Characterization of Active Edible Films based on Citral Essential Oil, Alginate and Pectin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Film Preparation
2.3. Film Thickness and Gas Barrier Properties
2.4. Mechanical Properties
2.5. Thermo-Gravimetric Analysis (TGA)
2.6. Attenuated Total Reflectance Infrared Spectroscopy (ATR-IR) Analysis
2.7. Water Contact Angle Determination (WCA)
2.8. Color
2.9. Morphology Evaluation
2.10. Statistical Analysis
3. Results and Discussions
3.1. Thickness and Gas Barrier Properties
3.1.1. Thickness
3.1.2. Gas Barrier Properties
3.2. Mechanical Properties
3.3. Thermogravimetric Analysis
3.4. Water Contact Angle (WCA) Measurements
3.5. ATR-IR Analysis
3.6. Color
3.7. Microstructure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Falguera, V.; Quintero, J.P.; Jiménez, A.; Munoz, J.A.; Ibarz, A. Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci. Technol. 2011, 22, 292–303. [Google Scholar] [CrossRef]
- Mannozzi, C.; Cecchini, J.P.; Tylewicz, U.; Siroli, L.; Patrignani, F.; Lanciotti, R.; Romani, S. Study on the efficacy of edible coatings on quality of blueberry fruits during shelf-life. LWT-Food Sci. Technol. 2017, 85, 440–444. [Google Scholar] [CrossRef]
- Mannozzi, C.; Tylewicz, U.; Chinnici, F.; Siroli, L.; Rocculi, P.; Dalla Rosa, M.; Romani, S. Effects of chitosan based coatings enriched with procyanidin by-product on quality of fresh blueberries during storage. Food Chem. 2018, 251, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Pasha, I.; Saeed, F.; Sultan, M.T.; Khan, M.R.; Rohi, M. Recent Developments in Minimal Processing: A Tool to Retain Nutritional Quality of Food. Crit. Rev. Food Sci. Nutr. 2014, 54, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.S.; Cardoso, M.G.; Guimarães, A.C.; Guerreiro, A.C.; Gago, C.M.; Vilas Boas, E.V.; Dias, C.M.; Manhita, A.C.; Faleiro, M.L.; et al. Effect of edible coatings with essential oils on the quality of red raspberries over shelf-life. J. Sci. Food Agric. 2017, 97, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Benbettaïeb, N.; Kurek, M.; Bornaz, S.; Debeaufort, F. Barrier, structural and mechanical properties of bovine gelatin-chitosan blend films related to biopolymer interactions. J. Sci. Food Agric. 2014, 94, 2409–2419. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.; Krochta, J.M. Whey protein-polysaccharide blended edible film formation and barrier, tensile, thermal and transparency properties. J. Sci. Food Agric. 2011, 91, 2628–2636. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Graü, M.A.; Avena-Bustillos, R.J.; Olsen, C.; Friedman, M.; Henika, P.R.; Martín-Belloso, O.; Pan, Z.; McHugh, T.H. Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate-apple puree edible films. J. Food Eng. 2007, 81, 634–641. [Google Scholar] [CrossRef]
