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Abstract: Electronic structure and corresponding electrical properties of PbPdO2 and
PbPd0.75Co0.25O2 ultrathin slabs with (002) preferred orientation were systematically investigated
using first-principles calculations. The calculated results revealed the strain induced evidently the
changes of band structure and carrier concentration in both slabs. It was also found that PbPdO2 and
PbPd0.75Co0.25O2 ultrathin slabs exhibited evident differences in the external strain dependence of
the band gap and charge carrier concentration, which was strongly dependent on bond angle and
bond length induced by in-plane anisotropy strain. Interestingly, the carrier concentration of the
PbPd0.75Co0.25O2 slab could increase up to 5–6 orders of magnitude with the help of external strain,
which could explain the potential mechanism behind the observed colossal strain-induced electrical
behaviors. This work demonstrated that the influence of the doping effect in the case of PbPdO2

could be a potentially fruitful approach for the development of promising piezoresistive materials.
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1. Introduction

In the past decade, spin-gapless semiconductors (SGS) have attracted increasing interest because
of their unique physical properties, leading to their potential application in electronic devices, such as
field-effect transistors, optoelectronics, electronic sensors, and supercapacitors, amongst others [1–6].
Among them, the PbPdO2-based spin gapless semiconductor is considered as a promising candidate
because of its non-toxicity, compatibility to the oxide semiconductor devices, and sensitivity to the
doping metal elements, electric field, and operation current. Based on local density approximation
calculations, the oxide-based PbPdO2 gapless semiconductor was firstly discovered by Wang [4].
Following this, extensive investigations on the electric and magnetic properties of PbPdO2-based
semiconductors were carried out theoretically and experimentally. Wang et al. studied the roles of
both electrical current and magnetic field on the resistivity of PbPd0.75Co0.25O2 thin films, and unusual
colossal electroresistance and magnetoresistance were observed [5]. Moreover, the distinct different
magnetoresistance effects were observed in PbPd0.9Cu0.1O2 and PbPd0.9Zn0.1O2, which would be
attributed to local structure deformation due to Pd/O deficiencies [7]. Based on the bound magnetic
polaron (BMP) theory, the potential mechanism behind the observed ferromagnetic, paramagnetic,
and antiferromagnetic properties coexisting in Co–doped PbPdO2 film were suggested [8]. It was
suggested that Pd–O hybridization in Co–doped PbPdO2 thin films were responsible for the transition
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from weak localization and weak anti-localization [9]. Simultaneously, many studies on valence states
and band structures have been carried out to understand the mechanism on the observed physical
behaviors. For example, Chen et al. revealed that a small band gap of PbPdO2 would be induced
by Pd deficiency in composites, resulting in increased hybridization of O(2p)–Pb(6p) and decreased
O(2p)–Pd(4d) hybridizations [10]. It was found that Pd–O hybridization would efficiently mediate
the magnetic coupling among Co atoms [11]. The ferromagnetism and paramagnetism were found to
coexist in the Fe–doped PbPdO2, and the bound magnetic polaron model was used to account for the
ferromagnetism origin [12]. Based on the measured electronic structures, Pb(Pd0.9T0.1)O2 (T = Mn, Co)
oxides were found to be the small-gap semiconductors [13]. In our previous study, it was observed
that the external electric field in PbPdO2 slab with (002)-preferred orientation influences sensitively
the band gap and carrier concentration, which explains the extraordinary electrical behaviors [14].

