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Abstract: In this paper, the mechanical properties and minimum thermal conductivity of ZnZr,
Zn2Zr, Zn2Zr3, and MgZn2 are calculated from first principles. The results show that the considered
Zn-Zr intermetallic compounds are effective strengthening phases compared to MgZn2 based on
the calculated elastic constants and polycrystalline bulk modulus B, shear modulus G, and Young’s
modulus E. Meanwhile, the strong Zn-Zr ionic bondings in ZnZr, Zn2Zr, and Zn2Zr3 alloys lead to the
characteristics of a higher modulus but lower ductility than the MgZn2 alloy. The minimum thermal
conductivity of ZnZr, Zn2Zr, Zn2Zr3, and MgZn2 is 0.48, 0.67, 0.68, and 0.49 W m−1 K−1, respectively,
indicating that the thermal conductivity of the Mg-Zn-Zr alloy could be improved as the precipitation
of Zn atoms from the α-Mg matrix to form the considered Zn-Zr binary alloys. Based on the analysis of
the directional dependence of the minimum thermal conductivity, the minimum thermal conductivity
in the direction of [110] can be identified as a crucial short limit for the considered Zn-Zr intermetallic
compounds in Mg-Zn-Zr alloys.
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1. Introduction

Grain refinement is a metallurgical phenomenon that has been exploited in magnesium alloys
to achieve desired microstructure and mechanical properties. Zirconium, a powerful grain refiner,
has been widely used in magnesium alloys [1–3]. Magnesium-zinc-zirconium (ZK) alloys mainly
refer to those containing zirconium or grain refined by zirconium, such as ZE41, ZK60, WE43, ML12,
and ML10, as well as OS-1–3, and such like, and these commercial Mg-Zn-Zr alloys comprise the basis
of the current magnesium alloy business. It was previously agreed that grain refinement of magnesium
alloys by Zr was noticeable at low levels of soluble Zr [4], but the subsequently detailed examinations
showed that both insoluble zirconium particles and zirconium dissolved in the melt played a role in
grain refinement [5]. These conditions require that the magnesium alloys contain maximum soluble
and undissolved Zr content. Meanwhile, a large amount of Zr content could lead to the formation of
Zn-Zr intermetallic compounds in Mg-Zn-Zr alloys.

Based on the study of the composition and distribution of zirconium, Morozova and Mukhina [6]
proposed that the highly dispersed particles of Zn2Zr3, ZnZr, and Zn2Zr intermetallic compounds were
the determining factors for the nano-structural mechanism of strengthening in the Mg-Zn-Zr system.
Li et al. [7] proposed that the Mg-5Zn-2Gd-0.4Zr alloy (wt.%) showed a significant hardening response
during aging, thus forming different morphologies, including ZnZr and Zn2Zr phases. Although the
ZnZr2 and Zn2Zr3 phases do not belong to the ground state of the Zn-Zr system, they were dynamically
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stable at 0 K using the harmonic approximation [8]. Recently, it was reported that Mg-Zn-Zr alloys
were also prospective to be ideal thermal conductive material for application in LED light fixtures [1,9].
With the aging process, Li et al. [10] suggested that the thermal conductivity of Mg-2Zn-Zr alloy
obviously increased due to the precipitation of Zn atoms from the α-Mg matrix, accompanied
by the formation of Zn-Zr precipitations, such as ZnZr, Zn2Zr, and Zn2Zr3. Similarly, Yamasaki
and Kawamura [11] proposed the thermal conductivity of Mg-Zn-rare earth (RE) alloys exhibited
higher thermal conductivity than their solution-treated counterparts due to the consumption of solute
elements during the formation of the long-period stacking ordered phase (LPSO). Also, due to the
formation of a rare-earth phase, the thermal conductivity of the Mg alloy was raised markedly with an
increase in Sm content, which helped to dissolve the Zn atoms in the α-Mg matrix [12].