- Valencia-Chamorro, S.A.; Palou, L.; Del Río, M.A.; Pérez-Gago, M.B. Antimicrobial Edible Films and Coatings for Fresh and Minimally Processed Fruits and Vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2011, 51, 872–900. [Google Scholar] [CrossRef] [PubMed]
- Vargas, M.; Pastor, C.; Chiralt, A.; McClements, D.J.; González-Martínez, C. Recent Advances in Edible Coatings for Fresh and Minimally Processed Fruits. Crit. Rev. Food Sci. Nutr. 2008, 48, 496–511. [Google Scholar] [CrossRef] [PubMed]
- Galus, S.; Lenart, A. Development and characterization of composite edible films based on sodium alginate and pectin. J. Food Eng. 2013, 115, 459–465. [Google Scholar] [CrossRef]
- Morillon, V.; Debeaufort, F.; Blond, G.; Capelle, M.; Voilley, A. Factors affecting the moisture Permeability of Lipid-Based Edible films: A review. Crit. Rev. Food Sci. Nutr. 2002, 42, 67–89. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-González, L.; Vargas, M.; González-Martínez, C.; Chiralt, A.; Cháfer, M. Use of Essential Oils in Bioactive Edible Coatings: A Review. Food Eng. Rev. 2011, 3, 1–16. [Google Scholar] [CrossRef]
- Silva-Weiss, A.; Ihl, M.; Sobral, P.J.A.; Gómez-Guillén, M.C.; Bifani, V. Natural Additives in Bioactive Edible Films and Coatings: Functionality and Applications in Foods. Food Eng. Rev. 2013, 5, 200–216. [Google Scholar] [CrossRef] [Green Version]
- Prommakool, A.; Sajjaanantakul, T.; Janjarasskul, T.; Krochta, J.M. Whey protein-okra polysaccharide fraction blend edible films: Tensile properties, water vapor permeability and oxygen permeability. J. Sci. Food Agric. 2011, 91, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, A.C.; Gago, C.M.L.; Faleiro, M.L.; Miguel, M.G.C.; Antunes, M.D.C. The effect of alginate-based edible coatings enriched with essential oils constituents on Arbutus unedo L. fresh fruit storage. Postharvest. Biol. Technol. 2015, 100, 226–233. [Google Scholar] [CrossRef]
- Bonilla, J.; Antarés, L.; Vargas, M.; Chiralt, A. Edible films and coatings to prevent the detrimental effect of oxygen on food quality: Possibilities and limitations. J. Food Eng. 2012, 110, 208–213. [Google Scholar] [CrossRef]
- Emmambux, N.M.; Minnaar, A. The effect of edible coatings and polymeric packaging films on the quality of minimally processed carrots. J. Sci. Food Agric. 2003, 83, 1065–1071. [Google Scholar] [CrossRef]
- Siracusa, V.; Ingrao, C. Correlation among gas barrier behavior, temperature and thickness in BOPP films for food packaging usage: A lab-scale testing experience. Polym. Test. 2017, 59, 277–289. [Google Scholar] [CrossRef]
- Kokoszka, S.; Debeaufort, F.; Lenart, A.; Voilley, A. Water vapor permeability, thermal and wetting properties of whey protein isolate based edible films. Int. Dairy J. 2010, 20, 53–60. [Google Scholar] [CrossRef]
- Debeaufort, F.; Quezada-Gallo, J.-A.; Voilley, A. Edible films and Coatings: Tomorrow’s Packagings: A review. Crit. Rev. Food Sci. Nutr. 1998, 38, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Debeaufort, F.; Voilley, A. Methyl cellulose-based films and coatings I. Effect of plasticizer content on water and 1-octan-e-ol sorption and transport. Cellulose 1995, 2, 205–513. [Google Scholar] [CrossRef]
