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Abstract: In order to prepare parabolic superhydrophobic materials, copper meshes were used as the
substrate and ultrasonic etching and oxidative corrosion were carried out with FeCl3 solution and
H2O2 solution, respectively, and then the surface was modified with stearic acid (SA). The topological
structure and surface wettability of the prepared mesh were characterized by fluorescence microscope,
scanning electron microscopy and contact angle measurement. Finally, the as-prepared copper
meshes were applied to oil-water separation. The results showed that the micro-nano-mastoid
structure on the surface of the copper mesh was flaky bulges, forming a rough structure similar to a
paraboloid. When the oxidative corrosion time of H2O2 was 1 min, it is more beneficial to increase
the hydrophobicity of the surface of the copper mesh and increase the contact angle of water droplets
on the surface of the membrane. Additionally, based on superhydrophobic materials of the parabolic
copper mesh, the static contact angles of the water droplets, engine oil and carbon tetrachloride with
the surface were approximately 153.6◦, 5◦ and 0.1◦, respectively and the sliding angle of the water
droplets with the surface were approximately 4.9◦. The parabolic membrane was applied to discuss
the separation efficiency of different oils with deionized water and the separation efficiency was
obtained as benzene > carbon tetrachloride > oil > machine oil. Therefore, based on the research, the
parabolic superhydrophobic material has good efficiency of oil-water separation.
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1. Introduction

In recent years, inspired by the hydrophobic phenomenon of plants and insects, scholars all
over the world pay attention to superhydrophobic materials because of their wide application
prospects [1–4]. In order to obtain hydrophobic materials with superior performance, researchers
constantly explore the prediction theory of superhydrophobic model and the preparation
technology [5–7]. In terms of model theory prediction, based on the classical Young’s equation [8], the
Wenzel equation [9] and the Cassie-Baxter model [10], in order to explore which structure is more
conducive to the superhydrophobicity of the surface, Patankar et al. [11] firstly constructed a cylindrical
groove model with micro-nano composite structure and theoretically analyzed the Wenzel equation
of the primary structure and the Cassie-Baxter equation under steady state. Yamamoto [12] et al.
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generalized the microscopic surface into a column for analysis. For modeling and infiltration analysis,
Marmur et al. [13] divided the rough surface into a cylindrical structure, a truncated cone structure,
a parabolic structure and a hemispherical structure, which verified that the parabolic was most
advantageous. Zhang et al. [14] designed the simulated surface microstructure of different models
and found that the sinusoidal microstructure similar to the parabolic structure was the most suitable
morphology for making superhydrophobic surfaces. It can be seen from the perspective of model
analysis that the parabolic structure was the most favorable for forming superhydrophobic materials
but there were few reports on how to prepare parabolic superhydrophobic materials. Therefore, the
preparation of parabolic superhydrophobic materials was worthy of further exploration.

Based on model predictions, the correct choice of substrate materials was the basis for achieving
superhydrophobic surface. In the existing research of superhydrophobic substrate materials, copper
is one of the most attractive oil-water separation materials due to its ductility, low density, high
specific surface area, mechanical strength, recyclability and environmental friendliness [15–17].
Cao et al. [18] found that a 1-dodecanethiol film modified with dopamine was prefabricated on
a coarse mesh by a simple impregnation process to obtain a superhydrophobic copper mesh film
with a micro-nano layered structure. Rong et al. [16] reported fabrication of a superhydrophobic
copper foam with high oil-water separation efficiency, which can serve both as oil absorption material
and oil-water separation membrane. In addition, low surface energy is also a key factor in achieving
superhydrophobicity, which can be achieved by the introduction of chemical modifiers such as coupling
agents and stearic acid. Li et al. [19] constructed a superhydrophobic PVDF/SA nanofiber membrane
that maintained high separation efficiency and corrosive treatment after 10 cycles. Fan et al. [20]
found that CuO film modified with SA became superhydrophobic and had good corrosion resistance.
Maryam Khosravi et al. [21] used a stencil to modify the surface with SA as the substrate and found
that it was reused many times during the oil-water separation process without reducing its separation
ability. Therefore, the study on the preparation of superhydrophobic materials with copper as the
substrate and SA as the modifier have a broad development prospect.