Laves MgZn2 is known to be the most important strengthening phase in Mg-Zn-Zr alloys. Due to
the importance of the strengthening effects of the MgZn2 phase and the role of micro-alloying on
precipitation strengthening, MgZn2 has been studied extensively through theoretical calculations to
experimental exploration [13–15]. By adding grain-refining elements, the density of aging precipitate
MgZn2 can be increased, thereby improving the mechanical properties of the alloy [15]. Meanwhile, it is
also an effective way to dissolve the Zn atoms in the α-Mg matrix by forming the MgZn2 phase.
However, to our knowledge, theoretical research regarding mechanical properties and thermal
conductivities of Zn-Zr intermetallic compounds compared with MgZn2 are relatively scarce.

In addition, experimental information is quite limited in establishing phase/property relationships
for these precipitations. Nevertheless, the first principles calculations may be an available approach
to research these properties. Accordingly, the mechanical and thermal conductivity properties of
ZnZr, Zn2Zr, Zn2Zr3, and MgZn2 have been conducted through the first-principles calculations.
Generally, the minimum thermal conductivity can be used to identify candidate materials for
high-temperature applications. In this contribution, the minimum thermal conductivity, according to
the modified Clarke’s model [16] is investigated for intermetallic compounds ZnZr, Zn2Zr, and Zn2Zr3.
In addition, the direction-dependent minimum thermal conductivity, based on the Cahill’s model [17]
has been further studied in-depth to understand the effect of the Zn-Zr precipitations on the thermal
conductivity properties of Mg-Zn-Zr alloys. Undoubtedly, it is anticipated that the results will guide
people’s selections of the appropriate ZK alloys for different applications.

2. Computational Details

All calculations in this work were performed by using the Vienna ab initio simulation package code
(VASP) [18] within the generalized gradient approximation (GGA) [19] of Perdew-Burke-Ernzerhof
(PBE) [20] exchange correlation density functional. The electron configuration treated 3s2 as a
valence state for Mg, 3d104s2 as a valence state for Zn, and 4s24p65s24d2 for Zr, respectively.
Extensive convergence tests suggested that the cutoff energy of 400 eV was enough for all phases
in the calculations. The special points sampling integration was used over the Brillouin zone
with 7 × 7 × 3 and 8 × 8 × 8 k-points using the Gamma-centered Monkhorst-Pack method [21]
for MgZn2 and the Zn-Zr system (including ZnZr, Zn2Zr and Zn2Zr3), respectively, in geometry
optimization. The convergence criterion of the Hellmane Feynman force was 0.01 eV/Å for complete
relaxation of the atomic positions within the maximum stress on the atom of 0.02 GPa. The electronic
iterations convergence was 1.0 × 10−5 eV for the total energy calculated together with first-order
Methfessel-Paxton smearing with a width of 0.2 eV. Considering the unfilled electron of the 4d shell of
the transition metal Zr, the spin polarization was considered in the calculation with the initial magnetic
moment 3 µB according to Hund rules.

For obtaining the equilibrium bulk modulus B0 of the spin state at 0 K, the ground state energy E0

as a function of the cell volume within the Birch-Murnaghan equation of states (EOS) [22] was applied.
Meanwhile, in order to investigate chemical stability, the contribution of the lattice vibrations Fvib to
the total Helmholtz free energy (F = E0 + Fvib) was evaluated (it is worth noting that the contribution
of the thermal electrons is negligible compared to lattice vibrations, and is therefore ignored in the
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current work). For the sake of computational efficiency, the vibrational free energy was derived by
using the Debye-Grüneisen [23] model as follows:

Fvib(V, T) =
9
8

nkBΘ + T
[
3 ln
(

1− e−Θ/T
)
− D(Θ/T)

]
(1)

where kB is the Boltzmann constant and n is the number of atoms per formula unit. The Debye
temperature Θ was obtained as proposed by using [24]:

ΘD =
1

KB

(
6π2V1/2n

)1/3
f (σ)

√
B0

M
(2)

where M is the molecular mass per primitive cell, and B0 and σ are the static bulk modulus and Poisson
ratio at the equilibrium geometry, respectively. The f (σ) function is:
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3

[
2
(

2
3
(1 + σ)
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(
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3
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(1− σ)
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]−1


1/3
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The elastic coefficients were determined by applying a set of given deformation with a finite value
fitting the total energy of the crystal, as implemented by Mayer et al. [25]. In order to remain within
the elastic limit of the selected phases, small strains up to ±2% at 0.5% interval were used.

