrode

Small Textile
Electrode

Conventional Wet
Electrode

Shape of Electrodes
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Electrode Area (cm2) 8 4.5 2.25 2.27

Electrode Dimension 2 × 4 (w × L, cm) 1.5 × 3.0 (w × L, cm) 1.5 × 1.5 (w × L, cm) 1.7 (ϕ, cm)

ECG signals were measured with these four different electrodes on the chest of a female subject.
All ECG signals were recorded using ADS1292ECG-FE (Texas Instruments, Dallas, TX, USA), with only
the 50 Hz notch filter operating and all other filters switched off. The sample rate of the signal was
500 Hz, a reference electrode was used to reduce the common-mode noise. All electrodes were secured
on the skin with a 30 mmHg pressure applied by an elastic chest band.

4.2. Results and Discussion

Figure 9 shows the original ECG signals recorded with three pairs of dry textile electrodes and
one pair of wet electrodes, Figure 10 shows the power spectral density of all ECG signals. As can
be seen from Figure 9, baseline drift exists in all ECG signals, this is mainly due to body respiration
and its effect on body volume change causing skin-electrode impedance imbalance. As the size of the
electrode increases, the baseline drift effect caused by respiration is significantly reduced. Small size
textile electrodes have the largest baseline drift compared to other electrodes. Figure 10 shows that
the energy of the drifted baseline is in the frequency range of 0–0.5 Hz, and that the smallest textile
electrode has the largest baseline drift noise. Besides the baseline drift, high-frequency noise can
also be observed in all graphs, because of the presence of electromagnetic fields in the vicinity of
the patient. The smallest dry textile electrode introduces more high-frequency noise than all others.
However, the high-frequency interference is also decreased with increased electrode size. Although the
ECG signal has been filtered by a 50 Hz notch filter, the 50 Hz alternating current (AC) power line
interference and its third harmonic (150 Hz) are clearly observed in the spectrum of the smallest size
electrode. However, in the spectrum of the largest size electrode, only the 150 Hz harmonic frequency
can be observed, and its energy level is similar with that of the conventional wet electrode.

In comparison with wet electrodes, dry textile electrodes usually introduce more noise (including
the baseline drift noise and the AC power line interference) into the ECG signals. However, the result
for the largest size textile electrode is comparable to that of the wet electrode, meaning that the dry
textile electrode having a large electrode size can perform equally well for ECG monitoring. Therefore,
the electrode size of 2 cm × 4 cm is an optimum size for making our hybrid textile sensor.
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5. Motion Sensor FPCB

To track human activity, microelectromechanical (MEMS) motion sensor MPU-9250 (InvenSense,
Calgary, AB, Canada) was used in the design of the hybrid textile electrode, because of its miniature
size and powerful features. The MPU-9250 is a multi-chip module consisting of a 3-Axis gyroscope,
3-axis accelerometer, 3-axis magnetometer and a digital motion processor all in a small 3 × 3 × 1 mm
package. In order to integrate the motion sensor with the textile electrode, a flexible printed circuit
board (FPCB) is specially designed. The FPCB offers power supplies to the MPU-9250 and transmits
the detected motion data from the sensor to the microcontroller (MCU). The printed transmission lines
in the FPCB also serve as an electrode lead between the textile electrode and the input of the amplifier.
As shown in Figure 11, the FPCB consists of two parts: The first part is a mini-circuit board with
electronic components on it; the second part is printed transmission lines for transmitting bio-potential
signals and motion data to the MCU. The size of the first part is 10 mm × 7 mm. Figure 12: (a) shows
the top view of the FPCB; (b) shows the rear view of the FPCB; and (c) shows the flexibility of the FPCB.
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6. Fabrication of the Hybrid Textile Electrode

In order to integrate the mini FPCB into the textile electrode, we used silver conductive adhesive
(CW2400, Chemtronics, Kennesaw, GA, USA) to bond the rear side of the mini circuit board with
the rear side of the conductive fabric together, to establish a coherent ECG signal transmission line,
as demonstrated in Figure 13. The biopotential signal is transmitted from the textile electrode through
the silver conductive adhesive layer to the ECG electrode connection point of the FPCB, and it then
reaches the input of the biopotential amplifier through the printed transmission line. Electrical
insulation is also important for making the hybrid textile electrode. A thick, transparent, flexible silicon
coating (FSC, Electrolube, Leicestershire, UK) is brushed on the top surface of the mini circuit board to
provide insulation of the electronic components with the outside world. The flexible silicon coating is
a solvent based conformal coating designed to protect printed circuit boards. As seen in Figure 14,
the FPCB is integrated with the conductive fabric.
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Figure 14. The integration of the circuit board and the conductive fabric.

Non-conductive fabric and non-conductive sponge filler fabric are also used for making the
hybrid textile electrode. Non-conductive fabric serves as an insulating layer. Non-conductive sponge
fabric provides support for the flexible circuit board and the conductive fabric. Figure 15 illustrates the
top and the cross-sectional views of the hybrid textile electrode. The middle rectangular area is the
conductive fabric surrounded by the non-conductive fabric. The skin contact area of the conductive
fabric is 20 mm × 40 mm. Figure 16 shows the top view and the rear view of the hybrid textile electrode.
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7. Hardware Setup

The measurement system configuration is shown in Figure 17. It is based on an MSP
430 microcontroller (Texas Instruments, Dallas, TX, USA) with build in high-performance 12-bit
Analog-to-digital converter (ADC) for data acquisition and system control. A low power, 24-bit
Analog front-end ADS1292R (Texas Instruments, Dallas, TX, USA) is used for the ECG measurements;
and a motion tracking device MPU-9250 (InvenSense, Calgary, AB, Canada) is embedded in the
textile electrode to track movement. The measured ECG and motion signals are transferred into a
Bluetooth module RN41 (Microchip, Chandler, Arizona, USA) and send to a remote computer or
mobile device wirelessly.