The preparation of superhydrophobic materials was not only related to the substrate material
and modifier but also to the construction method. Various methods, including electrospinning [22,23],
chemical vapor deposition [24,25] and one-step coating [26,27] have been reported for constructing
superhydrophobic membranes with a micro–nano structure [28]. Most of these methods focused on the
specific coating technology of hydrophobic materials. Li et al. [19] reported that a facile electrospinning
technology was utilized to prepare polyvinylidenefluoride (PVDF)/(SA) nanofibrous membranes.
This method is, however, time-consuming and difficult to control accurately. Wu et al. [29] studied
the preparation of superhydrophobic surfaces by spraying, dipping, painting and so forth, and used
nanoparticles (i.e., SiO2 or TiO2) and epoxy resin as raw materials to simulate ordinary household
coatings, which was easy to operate but the surface stability and the durability of the modification
layer were often too poor. In order to improve these problems, wet etching [15,30,31] technology
has been developed in recent years. Cao and co-workers [32] fabricated super-wettable surfaces on
copper mesh and copper foam by etching with H2O2 and HNO3 and then immersed them into AgNO3

solution, the Cu@Ag films were formed on copper substrates and exhibited superhydrophilicity and
underwater superoleophobicity. This method is more effective for constructing a surface roughness
structure, however, the etching solution is often harmful to the environment. Similar research results
were [33,34] and so forth, they only paid attention to the roughness of the surface of the material and
there was very little analysis on how to etch a specific morphology. Therefore, the technique used to
etch a specific shape on the surface and then apply it as a superhydrophobic material was the most
interesting issue.

In this study, a 200 copper mesh was used as the substrate, firstly, the copper mesh was
ultrasonically etched to roughen the surface and then ultrasonic oxidized and etched to realize
the parabolic specific morphology. The copper mesh was modified with SA to obtain the surface
of the copper mesh similar to the parabolic rough structure. Then, the superhydrophobic surface
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was characterized by fluorescence microscopy, scanning electron microscopy (SEM) and wettability.
Finally, the parabolic copper mesh was applied to oil-water separation and the relationship between
superhydrophobic surface contact angle and oil-water separation efficiency was studied for different
density oils.

2. Experiment

2.1. Reagents and Materials

200 Copper mesh, acetone, ethyl alcohol, stearic acid, ferric chloride, hydrogen peroxide (30 wt%),
deionized water, benzene, cooking oil, engine oil, carbon tetrachloride. All other reagents are analytical
grade and used as received. All chemical reagents were purchased from Tianjin Komi Chemical
Reagent Co., Ltd. (Tianjin, China).

2.2. Fabrication of Parabolic Superhydrophobic Material

First, 200 copper meshes with a size of 4 cm × 4 cm were ultrasonically cleaned using acetone,
ethanol and deionized water for ten minutes sequentially, to remove any impurity residual on its
surface. After cleaning, the copper meshes were dried with N2. Then the copper meshes were
chemically etched using 35%FeCl3 solution for 20 min in an ultrasonic bath. After that, the etching
samples were immersed into the 30%H2O2 solution for different times (0 min, 1 min, 2 min and 5 min)
to deposit a uniform layer of oxidation film on samples surface, respectively. And then the samples
were rinsed with distilled water and dried with N2. Finally, the as prepared copper meshes were
immersed in a 10 mmol/L ethanolic/water solution (at a volume ration of 1:3) of SA for 30 h at 60 ◦C.
The resulting membranes were rinsed with ethanol and deionized water and then dried at room
temperature. The obtained copper meshes were subjected to further characterizations.

2.3. Characterization

2.3.1. Fluorescence Microscope Characterization

The prepared hydrophobic mesh membrane was placed in the center of the slide and placed flat
on the stage of the fluorescence microscope (LW300LFT, Xi’an Weiwei Optoelectronic Technology Co.,
Ltd., Xi’an, China). The objective lens was adjusted to PL100/1.25 (0.17) and the eyepiece magnification
was 10×. And then the changes on the surface morphology of the copper mesh were observed.

2.3.2. SEM Characterization

The surface morphologies of the copper meshes obtained in different solutions were characterized
by SEM imaging on a FEI Quanta 200 SEM (Hillsboro, OR, USA). It is necessary to carry out gold spray
on the surface of the sample before the test, which can well observe the microscopic morphology of
the copper mesh surface and enhance the conductivity of the sample and then the sample was fixed on
the sample stage to observe. All steps were carried out in a vacuum environment.