Recently, the strain effects on the physical properties of two-dimensional materials were
investigated [15–18]. The direct-indirect band gap transition induced by strain was also found in
two-dimensional phosphorene, which is explained by the near-band-edge electronic orbital theory [15].
It has been established that the strain induces modulation of the band gap resulting in a piezoresistive
effect in silicon [16]. Recently, the piezoresistive effect was also found in single-atomic-layer and
atomically thin MoS2 films [17,18]. Strain dependent carrier concentration is generally characterized
with piezoresistive gauge factor. The gauge factor (GF) of piezoresistance can be calculated as
follows [18],

GF =
∆ρ

ρ
/ε (1)

where ρ0 is the resistance without strain and ∆ρ is change of resistance with strain ε. The resistivity (ρ)
is in inverse proportion to carrier concentration (n). As ε = 0, let n = n0; ε 6= 0, let n = nε. The gauge
factor can be re-expressed as follows,

GF =
∆ρ

ρ
/ε ∝ (

n0

nε
− 1)/ε (2)

In PbPdO2-based composites, different preparation and processing methods result unavoidably
in different microstructure and strain states, which consequently influences the band gap, carrier
concentration, and corresponding electrical properties. Specifically, being similar to the layered MoS2,
(002) preferred orientation layered PbPdO2 has a small band gap [14], and the piezoresistive effect
is expected.

In this work, based on the first-principle calculation method, a plane strain model was set
up to obtain a deformed lattice with in-plane arbitrary uniaxial strain. In-plane anisotropy strain
dependence of band-gap and carrier concentration were systematically investigated in the PbPdO2 and
PbPd0.75Co0.25O2 slabs with preferred (002) orientation. These results can be well explained according
to the p-d exchange interaction. Moreover, it is strongly suggested that the element-doping PbPdO2

should become an important piezoresistance candidate material.

2. Methods

Based on Vienna ab initio simulation package (VASP), the self-consistent total energy
was calculated and the geometry was optimized using the perdew-burke-ernzerhof (PBE)
exchange-correlation functionals and the projector-augmented wave potentials [19,20]. The strain
effect on the electronic properties of PbPdO2 and PbPd0.75Co0.25O2 slabs were simulated via standard
DFT (Density functional theory) with generalized gradient approximation (GGA) method [21].

The cut-off energy was set to be 500 eV. The initial structure of PbPdO2 and PbPd0.75Co0.25O2

slabs were obtained from bulk PbPdO2 and PbPd0.75Co0.25O2, respectively [10,20]. Then, to make the
in-plane force reach up to the minimum, both initial structures were totally relaxed through the energy
minimization method. Starting with the relaxed initial structures of PbPdO2 and PbPd0.75Co0.25O2

slabs, the effects on the atoms and band structures were studied systematically under the strain with
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the range of ±2%, which applied in the in-plane anisotropy uniaxial strain direction. The positive
(negative) values of strain corresponded to the stretch and compression, respectively. The positions of
all the atoms in the cell were relaxed by the optimizations of the strained structures with the Gaussians
smearing method. After relaxation, each atom’s convergence tolerance of force was smaller than
0.01 eV/Å. Meanwhile, 21 × 11 × 1 and 19 × 13 × 1 Monkhorst-Pack’s meshes were used in the
calculation of density of states (DOS) for PbPdO2 and PbPd0.75Co0.25O2 slabs, respectively.

3. Results and Discussion

Figure 1 shows the relaxed crystal structures of PbPdO2 and PbPd0.75Co0.25O2 ultrathin slabs with
(002) preferred orientation. As shown in Figure 1, the unstrained PbPdO2 and ultrathin slab revealed an
in-plane symmetric configuration, maintaining the important properties of PbPdO2. After Co-doping,
the symmetric configuration of PbPd0.75Co0.25O2 was broken. In comparison to the pristine PbPdO2,
the broken-symmetry in PbPd0.75Co0.25O2 was expected to bring different physical properties. It
should be noted that the anisotropy of PbPd0.75Co0.25O2 was greatly affected by the state of the
Co-substitution. Moreover, its configurations were fairly complicated. Here, the configuration with the
least number of atoms and only one Co doping atom was considered, as seen in Figure 1b. Specifically,
this Co atom forms square planar bonding with the nearest-neighbor four O atoms, which plays an
important role on the electrical properties of PbPd0.75Co0.25O2.
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Figure 1. Top view of atomic structures in ab plane, (a) PbPdO2, and (b) PbPd0.75Co0.25O2 with
(002) orientation.