- Kurek, M.; Descours, E.; Galic, K.; Voilley, A.; Debeaufrot, F. How composition and process parameters affect volatile active compounds in biopolymer films. Carbohydr. Polym. 2012, 88, 646–656. [Google Scholar] [CrossRef]
- Wang, X.; Sun, X.; Liu, H.; Li, M.; Ma, Z. Barrier and Mechanical properties of puree films. Food Bioprod. Proc. 2011, 89, 149–156. [Google Scholar] [CrossRef]
- Bonilla, J.; Atarés, L.; Vargas, M.; Chiralt, A. Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocol. 2012, 26, 9–16. [Google Scholar] [CrossRef]
- Pao, S.; Brown, G.E.; Schneider, K.R. Challenge studies with selected pathogenic bacteria on freshly peeled Hamlin orange. J. Food Sci. 1998, 63, 359–362. [Google Scholar] [CrossRef]
- Marklinder, I.; Eriksson, M.K. Best-before date—Food storage temperatures recorded by Swedish students. Br. Food J. 2015, 117, 1764–1776. [Google Scholar] [CrossRef]
- Antares, L.; Chiralt, A. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci. Technol. 2016, 48, 51–62. [Google Scholar] [CrossRef]
- Robertson, G.L. Food Packaging: Principles and Practice, 2nd ed.; CRC Press for Taylor & Francis Group: Boca Raton, FL, USA, 2006; pp. 63–64. [Google Scholar]
- Shahbazi, Y. Characterization of nanocomposite films based on chitosan and carboxymethylcellulose containing Ziziphora clinopodioides essential oil and methanolic Ficus carica extract. J. Food Proc. Pres. 2018, 42, e13444. [Google Scholar] [CrossRef]
- Avila-Sosa, R.; Ochoa-Velasco, C.E.; Navarro-Cruz, A.R.; Palou, E.; López-Malo, A. Combinational Approcahes for Antimicrobial Packaging: Chitosan and Oregano Oil in Antimicrobial Food Packaging; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 581–588. [Google Scholar]
- Ramírez, C.; Gallegos, I.; Ihl, M.; Bifani, V. Study of contact angle, wettability and water vapor permeability in carboxymethylcellulose (CMC) based film with murta leaves (Ugni molinae Turcz) extract. J. Food Eng. 2012, 109, 424–429. [Google Scholar] [CrossRef]
- Guillen, M.D.; Cabo, N. Some of the most significant changes in the Fourier transform infrared spectra of edible oils under oxidative conditions. J. Sci. Food Agric. 2000, 80, 2028–2036. [Google Scholar] [CrossRef]
- Mishra, R.K.; Majeed, A.B.A.; Banthia, A.K. Development and characterization of pectin/gelatin hydrogel membranes for wound dressing. Int. J. Plast. Technol. 2011, 15, 82–95. [Google Scholar] [CrossRef]
- Rezvanian, M.; Mohd Amin, M.C.I.; Shiow-Fern, N. Development and physicochemical characterization of alginate composite film loaded with simvastatin as a potential wound dressing. Carbohydr. Polym. 2016, 137, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Kurita, O.; Fujiwara, T.; Yamazaki, E. Characterization of the pectin extracted from citrus peel in the presence of citric acid. Carbohydr. Polym. 2008, 74, 725–730. [Google Scholar] [CrossRef]