3. Results and Discussion

3.1. Structure and Stability

Figure 1 shows the energy-volume fittings for ZnZr, Zn2Zr, Zn2Zr3 at both no-spin and spin
states, as well as MgZn2 at a nonmagnetic state. It is clear that for energy that was dependent on
the volume of the two states, the spin state was more energetically stable than the no-spin state for
Zn-Zr intermetallic compounds, especially for the Zn2Zr phase. Thus, in the following discussion,
we focus on properties at the magnetic state. The optimized lattice constants at the ground state and
the corresponding fitting B0 for each Zn-Zr intermetallic compound are given in Table 1. As seen,
the calculated lattice parameters of Zn-Zr intermetallic compounds and the MgZn2 phase are in good
agreement with the available calculated results. When comparing the equilibrium bulk moduli of
these four intermetallic compounds, which could describe the stiffness of the crystal to the applied
strain, it can be observed that the B0 of the selected Zn-Zr compounds is interestingly larger than that
of MgZn2, which has generally been considered as the main strengthening phase in Mg-Zn alloys.
We estimated the chemical stability based on the calculated Helmholtz free energy F (eV/atom) of
Zn-Zr compounds. Generally speaking, these phases are thermodynamically stable due to negative
Helmholtz free energy, which is considered to be a key factor for the alloys’ synthesis and stabilization;
the more negative it is, the more stable the structure. Furthermore, it has been shown from the
Helmholtz free energy F that the thermodynamic stability sequence is Zn2Zr3 > ZnZr > Zn2Zr >
MgZn2, and Zn2Zr3 is the most thermodynamically stable compound.
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Table 1. The calculated lattice parameters at the ground state (a, c in Å, ρ in g/cm3) and the fitting
bulk modulus B0 (GPa) at the spin state, as well as the Helmholtz free energy F (eV/atom) at 0 K.
For MgZn2, the B0 responds to the no-spin state.

Species Space Group
Lattice Parameters

ρ B0 F
a c

ZnZr Pm3m 3.34 (3.34 a) - 7.00 107.11 −5.07
Zn2Zr Fd3m 7.39 (7.40 a) - 7.31 104.47 −3.83
Zn2Zr3 P42/mnm 7.59 (7.63 a) 6.83 (6.76 a) 6.84 102.54 −5.71
MgZn2 P63/mmc 5.23 (5.20 b) 8.56 (8.54 b) 5.17 63.69 −1.34

a From Reference [8]. b From Reference [26].
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Figure 1. Total energy as a function of unit cell volume for ZnZr, Zn2Zr, and Zn2Zr3 at both no-spin 
and spin states, as well as MgZn2 at the nonmagnetic state. 
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Figure 1. Total energy as a function of unit cell volume for ZnZr, Zn2Zr, and Zn2Zr3 at both no-spin
and spin states, as well as MgZn2 at the nonmagnetic state.

3.2. Elastic Constants, Polycrystalline Moduli

The calculated elastic constants of the various phases are shown in Table 2. In reality, Zn-Zr
intermetallic compounds exhibit much better resistance to deformation than MgZn2 due to larger
elastic constants; not only regarding C11 and C33 under uniaxial stress along the x or z axes, respectively,
but also other compression moduli (C12 and C13) and shear moduli (C44, and C66). At this point it
may be clear that ZnZr, Zn2Zr, and Zn2Zr3 are effective strengthening phases in Mg-Zn-Zr alloys,
aside from MgZn2. For hexagonal MgZn2 and tetragonal Zn2Zr3 crystals C11 = C22 6= C33, the difference
between C11 (C22) and C33 indicates that the two crystals have relatively strong anisotropic elastic
constants, resulting in the directional dependence of the moduli. Interestingly, for hexagonal MgZn2

and tetragonal Zn2Zr3 crystals, the values of C33 is larger than that of C11, implying that the chemical
bonds in the direction of [001] are stronger than those along the direction of [100]. The stronger chemical
bonds result in hard compressing under uniaxial stress along the z axes. Moreover, the relatively large
difference between C11 and C33 of MgZn2 implies that there is greater anisotropy on the directional
dependence of the moduli than Zn2Zr3.
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Table 2. The calculated independent elastic constants (GPa) of Zn-Zr intermetallic compounds and
MgZn2 using the strain-energy method with other calculated (Cal.) and experimental (Exp.) data.