Figure 2a–d shows the calculated electronic structures and the partial densities of states of Pb,
Pd, O, and Co in PbPdO2 and PbPd0.75Co0.25O2 slabs, respectively. It was found that PbPdO2 exhibits
intrinsic characteristics of narrow band gap (0.051 eV), which was much smaller than that (0.4 eV) of
the PbPd0.75Co0.25O2 slab. In our previous experimental work, PbPdO2 with (002) preferred orientation
was prepared, and its band gap was found to be close to zero [22]. It is suggested that the localized
Co would be responsible for the large band gap of 0.35 eV for the PbPd0.75Co0.25O2 bulk material.
Interestingly, our calculated results were consistent with the reported results [23]. The band gap of
PbPdO2 slab was slightly larger than that reported in our previous calculated work because of the
different full in-plane structure relaxation [14]. From the density of electronic states in Figure 2b,d,
it is found that DOSs of the pristine and Co-doped PbPdO2 slabs at minimum of the conduction band
and maximum of the valence band were mainly composed of 4d(Pd) and 2p(O) states. These results
were similar to those found by many research groups [6,10]. In contrast, the PbPd0.75Co0.25O2 slab
had more distinct contribution of hybridization of 2p(O)–4d(Pd) states, where a Co 3d state added
modified energy to the DOS at the Fermi energy level.
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Figure 2. (a) electronic structures, and (b) orbital-resolved partial density of states (DOS) of (002)
orientation PbPdO2 slab; (c) electronic structures, and (d) orbital-resolved partial DOS of (211)
orientation PbPd0.75Co0.25O2 slab. The abscissa in (a,c) is the path of high symmetry points in
Brillouin zone.

To gain insight into the potential mechanism of strain-induced electronic properties in
PbPdO2-base composites, a plane-stress-strain model was set up. Figure 3a,b present the undeformed
lattice and a deformed lattice with in-plane arbitrary uniaxial tensile strain (directional cosines
(cos α, cos β)), respectively. The strain-related components could be obtained based on the coordinate
transformation method. Assuming uniaxial strain ε is along the x′ direction in an unprimed coordinate
system x-y, the strain tensor elements in the primed coordinate system are given as follows, εx

εy

γxy

 =

 l2
1 l2

2 l1l2
m2

1 m2
2 m1m2

2l1m1 2l2m2 l1m2 + l2m1


 εx′

εy′

γx′y′

 (2)

where εx′ (εy′ ) and γx′y′ are normal (tensile or compressive) and shear strains, respectively [24].
The directional cosines are

l1 = cos α, l2 = cos α′ (3)

m1 = cos β, m2 = cos β′ (4)

where α, β, α′, β′ are arbitrary directions in the x-y and x′-y′ coordinate system, as seen in Figure 3.
A deformation of the unit cell is created by changing the Bravais lattice vectors R of the

undeformed unit cell to R′ using a strain matrix as follows:

R′(α, β) = R

 1 + εx γxy 0
γxy 1 + εy 0
0 0 1

 (5)
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where R is the Bravais lattice vectors with strain, and R′ is the Bravais lattice vectors without
strain, εx(εy) and γxy(γyx) are the normal (tensile or compressive) and shear strain-related
components, respectively.
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Figure 3. Diagram for (a) an undeformed lattice, (b) a deformed lattice with in-plane arbitrary uniaxial
tensile strain (directional cosines (cos α, cos β)).

Figure 4a,b shows the orientation distribution curves of band gap Eg with ε = −0.02, 0.00, 0.02
for the PbPdO2 and PbPd0.75Co0.25O2 slabs, respectively. It is clear that both slabs show a distinct
anisotropy of gap with different strain. In Figure 4a, the PbPdO2 slab shows the symmetrical and
peanut-like Eg− α curves, and having the largest and smallest band-gap values along the x axis (α= 0◦)
or y axis (α= 90◦), respectively. In contrast, as shown in Figure 4b, the PbPd0.75Co0.25O2 slab has a
maximum gap for the strain ε = −0.02 at about α= 75◦ and a minimum gap for the strain ε = 0.02 at
about α= 0◦.
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Figure 4. The orientation distribution curves of band gap Eg for (a) PbPdO2, and (b) PbPd0.75Co0.25O2

with ε = −0.02, 0.00, 0.02.