2.3.3. Contact Angle Measurements

The contact angles (CAs) of the deionized water, engine oil and carbon tetrachloride and
the sliding angle of the deionized water were measured at ambient temperature using a SL200KS
contact angle meter (provided by American KINO Industry Co., Ltd., Somerville, Boston, MA, USA).
The volume of the test water droplet was approximately 3 µL. At least three parallel positions on the
surface were measured to obtain the average contact angle values and the accuracy was 0.1◦.

2.4. Oil-Water Separation Test

The as-prepared superhydrophobic copper mesh was fixed in homemade oil-water separation
system. Oils of different densities (Sultan I staining) and deionized water (methylene blue staining)
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were mixed at a volume ratio of 1:1, respectively. Carbon tetrachloride (density greater than water) and
benzene (density less than water) were mixed with deionized water respectively to separate oil from
water under the driving force of gravity. After the separation of oil-water, the oil in the beaker will be
recycled and the selective separation process was recorded with a digital camera. According to the oil
volume of the meshes, the oil-water separation efficiency was calculated by the following formula.

η =
VR
V0

× 100% (1)

where VR is the recovered oil volume and V0 is the initial oil volume.

3. Results and Discussion

3.1. Fluorescence Microscope Characterization

The morphology of copper mesh before and after etching and oxidation under fluorescence
microscope was shown in Figure 1. As can be seen that the shape of the copper mesh had a significant
change. The size of the untreated copper mesh was uniform and the thickness of the copper mesh
was basically the same. However, the copper mesh after etching and oxidation was clearly narrowed,
indicating that part of the mesh of the copper mesh was subjected to cavitation impact through the
ultrasonic etching of the acidic etchant FeCl3 solution, the surface of the copper meshes had been
deformed and the materials had been eroded. That is, the cavitation erosion occurred. This ultrasonic
cavitation and cavitation can enhance the etching effect and form a three-dimensional rough surface on
the surface of the copper mesh, which is a necessary condition for oil-water separation [35]. Therefore,
the treatment of copper meshes with FeCl3 and H2O2 solutions was crucial for the formation of
superhydrophobic surfaces.
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Figure 1. Copper mesh morphology under fluorescence microscope. (a) Untreated copper mesh; (b)
Etching and oxidation copper mesh.

Figure 2 showed that the surface morphology of copper mesh after etching and oxidation without
modification and modification of SA. By comparing Figure 2a and Figure 2b, it can be seen that after
the copper mesh was modified with SA, the pore diameter of the mesh became significantly smaller,
which indicated that SA was successfully attached to the surface of the copper meshes and the copper
mesh surface became rough, indicating that the surface roughness of the copper mesh was increased
by modification with SA [19,36]. However, the meshes were still present, so the separation effect will
not be affected when the screen hole was blocked by SA.
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Figure 2. (a) Copper mesh modified by SA after etching and oxidation; (b) Etching of copper mesh
without modification of SA after oxidation.

3.2. SEM Characterization

Owing to the fact that the fluorescence microscope can only roughly see the difference in surface
morphology of the copper mesh before and after treatment. Thus, we used a SEM to characterize the
sample for further observed the microstructure of the copper mesh surface.

3.2.1. Effect of Oxidation Time of Hydrogen Peroxide

After modification of SA by copper mesh with different oxidation time, the surface morphology
was characterized by SEM, as shown in Figure 3.
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Figure 3. SEM image of copper mesh modified SA at different oxidation times. (a) oxidation time
0 min; (b) oxidation time 1 min; (c) oxidation time 2 min; (d) oxidation time 5 min.

It can be clearly seen from the Figure 3a that when the oxidation time was 0, the surface of the
copper mesh after the SA modification did not show large irregular mastoid structure. However, when
the oxidation time of hydrogen peroxide was 1min, as shown in Figure 3b, the surface of the copper
mesh was scattered with irregular sheet mastoid which were basically consistent in height. Meanwhile,
Rong et al. [1] also studied the amplified SEM images in the three-dimensional copper foam, which
showed papillae with a flower-like structure. These micro-nano-blocked mastoids of different sizes
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formed mastoid clusters and there were obviously spacing and gap between the blocky mastoids and
the mastoid clusters, which can store air. Therefore, this can form the air cushion on the surface of the
copper mesh to prevent contact between the water droplets and the solid surface, which increased the
CAs of the water. With the increase of oxidation time, as shown in Figure 3c,d, it can be seen that the
mastoid clusters on the surface of the membrane showed a large area of massive structure and the
spacing and gap between the mastoids and the mastoid clusters became smaller. When the oxidation
time of hydrogen peroxide was 5 min, the mastoid clusters on the surface of the membrane were more
compact. At this point, the space between the membrane surface can be used to store air was small,
which was not conducive to improving the hydrophobicity of the membrane surface.