Species Reference
Cij

C11 C12 C13 C33 C44 C66

ZnZr
This work 134.04 91.82 - - 72.96 -
Cal. [27] 141.00 91.00 - - 71.00 -

Zn2Zr This work 183.72 68.59 - - 62.36 -

Zn2Zr3 This work 145.94 90.00 73.72 155.22 31.76 47.00

MgZn2

This work 93.30 60.88 32.75 109.53 24.76 -
Cal. [28] 91.25 87.27 28.62 147.59 20.21 -
Exp. [29] 107.25 45.45 27.43 126.40 27.70 –

In order to synthetically estimate the mechanical properties, the polycrystalline bulk modulus B,
shear modulus G, and Young’s modulus E were calculated via Voigt-Reuss-Hill approximations [30–32].
Figure 2 summarizes the calculated mechanical performance parameters. Notably, the B values of ZnZr,
Zn2Zr, and Zn2Zr3 are close, and are all larger than that of MgZn2. The larger B values responded to
the stronger capacity of the resist deformation, reflecting the good resistance of the selected Zn-Zr
intermetallic compounds to deformation. Meanwhile, the B values of all considered intermetallic
compounds are in good agreement with the fitting bulk modulus, B0. The shear modulus G of
the system in descending order is: Zn2Zr > ZnZr > Zn2Zr3 > MgZn2. It is clear that the Young’s
modulus E has the same order as the shear modulus G, suggesting that Young’s modulus E of the
considered polycrystalline materials is more sensitive to the shear modulus than the bulk modulus.
Relatively larger mechanical parameters, including bulk modulus B, shear modulus G, and Young’s
modulus E, prove that Zn2Zr has outstanding mechanical properties and pronounced strengthening
effects among all strengthening phases. In contrast, the lowest B/G value 1.76 reveals its brittle
characteristics relative to other phases, although the material behaves as ductile when the B/G ratio
>1.75 [33]. Analysis of Figure 2 thus allows us to conclude that ZnZr and Zn2Zr3 serve to combine the
natures of high strength and great ductility.
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Figure 2. Calculated mechanical properties, including bulk modulus B, shear modulus G, and Young’s 
modulus E, as well as B/G values for ZnZr, Zn2Zr, Zn2Zr3, and MgZn2. 
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corresponds to the completely delocalized state and the perfect localization, respectively. The 
electron localization functions on the (110) plane for all selected intermetallic compounds are 
presented in Figure 3. Clearly, there are obvious ionic characteristics in ZnZr, Zn2Zr, and Zn2Zr3 
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characteristics based on the apparent accumulation of charge distribution between Mg and Zn atoms 
in MgZn2 alloys. This result is consistent with the investigation of Reference [35], where more 
hybridized peaks between Mg p and Zn p appear near the Fermi level, indicating the presence of 
strong covalent bonding. Based on the above discussion, the bonding characteristics in Zn-Zr and 
MgZn2 intermetallic compounds play a role in determining a ductile or brittle nature, meaning that 
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Figure 2. Calculated mechanical properties, including bulk modulus B, shear modulus G, and Young’s
modulus E, as well as B/G values for ZnZr, Zn2Zr, Zn2Zr3, and MgZn2.
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3.3. Electronic Structures