Figure 5a,b shows the band gap as a function of the strain for PbPdO2 and PbPd0.75Co0.25O2

along x axis (α= 0◦) and y axis (α= 90◦), respectively. As shown in Figure 5a, it is found that the
band-gap value increases with increasing strain along the y-axis, whilst the band-gap value decreases
with increasing strain along the x-axis. It is interesting that the band gap of the PbPdO2 slab would
widen when a compressive stress is applied closely to the x-axis or a tensile stress is applied closely to
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the y-axis, as seen in Figure 4a. These calculated results can be explained according to the interaction
of Pd–O bonding. It is expected that a compressive stress along the x-axis or tensile stress along the
y-axis pulls O atoms apart from Pd atoms, which weakens the interaction of Pd and O. On the other
hand, a tensile stress along the x-axis or compressive stress along the y-axis would push O atoms
closely to Pd atoms and strengthen the interaction of Pd and O. As a result, the band gap is decreased.
A similar result has also been reported in MoS2 and black phosphorus [25,26].
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Figure 5. Band gap Eg as a function of strain for (a) PbPdO2, and (b) PbPd0.75Co0.25O2 along x-axis
(called x) and b-axis (called y).

Figure 6 shows the plane averaged electron density difference ∆ρ of PbPd0.75Co0.25O2 projected
along the x axis and under ε = −0.02, with α = 15◦, 45◦, 75◦, and 90◦, respectively. In comparison, it is
found that p-d charge transfer ∆ρ between Co and O exhibits an evident change for α = 75◦. Therefore,
the band gap of PbPd0.75Co0.25O2 is expected to be changed significantly as the compressive stress
direction is along a particular direction with α = 75◦. Figure 7 shows the plane averaged electron
density difference ∆ρ of PbPd0.75Co0.25O2 projected along the x axis under εx = −0.02, −0.01, 0.00,
0.01, 0.02, respectively. Based on spin-splitting theory, the minimum gap of the PbPd0.75Co0.25O2 slab
with the strain εx = 0.02 is strongly related to the variation of ∆ρ. From Figure 7, it is concluded that
Co atom should act as the source of the localized magnetic moment, and the coupling between the
p-state from O and d-state from Co could induce a strong exchange interaction (named as p-d exchange
interaction) in PbPd0.75Co0.25O2. Moreover, the p-d exchange interaction was found to be nearly
inversely proportional to the unit cell volume [27]. Therefore, p-d exchange interaction mediated by
strain should be responsible for variation of the plane averaged electron density difference, leading to
a clear change of the band gap.
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Figure 7. The plane averaged electron density difference ∆ρ of PbPd0.75Co0.25O2 under εx = −0.02,
−0.01, 0.00, 0.01, 0.02, where the projection of ∆ρ was along the x axis.

Figure 8 shows the spin polarized total density states of the PbPd0.75Co0.25O2 slab with different
strain along the x and y-axes external uniaxial strain directions. From the figure, it is found that
the spin-up and spin-down DOSs are asymmetric, which means the existence of magnetic moment.
The magnetic properties in element doped PbPdO2 will be studied in subsequent research work.
Interestingly, as shown in Figure 8e, the tensile strain with εx = 0.02 leads to the zero-band gap
structure. The strain gives rise to the evident left shift of the bottom of the conduction band in
spin-down DOSs, which effectively modulates the band gap. When the strain is large enough, the top
of the valence band and the bottom of the conduction band in spin-up and spin-down DOSs all shift
with changing strain, which leads to clear modulation of the band gap. This interesting phenomenon
is similar to the fact that the slight tensile strain results in the zero-band gap structure [4].
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Unique electrical properties are highly desirable for practical application, and charge carrier
concentration is a key parameter for the intrinsic semiconductor. For the intrinsic semiconductor,
the charge charier concentration can be estimated as follows [28],

n ∝ T3/2 exp
[
−

Eg

2KBT

]
(6)

nε/n0 ∝ exp
[
−

∆Eg

2KBT

]
= exp

[
−

Eg − Eg0

2KBT

]
(7)

where KB, Eg are the Boltzmann constant and band gap, respectively. In this paper, all the temperatures
in carrier concentration were calculated at T = 100 K. As ε = 0, let n = n0; ε 6= 0, let n = nε.