- Rhim, J.W.; Gennadios, A.; Weller, C.L.; Hanna, M.A. Sodium dodecyl sulfate treatment improves properties of cast films from soy protein isolate. Ind. Crops Prod. 2002, 15, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Bierhalz, A.C.K.; Da Silva, M.A.; Kieckbusch, T.G. Natamycin release from alginate/pectin films for food packaging applications. J. Food Eng. 2012, 110, 18–25. [Google Scholar] [CrossRef]
- Sacchetti, G.; Maietti, S.; Muzzoli, M.; Scaglianti, M.; Manfredini, S.; Radice, M.; Bruni, R. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem. 2005, 91, 621–632. [Google Scholar] [CrossRef]
- Baschieri, A.; Ajvazi, M.D.; Tonfack, J.L.F.; Valgimigli, L.; Amorati, R. Explaining the antioxidant activity of some common non-phenolic components of essential oils. Food Chem. 2017, 232, 656–663. [Google Scholar] [CrossRef] [PubMed]
Sample | Sodium Alginate | Pectin | Glycerol | Tween® 20 | Citral EO |
---|---|---|---|---|---|
SA | 2 | - | 1.5 | 0.2 | - |
SA0.15 | 2 | - | 1.5 | 0.2 | 0.15 |
SA0.3 | 2 | - | 1.5 | 0.2 | 0.3 |
Pe | - | 2 | 1.5 | 0.2 | - |
Pe0.15 | - | 2 | 1.5 | 0.2 | 0.15 |
Pe0.3 | - | 2 | 1.5 | 0.2 | 0.3 |
SA + Pe | 1 | 1 | 1.5 | 0.2 | - |
SA + Pe0.15 | 1 | 1 | 1.5 | 0.2 | 0.15 |
SA + Pe0.3 | 1 | 1 | 1.5 | 0.2 | 0.3 |
Sample | Thickness (μm) | O2-GTR (cm3/m2 d bar) | CO2-GTR (cm3/m2 d bar) | CO2/O2 | CO2/O2 | CO2/O2 | CO2 EGTR (J/mol K) | O2 EGTR (J/mol K) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
8 °C | 15 °C | 23 °C | 8 °C | 15 °C | 23 °C | 8 °C | 15 °C | 23 °C | ||||
SA | 127 ± 13 a | 102 ± 1 a | 118 ± 1 b | 148 ± 2 c | 110 ± 0 c | 111 ± 1 d | 222 ± 1 a | 1.1 | 0.9 | 1.5 | 33 (0.8) | 17 (1) |
SA0.15 | 111 ± 6 b | 94 ± 1 c | 112 ± 2 de | 134 ± 1 d | 99 ± 2 d | 96 ± 1 f | 105 ± 1 i | 1.1 | 0.7 | 0.8 | 3 (0.4) | 16 (1) |
SA0.30 | 110 ± 4 b | 70 ± 1 f | 92 ± 1 f | 110 ± 0 g | 99 ± 1 d | 129 ± 1 b | 124 ± 2 h | 1.4 | 1.4 | 1.1 | 10 (0.6) | 21 (1) |
Pe | 110 ± 5 b | 102 ± 1 a | 123 ± 1 a | 159 ± 1 b | 134 ± 2 a | 144 ± 2 a | 195 ± 1 b | 1.3 | 1.2 | 1.2 | −16 (0.6) | 20 (1) |
Pe0.15 | 107 ± 1 bc | 99 ± 2 ab | 109 ± 1 e | 119 ± 1 f | 97 ±1 d | 101 ± 1 e | 176 ± 1 d | 1.0 | 0.9 | 1.6 | 28 (0.8) | 8 (1) |
Pe0.30 | 94 ± 9 c | 84 ± 2 d | 117 ± 1 bc | 127 ± 0 e | 66 ± 2 g | 110 ± 1 d | 180 ± 1 c | 0.8 | 0.9 | 1.4 | 46 (1) | 19 (1) |
SA + Pe | 101 ± 3 bc | 98 ± 1 b | 117 ± 1 bc | 166 ± 1 a | 131 ± 1 b | 117 ± 1 c | 173 ± 1 e | 1.3 | 1.0 | 1.0 | 13 (0.5) | 24 (1) |
SA + Pe0.15 | 104 ± 1 bc | 75 ± 1 e | 114 ± 4 cd | 136 ± 1 d | 94 ± 1 e | 116 ± 2 c | 165 ± 1 f | 1.3 | 1.0 | 1.2 | 26 (1) | 27 (0.9) |
SA + Pe0.30 | 104 ± 5 bc | 84 ± 1 d | 94 ± 3 f | 117 ± 1 e | 92 ± 1 f | 116±1 c | 150±1 g | 1.1 | 1.2 | 1.3 | 23 (1) | 44 (0.9) |
Sample | E (MPa) | σy (MPa) | εy (%) | σb (MPa) | εb (%) |
---|---|---|---|---|---|