According to the study of the hydrophobic surface structure of the lotus leaf and the Cassie-Baxter
theory, the air cushion on the surface of the membrane was essential for obtaining a hydrophobic
surface [10,16,37,38]. From the comprehensive analysis of Figure 3, it was more beneficial to obtain a
rough structure similar to the geometry of the lotus leaf surface when the oxidation time of hydrogen
peroxide was 1 min. Therefore, the selection of hydrogen peroxide oxidation time was 1 min.

3.2.2. Surface Morphology of Copper Mesh Not Modified by SA

Figure 4a,b were SEM images of untreated and etching and oxidation copper meshes with the
800× without SA modification, respectively. Comparing Figure 4a with Figure 4b, it showed that the
surface morphology of the etching and oxidation copper mesh had changed significantly. The surface
of the untreated copper mesh was smooth, while the etching and oxidation copper mesh was basically
unchanged in shape and the surface of the copper mesh became very rough [39]. In addition, the
diameter of copper mesh wire was slightly narrowed and the corresponding mesh size was slightly
increased, which was basically consistent with the observation under the fluorescence microscope,
indicating that copper mesh was affected by ultrasonic cavitation and cavitation after ultrasonic etching
of acidic etching agent FeCl3 solution and even rough morphology was formed on the surface of
copper mesh.
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Figure 4. SEM image of copper mesh at 800×. (a) Surface morphology of untreated copper mesh;
(b) Surface morphology of copper mesh after etching and oxidation.

3.2.3. Surface Morphology of Copper Mesh Modified with SA

The untreated copper mesh and the morphology of the copper mesh under different treatment
processes were shown in Figure 5.

As can be seen from Figure 5a, the surface of the untreated copper mesh in the SEM at 5000× was
smooth. And after ultrasonic etching by FeCl3 solution, the surface of the copper mesh became rough,
showing a microporous structure of different sizes as shown in Figure 5b. Comparing Figure 5b and
Figure 5c, it can be concluded that after H2O2 solution oxidation etching, there was a large number
of mastoid structures on the surface of the copper mesh and the surface roughness was obviously
improved. Figure 5d showed that the surface of the copper mesh was completely covered with SA after
modification with SA, compared with Figure 5c, the surface mastoid structures were interlaced and
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clustered to form a large number of mastoid clusters, which further improved the surface roughness of
the copper mesh.Materials 2018, 11, x FOR PEER REVIEW  7 of 15 
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Figure 5. Copper mesh surface morphology. (a) Untreated copper mesh; (b) Etched copper mesh in
FeCl3 solution; (c) Etching and oxidation copper mesh; (d) Copper mesh modified with SA.

Figure 6 showed the surface morphology of the etching and oxidation copper mesh after
modification of SA.
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Figure 6. SEM image of the surface morphology of the etching and oxidation copper mesh after
modification of SA. (a) at a low magnification (200×); (b) at a high magnification (5000×).

Under 200× electron microscopy, as shown in Figure 6a. After the copper mesh was modified
with SA, the surface of the copper mesh substrate was uniformly adhered by SA and it was apparent
that the surface after the modification was a rough surface, moreover, the mastoid height was basically
the same. By contrast, a 5000× SEM was shown in Figure 6b. The micro-nano-mastoid structure on the
surface of the copper mesh modified by SA was a sheet-like bulge and adjacent sheet mastoids were
interlaced and clustered to form a mastoid cluster similar to a paraboloid. In addition, there were clear
spacing and gap between the mastoid clusters and these voids can capture a large amount of air, which
had a significant impact on the hydrophobic properties of the surface. Therefore, it can be concluded
that after modifying the SA, the copper mesh can form a rough structure similar to a paraboloid.
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In order to further prove that the surface morphology of the copper mesh was parabolic, the
microstructure of the copper mesh surface in the SEM image was generalized, as shown in Figure 7.
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It can be seen that the fitting curve obtained from the SEM image was parabolic and the correlation
coefficient was greater than 0.80 (as shown in Table 1). According to the absolute value of a in Table 1,
the opening of the first parabola was the largest and the fifth was the smallest, it meant that a parabolic
micro-nano structure of various sizes was formed on the surface of the copper mesh. Therefore, the
copper mesh modified by SA can form a rough structure similar to a parabolic structure.