Combined with the results presented in Figure 4a,b, the external strain dependence of charge
carrier concentration ratio (nε/n0) for PbPdO2 and PbPd0.75Co0.25O2 slabs were evaluated, respectively.
Figure 9a,b shows the orientation distribution curves of the intrinsic charge carrier concentration
ratio n/n0 for PbPdO2 and PbPd0.75Co0.25O2 slabs with ε = −0.02, −0.01, 0.00, 0.01, 0.02, respectively.
Similar to the dependence of band gap Eg on strain orientation, PbPd0.75Co0.25O2 exhibits more distinct
anisotropy in carrier concentration with strain direction, especially along the x-axis. As shown in
Figure 9a, the pristine PbPdO2 slab demonstrates the symmetrical and olive-like (nε/n0)−α curves,
and having its largest and smallest band-gap values along the x-axis or y-axis, respectively. For the
PbPd0.75Co0.25O2 slab, the carrier concentration is sensitive to the application direction of strain. When
the compressive stress applies along a direction of 75◦ (α ≈ 75◦) and x-axis, the remarkable variety
in carrier concentration appears, as shown in Figure 9b. Figure 10c,d shows the intrinsic charge
carrier concentration ratio (nε − n0)/n0 as a function of strain for PbPdO2 and PbPd0.75Co0.25O2

slabs along the x and y-axes, respectively. For the PbPdO2 slab, the carrier concentration increases
monotonically with increasing compressive stress, but decreasing with increasing tensile stress along
the x-axis. On the contrary, the carrier concentration decreases with increasing compressive stress,
while increasing with increasing tensile stress along the y-axis. In contrast, the carrier concentration of
PbPd0.75Co0.25O2 slab increases with increasing compressive and tensile stresses along both the x and
y-axes. As the compressive stress increases beyond 0.015 along the x-axis, carrier concentration of the
PbPd0.75Co0.25O2 slab increases rapidly. It was found that the carrier concentration of PbPd0.75Co0.25O2

could sharply increase up to 5–6 orders of magnitude with the help of external strain with ε = 0.02.
The calculated results suggest strongly that the element-doping PbPdO2 should become an important
piezoresistance candidate material.

Materials 2018, 11, x FOR PEER REVIEW  8 of 11 

 

Unique electrical properties are highly desirable for practical application, and charge carrier 

concentration is a key parameter for the intrinsic semiconductor. For the intrinsic semiconductor, the 

charge charier concentration can be estimated as follows [28], 

3/2 exp
2

g

B

E
n T

K T

 
  

 
 (6) 

0

0/ exp =exp
2 2

g gg

B B

E EE
n n

K T K T


  
    

    
 (7) 

where KB, Eg are the Boltzmann constant and band gap, respectively. In this paper, all the 

temperatures in carrier concentration were calculated at T = 100 K. As  = 0, let n = n0;  ≠ 0, let n = 

n . 

Combined with the results presented in Figure 4a,b, the external strain dependence of charge 

carrier concentration ratio ( 0/n n ) for PbPdO2 and PbPd0.75Co0.25O2 slabs were evaluated, 

respectively. Figure 9a,b shows the orientation distribution curves of the intrinsic charge carrier 

concentration ratio 
0/n n  for PbPdO2 and PbPd0.75Co0.25O2 slabs with  = −0.02, −0.01, 0.00, 0.01, 0.02, 

respectively. Similar to the dependence of band gap 
gE  on strain orientation, PbPd0.75Co0.25O2 

exhibits more distinct anisotropy in carrier concentration with strain direction, especially along the 

x-axis. As shown in Figure 9a, the pristine PbPdO2 slab demonstrates the symmetrical and olive-like 