Materials 2018, 11, x FOR PEER REVIEW  13 of 18 

 

 

 

(a) (b) 

Figure 15. The illustration of the structure of textile electrode: (a) Top view; (b) side view. 

 
(a) (b) 

Figure 16. Hybrid textile electrode: (a) Top view; (b) rear view. 

7. Hardware Setup 

The measurement system configuration is shown in Figure 17. It is based on an MSP 430 
microcontroller (Texas Instruments, Dallas, TX, USA) with build in high-performance 12-bit 
Analog-to-digital converter (ADC) for data acquisition and system control. A low power, 24-bit 
Analog front-end ADS1292R (Texas Instruments, Dallas, TX, USA) is used for the ECG 
measurements; and a motion tracking device MPU-9250 (InvenSense, Calgary, AB, Canada) is 
embedded in the textile electrode to track movement. The measured ECG and motion signals are 
transferred into a Bluetooth module RN41 (Microchip, Chandler, Arizona, USA) and send to a 
remote computer or mobile device wirelessly. 

 
Figure 17. The system setup. 

  

Figure 17. The system setup.



Materials 2018, 11, 1887 14 of 18

8. The Implementation of the Hybrid Textile Electrode for ECG Monitoring and Motion Tracking

In order to test the performance of the hybrid textile electrodes, we have undertaken measurement
using a female subject. Two hybrid textile electrodes and one textile electrode with the same structure
were sewn onto an elastic chest band, as seen in Figure 18. The Electrodes were placed on the subject’s
chest and were secured onto the skin with a 30 mmHg pressure, applied by an elastic chest band.
Signals were recorded under two everyday activities: Sitting and walking.
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Figure 18. The chest band.

Figure 19 shows the original, unfiltered signal that is recorded with the hybrid textile electrodes.
Figure 19a shows the resting ECG and its corresponding motion data; Figure 19b shows the exercise
ECG and its corresponding motion data. All ECG signals present baseline drift and high-frequency
noise. The baseline drift is mainly caused by the respiration, as the hybrid textile electrodes were
integrated into a chest band, the chest movement during respiration induces motion artefacts into the
ECG signals. As shown in Figure 19a, chest movement during respiration was captured by the motion
sensor in synchronization with the ECG. The accelerometer’s data on the Z axis has the same trend as
the baseline drift of the resting ECG. The gyroscope’s data on the X axis also shows a similar trend.
The high-frequency noise in ECG signals is mainly induced from power line interference, because textile
electrodes have high and unbalanced skin-electrode impedance, thus introducing differential mode
noise into the ECG signals. The waveform of exercise ECG shows more interference than the resting
ECG, due to motion artefacts caused by walking motion. As shown in Figure 19b, walking motion
was captured by the motion sensor in synchronization with the ECG. The accelerometer data and the
gyroscope data illustrate the motion pattern.
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Figure 19. Signals recorded by the hybrid textile electrode: (a) Sit; (b) walk.

According to the results presented in Figure 19, the hybrid textile electrode is capable of recording
ECG and tracking motion at the same time. Although the recorded ECG signals were contaminated by
baseline drift and high-frequency noises, the magnitude of the noise did not corrupt the morphology
of the recorded ECG. Therefore, the presence of these noises is tolerable and the performance of the
hybrid textile electrode in ECG monitoring is reasonable, and the integrated motion sensor was very
accurate in capturing movement by the hybrid textile electrode.

9. Conclusions

This paper presents a new hybrid textile electrode that integrates motion sensor MPU9250 with a
textile-based electrode. This proposed hybrid textile electrode is not only suitable for long-term ECG
monitoring, but also capable of tracking the patient activity simultaneously.

In the design of the hybrid textile, the performances of textile electrodes have been studied.
Four electrode materials were investigated, and the conductive fabric TE1 was chosen to be the
optimum electrode material. According to the skin-electrode impedance measurement, the conductive
fabric TE1 not only has the smallest skin-electrode impedance, but also has the smoothest
impedance-frequency curve and the shortest impedance stabilization period. The study on the
electrode size has proven that dry textile electrodes with the size of 2 cm × 4 cm can perform equally
well as commercial wet electrodes in ECG monitoring. Therefore, the size of the hybrid textile electrode
was found optimum at 2 cm × 4 cm. In order to integrate the motion sensor MPU9250 with the textile
base, a flexible printed circuit board (FPCB) has been specially designed for this purpose. The size of
the FPCB is only 1 cm × 0.7 cm, which makes it easy to integrate into the textile electrode.

The combination of motion signals and ECG signals offers great potential for cardiology clinical
trials cardiac rehabilitation patient care, and in general wellbeing and sports. The motion signals
recorded in synchronization with the ECG signals can help the cardiologist find the cause of the
heart disease by providing information about the patient’s physical activity when the ECG shows
an abnormality. By tracking daily physical activity and alerting the patient when the patient is
over-exercised can also help prevent the sudden death in patients with coronary heart disease.
Furthermore, sports and exercise can also be monitored with these new technologies that can provide
better data than the commonplace heart beat monitors.
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