Table 1. Fitted parabolic equation parameters.

Serial Number a h k R2

1 −0.44935 4.4073 8.9446 0.89199
2 −0.78860 8.1127 9.5793 0.89229
3 −0.96367 2.8509 11.9148 0.91121
4 −0.66353 6.0041 11.0044 0.80343
5 −1.32367 8.2791 11.0860 0.95173

Equation: y = a × (x − h)2 + k. The equation is the apex of the quadratic function which is transformed from the
general form of the fitted curve equation, where x, y represent the independent and dependent variables of the
quadratic function, respectively.

3.3. Wettability Characterization

The CAs of a droplet on a solid surface a direct measure of its wetting performance. For lyophobic
surfaces, the droplets were not easily spread and appeared spherical on the surface, however, for
lyophilic surfaces, the droplets were easily wet the surface and spread out.

The wetting behaviors of water-oils on the as-prepared copper meshes were evaluated by the
contact angle measurement. The CA of the water droplets on the untreated copper mesh and the
as-prepared copper mesh were shown in Figure 8a,b. The untreated copper mesh was hydrophilic
and the CA of water droplets with the surface was 86.3◦, however, the static contact angle of the water
droplets with the surface of the as-prepared copper mesh was measured to be 153.6◦. That is, the
surface of the prepared copper mesh which had a parabolic rough structure was a superhydrophobic
surface. Cao et al. reported that the DDT-modified copper mesh showed a superhydrophobicity and
the CA of water droplets with the surface was 152◦ [32]. Therefore the hydrophobic properties of the
copper mesh modified with SA had certain advantages.

It is well known that the static contact angle and the dynamic contact angle (sliding angle) are
important indicators for measuring the wetting properties. When the static contact angle is greater
than 150◦ and the dynamic contact angle (sliding angle) is less than 10◦, it can be proved that the
materials have good superhydrophobic properties. The diagram of water droplets sliding on the
inclined surface was shown in Figure 9. It can be seen that when the measuring device is inclined at
a certain angle, the water droplet can freely slide down along the inclined surface from the Figure 9.
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After five tests, the critical angle (sliding angle) of the water droplets slipped instantly was measured
to be approximate 4.9◦. Therefore, it can be concluded that the copper mesh with a parabolic structure
is superhydrophobic.Materials 2018, 11, x FOR PEER REVIEW  9 of 15 
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droplets; (c) The rolling state of water droplets at the bottom of the slope.

Analogously, the CAs of the engine oil and carbon tetrachloride on the untreated copper mesh
and the as-prepared copper mesh were measured, as shown in Figure 10a–d. Among them, ab and
cd showed the wettability of engine oil and carbon tetrachloride on the surface of the two kinds of
membranes, respectively. After taking the average of three measurements, the CA of the engine oil
on the surface of the untreated copper mesh was measured to be approximate 60.2◦, as shown in
Figure 10a, indicating that the copper mesh membrane was inherently lipophilic [1,40]. Figure 10b
showed that the modified copper mesh surface had a super-lipophilic property and the CA with
the engine oil was approximate 5◦, which indicated that the copper mesh with the rough parabolic
structure was superhydrophobic surfaces.

Because carbon tetrachloride had a much lower viscosity than engine oil, carbon tetrachloride
was immediately spread on the surface of the prepared copper mesh in the experiments and the CA
that was approximate 0.1◦ was obtained as shown in Figure 10d. Analogously, the CA of the untreated
copper mesh surface was approximate 67.4◦, as shown in Figure 10c. Comparing Figure 10c with
Figure 10d, it can conclude that the as-prepared copper meshes with the parabolic microstructure was
super-lipophilic when the oil droplet was carbon tetrachloride. Comparing Figure 10b and Figure 10d,
because the oil type was different (i.e., oil/carbon tetrachloride, light oil/heavy oil), the viscosity
coefficient was different, resulting in different CAs of oil droplets on the surface of the material.