0/n n（ ）
 
curves, and having its largest and smallest band-gap values along the x-axis or y-axis, 

respectively. For the PbPd0.75Co0.25O2 slab, the carrier concentration is sensitive to the application 

direction of strain. When the compressive stress applies along a direction of 75° ( 75   ) and x-axis, 

the remarkable variety in carrier concentration appears, as shown in Figure 9b. Figure 10c,d shows 

the intrinsic charge carrier concentration ratio 
0 0) /n n n (  as a function of strain for PbPdO2 and 

PbPd0.75Co0.25O2 slabs along the x and y-axes, respectively. For the PbPdO2 slab, the carrier 

concentration increases monotonically with increasing compressive stress, but decreasing with 

increasing tensile stress along the x-axis. On the contrary, the carrier concentration decreases with 

increasing compressive stress, while increasing with increasing tensile stress along the y-axis. In 

contrast, the carrier concentration of PbPd0.75Co0.25O2 slab increases with increasing compressive and 

tensile stresses along both the x and y-axes. As the compressive stress increases beyond 0.015 along 

the x-axis, carrier concentration of the PbPd0.75Co0.25O2 slab increases rapidly. It was found that the 

carrier concentration of PbPd0.75Co0.25O2 could sharply increase up to 5–6 orders of magnitude with 

the help of external strain with   = 0.02. The calculated results suggest strongly that the element-

doping PbPdO2 should become an important piezoresistance candidate material.  

  
(a) (b) 

Figure 9. The orientation distribution curves of intrinsic charge carrier concentration ratio 
0/n n  for 

(a) PbPdO2, and (b) PbPd0.75Co0.25O2 with   = −0.02 and 0.02.  

Figure 9. The orientation distribution curves of intrinsic charge carrier concentration ratio n/n0 for
(a) PbPdO2, and (b) PbPd0.75Co0.25O2 with ε = −0.02 and 0.02.

Figure 11 presents the strain dependence of gauge factor for the PbPdO2 and PbPd0.75Co0.25O2

slab along the x and y axes. Table 1 gives some typical gauge factor values. When the tensile strain
is 0.02, the piezoresistive gauge factors for the PbPdO2 and PbPd0.75Co0.25O2 slab along the x-axis
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are calculated to be respectively 62.8 and −43.3, which is comparable to trilayer MoS2 and much
higher than suspended-graphene-based strain sensor [29]. As Pd–O (Co–O) polar covalent bond is
different from C–C bond, PbPdO2-based semiconductors can exhibit a higher piezoresistive gauge
factor than graphene-based strain sensors. The predicted large gauge factors in our work implies that
the element-doping PbPdO2 may have promising opportunities to be used as strain sensors.Materials 2018, 11, x FOR PEER REVIEW  9 of 11 
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and 0.02. The inset shows a magnification curve with strain ranges from −0.015 to 0.015.
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Table 1. Some typical gauge factors of PbPdO2 and PbPd0.75Co0.25O2 along the x and y axes.

Typical Gauge
Factors

PbPdO2 Slab PbPd0.75Co0.25O2 Slab

Direction

x y x y

ε −0.02 0.02 −0.02 0.02 −0.02 0.02 −0.02 0.02
GF 62.8 −28.3 −28.3 32.8 −43.3 −35.5 −30.3 −16.1

4. Conclusions

Based on first-principles calculations, the electronic structures and electrical properties of
PbPdO2 and PbPd0.75Co0.25O2 ultrathin slabs were systematically investigated. The calculated results
indicated that the strain induces changes of band structure and carrier concentration in both slabs.
Specifically, the carrier concentration of the PbPd0.75Co0.25O2 slab could be modulated with 5–6 orders
externally induced strain, which renders the Co-doped pristine PbPdO2 phase a potentially promising
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piezoresistive material. Moreover, the above evident external strain modulation of the band gap and
carrier concentration can be well explained by spin-splitting theory.
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