SA | 526 ± 52 c | 14 ± 1 d | 4 ± 1 b | 25 ± 3 cd | 30 ± 1 b |
SA0.15 | 1102 ± 68 ab | 24 ± 2 b | 3 ± 1b | 44 ± 7 ab | 24 ± 5 cd |
SA0.30 | 955 ± 74 b | 17 ± 5 c | 5 ± 2 b | 31 ± 11 c | 30 ± 3 b |
Pe | 492 ± 51 c | 13 ± 1 de | 4 ± 1 b | 21 ± 2 cd | 18 ± 2 e |
Pe0.15 | 1120 ± 112 ab | 21 ± 2 bc | 3 ± 1 b | 42 ± 5 b | 20 ± 1 de |
Pe0.30 | 1338 ± 115 a | 32 ± 5 a | 4 ± 1 b | 54 ± 7 a | 20 ± 2 de |
Pe + SA | 173 ± 17 d | 11 ± 1 e | 12 ± 1 a | 18 ± 1 d | 50 ± 1 a |
Pe + SA0.15 | 915 ± 109 b | 19 ± 3 c | 4 ± 1 b | 31 ± 4 c | 18 ± 2 e |
PE + SA0.30 | 1171 ± 98 ab | 28 ± 3 a | 4 ± 1 b | 50 ± 6 ab | 26 ± 2 bc |
Sample | Tonset (°C) | Tmax (°C) | mres,600 °C (%) | WCA (°) |
---|---|---|---|---|
SA | 163 ± 1 e | 220 ± 1 b | 20 ± 1 de | 44 ± 3 b |
SA0.15 | 172 ± 1 c | 221 ± 1 ab | 23 ± 0 b | 45 ± 3 ab |
SA0.30 | 178 ± 1 ab | 221 ± 0 ab | 24 ± 0 a | 49 ± 4 a |
Pe | 171 ± 1 c | 218 ± 1 c | 17 ± 1 f | 35 ± 4 d |
Pe0.15 | 176 ± 3 b | 222 ± 2 ab | 21 ± 1 cd | 38 ± 4 cd |
Pe0.30 | 179 ± 2 a | 222 ± 1 a | 20 ± 1 e | 42 ± 2 bc |
SA + Pe | 163 ± 1 e | 210 ± 1 d | 18 ± 1 f | 43 ± 3 bc |
SA + Pe0.15 | 166 ± 2 d | 207 ± 1 e | 22 ± 0 bc | 46 ± 2 ab |
SA + Pe0.30 | 173 ± 2 c | 213 ± 2 c | 20 ± 1 de | 48 ± 1 ab |
Sample | L* | a* | b* | ΔE |
---|---|---|---|---|
SA | 86 ± 2 b | −1.56 ± 0.06 de | 5.1 ± 0.4 e | 9 ± 2 c |
SA0.15 | 87.4 ± 0.7 a | −1.69 ± 0.02 efg | 6 ± 1 de | 8 ± 1 c |
SA0.30 | 87.1 ± 0.3 a | −1.75 ± 0.02 fg | 6.9 ± 0.6 d | 8.5 ± 0.6 c |
Pe | 83.7 ± 0.7 c | −0.17 ± 0.03 a | 10 ± 1 b | 13 ± 1 ab |
Pe0.15 | 84.3 ± 1.3 c | −1.2 ± 0.2 b | 13 ± 1 a | 15 ± 2 a |
Pe0.30 | 87.9 ± 0.4 a | −1.62 ± 0.08 def | 8 ± 2 cd | 8 ± 2 c |
SA + Pe | 83.7 ± 0.8 c | −1.40 ± 0.04 c | 7.9 ± 0.6 cd | 11.8 ± 0.7 b |
SA + Pe0.15 | 85 ± 2 bc | −1.5 ± 0.2 cd | 11 ± 2 a | 13± 3 ab |
SA + Pe0.30 | 87.5 ± 0.8a | −1.80 ± 0.03 g | 8.9 ± 0.9 bc | 10 ± 1 c |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siracusa, V.; Romani, S.; Gigli, M.; Mannozzi, C.; Cecchini, J.P.; Tylewicz, U.; Lotti, N. Characterization of Active Edible Films based on Citral Essential Oil, Alginate and Pectin. Materials 2018, 11, 1980. https://doi.org/10.3390/ma11101980
Siracusa V, Romani S, Gigli M, Mannozzi C, Cecchini JP, Tylewicz U, Lotti N. Characterization of Active Edible Films based on Citral Essential Oil, Alginate and Pectin. Materials. 2018; 11(10):1980. https://doi.org/10.3390/ma11101980
Chicago/Turabian StyleSiracusa, Valentina, Santina Romani, Matteo Gigli, Cinzia Mannozzi, Juan Pablo Cecchini, Urszula Tylewicz, and Nadia Lotti. 2018. "Characterization of Active Edible Films based on Citral Essential Oil, Alginate and Pectin" Materials 11, no. 10: 1980. https://doi.org/10.3390/ma11101980
APA StyleSiracusa, V., Romani, S., Gigli, M., Mannozzi, C., Cecchini, J. P., Tylewicz, U., & Lotti, N. (2018). Characterization of Active Edible Films based on Citral Essential Oil, Alginate and Pectin. Materials, 11(10), 1980. https://doi.org/10.3390/ma11101980