In summary, by measuring the wettability of water droplets, engine oil and carbon tetrachloride
on two kinds of membranes, it was shown that the microscopic morphology of the surface of the
material directly affected the CAs, moreover, the hydrophobic and lipophilic properties of the material
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affected by its CAs. So, the copper mesh surface with the microstructure of the paraboloid was the
superhydrophobic surface.Materials 2018, 11, x FOR PEER REVIEW  10 of 15 

 

 
Figure 10. Wettability of oil droplets on the surface of the membrane. (a,c) Untreated copper mesh; 
(b,d) As-prepared copper mesh. 

Because carbon tetrachloride had a much lower viscosity than engine oil, carbon tetrachloride 
was immediately spread on the surface of the prepared copper mesh in the experiments and the CA 
that was approximate 0.1° was obtained as shown in Figure 10d. Analogously, the CA of the 
untreated copper mesh surface was approximate 67.4°, as shown in Figure 10c. Comparing Figure 
10c with 10d, it can conclude that the as-prepared copper meshes with the parabolic microstructure 
was super-lipophilic when the oil droplet was carbon tetrachloride. Comparing Figure 10b and 10d, 
because the oil type was different (i.e., oil/carbon tetrachloride, light oil/heavy oil), the viscosity 
coefficient was different, resulting in different CAs of oil droplets on the surface of the material. 

In summary, by measuring the wettability of water droplets, engine oil and carbon tetrachloride 
on two kinds of membranes, it was shown that the microscopic morphology of the surface of the 
material directly affected the CAs, moreover, the hydrophobic and lipophilic properties of the 
material affected by its CAs. So, the copper mesh surface with the microstructure of the paraboloid 
was the superhydrophobic surface. 

3.4. Determination of Oil/Water Separation Performance 

Figure 11 showed the oil-water separation process after mixing 30 mL of carbon tetrachloride 
with 30 mL of deionized water. 

 
Figure 11. Oil-water separation device. 

(a) 

 

(b) 

(c) (d) 

Figure 10. Wettability of oil droplets on the surface of the membrane. (a,c) Untreated copper mesh;
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3.4. Determination of Oil/Water Separation Performance

Figure 11 showed the oil-water separation process after mixing 30 mL of carbon tetrachloride
with 30 mL of deionized water.
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Figure 11. Oil-water separation device.

In the oil-water separation process, the density of carbon tetrachloride was greater than that of
water, so the blue deionized water firstly entered the separation device through the upper glass tube.
As mentioned above, the as-prepared membrane was superhydrophobic, the deionized water was all
the time blocked on the membrane, red carbon tetrachloride, meanwhile, through the blue deionized
water reached the surface of the membrane and the red carbon tetrachloride penetrated downward
through the membrane under the action of gravity and capillary force, then gradually flowed into the
beaker below the device, thereby the separation of oil-water was achieved. Analogously, the oil-water
separation experiment of benzene was carried out.
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3.4.1. Separation Efficiency of Different Oil-Water Mixtures

The density of engine oil and cooking oil is less than that of water and the viscosity of engine oil
and cooking oil is much higher than the carbon tetrachloride and benzene, thus, it was not effective
to separate the engine oil and the cooking oil using the above device. In order to accurately measure
the separation efficiency of the copper mesh for different oil-water mixtures, the oil-water separation
experiment was carried out by using a self-made simple oil-water separation device. Taking the
cooking oil as an example in Figure 12.

As shown in Figure 12a, the oil-water mixtures prepared from 4 mL of engine oil and 2 mL of
deionized water in a syringe and the prepared membrane was placed on top of the small beaker to
completely cover the mouth of the beaker and the small beaker was placed in the center of the large
culture dish. After shaking the mixture of oil and water in the syringe, then gradually squeezed the
syringe and slowly dripped the mixture from the needle to the membrane, as shown in Figure 12b.
Due to gravity and capillary forces, as well as the superlipophilic properties of the copper mesh, the
oil droplets gradually flowed through the membrane into the small beaker. However, because of the
superhydrophobicity, water was trapped above the membrane, as shown in Figure 12c,d. The process
of oil-water separation in the whole process was approximately 4 min. Figure 12e,f showed that after
finishing separating the oil-water, the water that trapped above the copper mesh was poured into a
large petri dish and almost no blue residue was observed on the membrane.
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According to the above methods, the mixtures of engine oil, benzene, carbon tetrachloride and
deionized water were separated by oil-water separation experiment and the oil-water separation
efficiency of these four different oils was measured, respectively. The results were shown in Figure 13.