To gain further insight into the reasons for the Zn-Zr system strengthening, the electron
localization function (ELF) [34] was applied to assist in identifying the distribution of the charges and
the bonding condition. As a general rule, the ELF value is on the range 0 ≤ ELF ≤ 1, where ELF = 0, 1
corresponds to the completely delocalized state and the perfect localization, respectively. The electron
localization functions on the (110) plane for all selected intermetallic compounds are presented in
Figure 3. Clearly, there are obvious ionic characteristics in ZnZr, Zn2Zr, and Zn2Zr3 intermetallic
compounds due to the delocalization around Zn and localization around Zr. Meanwhile, Zn-Zn
and Zr-Zr present typical metal bond characteristics because of the even distribution of charges
between the component atoms. In contrast, Mg-Zn bonds show covalent characteristics based on the
apparent accumulation of charge distribution between Mg and Zn atoms in MgZn2 alloys. This result
is consistent with the investigation of Reference [35], where more hybridized peaks between Mg p and
Zn p appear near the Fermi level, indicating the presence of strong covalent bonding. Based on the
above discussion, the bonding characteristics in Zn-Zr and MgZn2 intermetallic compounds play a role
in determining a ductile or brittle nature, meaning that ionic bonds in Zn-Zr intermetallic compounds
cause them to have lower ductility than MgZn2. In addition, for Zn-Zr intermetallic compounds, the
strength of the ionic bond was also compared based on the result of charge transfer using the Bader
charge analysis. For a reasonable and intuitive comparison, the average charge transfer amount of
per Zr atom (e/atom) in Zn-Zr intermetallic compounds could be used as a basis, and the descending
order is: Zn2Zr (1.01) > ZnZr (0.95) > Zn2Zr3 (0.72). From the perspective of ionic bonds, the strength
of the Zn2Zr phase is stronger than ZnZr and Zn2Zr3, which is entirely consistent with the above
elastic moduli results.
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3.4. Minimum Thermal Conductivity and Anisotropy

It is well-known that thermal conductivity is inversely proportional to temperature. At elevated
temperatures, the thermal conductivity will decrease to a limit value considered as the minimum
thermal conductivity, which can be developed to identify candidate materials for high-temperature
applications [36,37]. For the purpose of precisely calculating the minimum thermal conductivity of
selected Zn-Zr and MgZn2 intermetallic compounds with anisotropic chemical bonds, the modified
Clarke relation by Liu et al. [16] was used as defined:

kmin → kBνm

(
M

npNA

)−2/3
(4)
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where kB is the Boltzmann’s constant, vm is the average sound velocity, NA is Avogadro’s number, ρ is
the density, M is the molecular weight, and n is the number of atoms in the molecule. The average
sound velocity vm is given by [38,39]:

υm =

[
1
3

(
2
υ3

t
+

1
υ3

l

)]−1/3

(5)

υt =

√
G
ρ

(6)

υl =

√
B + 4/3G

ρ
(7)

where B and G are the bulk modulus and shear modulus, respectively. Using Liu’s model, the minimum
thermal conductivity of ZnZr, Zn2Zr, Zn2Zr3, and MgZn2 is 0.48, 0.67, 0.68, and 0.49 (W·m−1·K−1),
respectively. Since the values of the minimum thermal conductivities of the Zn-Zr intermetallic
compounds such as Zn2Zr and Zn2Zr3 are far larger than MgZn2, it can be proved that the thermal
conductivity of the Mg-Zn-Zr alloy will be markedly improved as the precipitation of Zn atoms
from the α-Mg matrix form Zn-Zr intermetallic compounds other than MgZn2. Meanwhile, Zn2Zr3,
with maximum thermal conductivity, can be considered as the most important contribution to the total
thermal conductivity due to its minimum Helmholtz free energy, which is considered to be a key factor
for the alloys to be formed. However, for ZnZr, the difference in the minimum thermal conductivity
between them could still be ignored.

Furthermore, an important question to ask is how the minimum thermal conductivity along
a different direction can affect the overall minimum thermal conductivity. To clarify this point,
the directional dependence of the minimum thermal conductivity can be computed from the
quasi-transverse or quasi-longitudinal sound velocities and the number density of atoms per mole (n)
of the compound, according to Cahill’s model [17]:

Kmin =
kB

2.48
n2/3(vl + vt1 + vt2) (8)

for tetragonal Zn2Zr3 crystal structure symmetry, the acoustic velocities can simply be written as:

[100] = [010]νl =
√

C11/ρ; [001]νt1 =
√

C44/ρ; [010]νt2 =
√

C66/ρ

[001]νl =
√

C33/ρ; [100]νt1 = [010]νt2 =
√

C66/ρ

[110]νl =
√
(C11 + C12 + 2C66)/2ρ; [001]νt1 =

√
C44/ρ;

[
010
]
νt2 =

√
(C11 − C12)/2ρ

for hexagonal MgZn2:

[100]νl =
√
(C11 − C12)/2ρ; [010]νt1 =

√
C11/ρ; [010]νt2 =

√
C44/ρ

[001]νl =
√

C33/ρ; [100]νt1 = [010]νt2 =
√

C44/ρ

for cubic ZnZr and Zn2Zr:

[100] = [010] = [001]νl =
√

C11/ρ; [010]νt1 = [010]νt2 =
√

C44/ρ

[110]νl =
√
(C11 + C12 + 2C44)/2ρ;

[
110
]
νt1 =

√
(C11 − C12)/2ρ; [001]νt1 =

√
C44/ρ

The calculated acoustic velocities along different crystal directions are shown in Figure 4. It is
clear that Zn2Zr exhibits relatively little deviations in terms of all considered acoustic velocities due to
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the small variation in elastic constants. All Zn-Zr intermetallic compounds present better symmetry
results along the [100], [010], and [001] directions compared with MgZn2, and this may be the result of
its hexagonal symmetry. Interestingly, the difference between quasi-transverse and quasi-longitudinal
acoustic velocities for each Zn-Zr crystal structure along the [110] direction are most pronounced,
indicating that the most diverse chemical bonds are in this direction. However, the quasi-longitudinal
sound velocity of all Zn-Zr intermetallic compounds in the [110] direction are closest to each other,
probably because they exhibit similar ionic bonds in the [110] direction.Materials 2018, 11, x FOR PEER REVIEW  8 of 11 
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Figure 4. The calculated transverse and longitudinal acoustic velocities along different directions for
ZnZr, Zn2Zr, Zn2Zr3, and MgZn2.

In addition, the theoretical minimum thermal conductivities along different principle directions
can be obtained using the acoustic velocities, as shown in Figure 5. For all considered intermetallic
compounds, the directional dependence of the minimum thermal conductivity obtained in the present
calculation is around 30% higher than those obtained by the Liu relation. Nevertheless, by comparing
the values of minimum thermal conductivity in different directions, we can still understand the
anisotropy of the minimum thermal conductivity to some extent. As can be observed, the minimum
thermal conductivities of the ZnZr, Zn2Zr, and MgZn2 intermetallic compounds are the same in
the three principle axis directions, indicating that the limit of thermal conductivity along the x, y,
and z axes are directionally insensitive. Compared with ZnZr, Zn2Zr, and MgZn2, the minimum
thermal conductivity of Zn2Zr3 along the z axis is higher than the x and y axes. What is striking in
this figure is the minimum thermal conductivity along the [110] direction. It can be seen that the
value of minimum thermal conductivity along the [110] direction is the smallest for all considered
directions, indicating that Zn-Zr ionic bonding in the [110] direction will greatly affect the thermal
conductivity at high temperatures, which will result in slower heat dissipation in the [110] direction.
The minimum thermal conductivity in the [110] direction will be a crucial factor when considering the
minimum thermal conductivity for the selected Zn-Zr intermetallic compounds, especially for Zn2Zr3.
This fact definitely indicates that the bonding anisotropy, reflected in the elastic constant anisotropy,
leads to anisotropy in the high-temperature limit of thermal conductivity—that is, the minimum
thermal conductivity.
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4. Conclusions

In summary, the structural stability, mechanical properties, bonding characteristics, and minimum
thermal conductivity for the intermetallic compounds ZnZr, Zn2Zr, Zn2Zr3, and MgZn2 have been
investigated by first-principles calculations. Moreover, the crystal direction/minimum thermal
conductivity relationship of the materials were also established.

Based on the difference between C11 and C33, MgZn2 was found to possess greater anisotropy
on the directional dependence of the modulus than Zn2Zr3. ZnZr and Zn2Zr3 was found to combine
the natures of high strength and great ductility. Strong ionic bonds in ZnZr, Zn2Zr, and Zn2Zr3

was found to lead to the characteristics of a higher modulus but lower ductility than MgZn2.
Furthermore, the strength of the Zn2Zr phase was found to be stronger than ZnZr and Zn2Zr3 based
on the maximum charge transfer using Bader’s charge analysis. Based on the calculated minimum
thermal conductivities of the intermetallic compounds ZnZr, Zn2Zr, Zn2Zr3, and MgZn2, we conclude
that the thermal conductivity of the Mg-Zn-Zr alloy will be markedly improved as the precipitation of
Zn atoms from the α-Mg matrix help to form Zn-Zr binary alloys. However, the minimum thermal
conductivity along the [110] direction may serve to be a crucial limit.
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