It can be seen from Figure 13 that the separation of benzene, carbon tetrachloride, cooking oil
and engine oil by the prepared parabolic morphology copper mesh was more than 91% and even
the separation efficiency of benzene and carbon tetrachloride mixture was above 97%. Moreover, the
separation efficiency of the oil-water mixture of cooking oil and engine oil was clearly smaller than the
benzene and carbon tetrachloride. It can be seen that due to different oil types and different parameters
such as viscosity coefficient, thus, the CAs of the oil droplets on the surface of the membrane were
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different and the separation efficiency was also different [21,41,42]. Hereby a comparison of the copper
mesh prepared from different modified materials and methods for oil water separation is summarized
in Table 2. And the separation efficiency and oil-water mixtures were shown in Table 2.
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Table 2. Comparison of the copper mesh membranes materials for oil/water separation.

Year Matrix Modified Materials Method Separation
Efficiency (%)

Oil-Water
Mixtures Ref.

2018 Cu mesh Stearic acid (SA) etching >97 benzene, carbon
tetrachloride

This
work

2018 Cu mesh dodecanethiol
(DDT) etching >98 cyclohexane,

n-hexane [32]

2017 Cu mesh Candle soot Deposition 95 – [35]

2017 Cu mesh CuWO4@Cu2O Electrochemical
anodization 95 cyclohexane,

chloroform [43]

2017 Cu mesh Cu2S@Cu2O Chemical bath
deposition >94 isooctane,

chloroform [44]

2017 Cu mesh Dopamine;
1-dodecanethiol Dip-coating 90 cyclohexane,

n-hexane [18]

2017 Cu mesh 1-dodecanethiol
(HS(CH2)11CH3) etching >92 gasoline, diesel [45]

2016 Cu mesh dodecanthiol (DDT) thermal
oxidation 95 dodecane,

hexadecane [46]

It can be seen from the Table 2 that the parabolic superhydrophobic material prepared in this
study had certain advantages for oil-water separation and the etching method was more advantageous
than other methods. In addition, different modified materials, methods and oils have an effect on the
separation efficiency.

3.4.2. Relationship between CAs and Oil-Water Separation Efficiency

The oil-water separation efficiency is not only related to the viscosity coefficient of oil droplets
but also closely related to the contact angle. For this reason, the separation efficiency of different oils
and CA of the copper mesh with the rough shape of the paraboloid were experimentally determined
and the separation efficiency was determined by a needle tube experiment, the whole oil-water
separation process after mixing 4mL benzene with 2 mL deionized water lasted approximately 15 s
and the separation process of the same dose of carbon tetrachloride, cooking oil, engine oil took about
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20 s, 4 min 5 s, 5 min 44 s, respectively and the average rate of decline of oil droplets was engine
oil < cooking oil < carbon tetrachloride < benzene, the aforementioned oil-water separation efficiency
was benzene > carbon tetrachloride > cooking oil > engine oil, therefore, the oil and water separation
efficiency was positively correlated with the average flow rate of oil droplets. The contact angle of the
oil with the membrane was benzene (0◦) < carbon tetrachloride (0.1◦) < cooking oil (4.6◦) < engine oil
(5◦), which can be obtained: (a) The smaller the contact angle of the surface of the membrane, the larger
the average flow rate of the oil droplets, the conclusion verified the rule that the CAs was positively
correlated with the average flow velocity of water droplets and negatively correlated with the average
flow velocity of oil droplets by Zhang [47]. (b) The smaller the CAs of the surface of the membrane,
the higher the separation efficiency of oil-water [48].

4. Conclusions

In a summary, by controlling etching and oxidation conditions, the rough micro-nano structure
can be obtained on the surface of the copper mesh and finally a parabolic superhydrophobic membrane
was obtained by modifying the SA with low surface energy. The as-prepared copper mesh was used for
the oil-water separation of different oils and the oil-water separation efficiency was benzene > carbon
tetrachloride > cooking oil > engine oil, therefore, the parabolic superhydrophobic membrane has a
good oil-water separation effect.
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