Tunable Coupled-Resonator-Induced Transparency in a Photonic Crystal System Based on a Multilayer-Insulator Graphene Stack
Abstract
:1. Introduction
2. Theoretical Modeling
3. Simulation Results
4. Discussion
4.1. Multipeak CRIT Effect
4.2. Electrical Modulation of MGIS
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cao, G.T.; Li, H.J.; Zhan, S.P.; Xu, H.Q.; Liu, Z.M.; He, Z.H.; Wang, Y. Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators. Opt. Express 2013, 21, 9198–9205. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Liu, X.M.; Mao, D. Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys. Rev. A 2012, 85, 053803. [Google Scholar] [CrossRef]
- Fleischhauer, M.; Imamoglu, A.; Marangos, J.P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 2005, 77, 633. [Google Scholar] [CrossRef]
- Lai, G.; Liang, R.S.; Zhang, Y.J.; Bian, Z.Y.; Yi, L.X.; Zhan, G.Z.; Zhao, R.T. Double plasmonic nanodisks design for electromagnetically induced transparency and slow light. Opt. Express 2015, 23, 6554–6561. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, M.; Kwong, D.L.; Wong, C.W. All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities. Phys. Rev. Lett. 2009, 102, 173902. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.J.; Sandhu, S.; Pan, J.; Stuhrmann, N.; Povinelli, M.L.; Kahn, J.M.; Harris, J.S.; Fejer, M.M.; Fan, S.H. Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide. Opt. Lett. 2011, 36, 1482–1484. [Google Scholar] [CrossRef] [PubMed]
- Mingaleev, S.F.; Miroshnichenko, A.E.; Kivshar, Y.S. Low-threshold bistability of slow light in photonic-crystal waveguides. Opt. Express 2007, 15, 12380–12385. [Google Scholar] [CrossRef] [PubMed]
- Vlasov, Y.A.; McNab, S.J. Coupling into the slow light mode in slab-type photonic crystal waveguides. Opt. Lett. 2006, 31, 50–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, H.; Liu, X.; Wang, L.; Gong, Y.; Mao, D. Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt. Express 2011, 19, 2910–2915. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.G.; Li, X.S.; Chandra, B.; Tulevski, G.; Wu, Y.Q.; Freitag, M.; Zhu, W.J.; Avouris, P.; Xia, F.N. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotechnol. 2012, 7, 330. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C.; Liu, C.H.; Liu, C.H.; Zhang, S.; Marder, S.R.; Narimanov, E.E.; Zhong, Z.; Norris, T.B. Realization of mid-infrared graphene hyperbolic metamaterials. Nat. Commun. 2016, 7, 10568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasanen, P.; Voutilainen, M.; Helle, M.; Song, X.; Hakonen, P.J. Graphene for future electronics. Phys. Scr. 2012, 2012, 014025. [Google Scholar] [CrossRef]
- Hao, R.; Du, W.; Chen, H.S.; Jin, X.F.; Yang, L.Z.; Li, E.P. Ultra-compact optical modulator by graphene induced electro-refraction effect. Appl. Phys. Lett. 2013, 103, 061116. [Google Scholar] [CrossRef]
- Huang, X.J.; Leng, T.; Georgiou, T.; Abraham, J.; Nair, R.R.; Novoselov, K.S.; Hu, Z.R. Graphene oxide dielectric permittivity at GHz and it applications for wireless humidity sensing. Sci. Rep. 2018, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Madani, A.; Babaei, M. Tunable polarization sensitive absorber made of graphene-based hyperbolic metamaterials. Superlattice Microst. 2017, 102, 470–476. [Google Scholar] [CrossRef]
- Bian, L.A.; Liu, P.G.; Han, Z.Z.; Li, G.S.; Mao, J. Near-unity absorption in a graphene-embedded defective photonic crystals array. Superlattice Microst. 2017, 104, 461–469. [Google Scholar] [CrossRef]
- Tassin, P.; Koschny, T.; Kafesaki, M.; Soukoulis, C.M. A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nat. Photonics 2012, 6, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.Q.; Liu, P.G.; Bian, L.A.; Liu, C.X.; Zhou, Q.H. An electro-optic modulator side-coupled with photonic crystal nanobeam loaded graphene/Al2O3 multilayer stack. Opt. Mat. Express 2018, 8, 761–774. [Google Scholar] [CrossRef]
- Zhu, W.R.; Xiao, F.J.; Kang, M.; Sikdar, D.; Premaratne, M.L. Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite. Appl. Phys. Lett. 2014, 104, 051902. [Google Scholar] [CrossRef]
- Su, Z.X.; Yin, J.B.; Zhao, X.P. Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures. Opt. Express 2015, 23, 1679–1690. [Google Scholar] [CrossRef] [PubMed]
- Vicarelli, L.; Vitiello, M.S.; Coquillat, D.; Lombardo, A.; Ferrari, A.C.; Knap, W.; Polini, M.; Pellegrini, V.; Tredicucci, A. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 2012, 11, 865–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Y.F.; Liu, P.G.; Yu, D.W.; Li, G.S.; Tao, F. Dual-band reconfigurable terahertz patch antenna with graphene-stack-based backing cavity. IEEE Antenna Wirel. Propag. Lett. 2016, 1536, 1541–1544. [Google Scholar] [CrossRef]
- Othman, M.A.K.; Guclu, C.; Capolino, F. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. Opt. Express 2013, 21, 7614–7632. [Google Scholar] [CrossRef] [PubMed]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Wangberg, R.; Elser, J.; Narimanov, E.E.; Podolskiy, V.A. Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media. J. Opt. Soc. Am. B 2006, 23, 498–505. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Fal, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.S.; Wu, Q.Z.; Mishra, C.; Kang, J.Y.; Zhang, H.J.; Cho, K.; Cai, W.W.; Balandin, A.A.; Ruoff, R.S. Thermal conductivity if isotopically modified graphene. Nat. Mater. 2012, 11, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Farhat, M.; Rockstuhl, C.; Bagci, H. A 3D tunable and multi-frequency graphene plasmonic cloak. Opt. Express 2013, 21, 12592–12603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Qian, C.; Qiu, K.; Gao, Y.; Xu, X. Ultrafast optical switching using photonic molecules in photonic crystal waveguides. Opt. Express 2015, 23, 9211–9220. [Google Scholar] [CrossRef] [PubMed]
- Li, J.T.; White, T.P.; Faolain, L.O.; Iglesias, A.G.; Krauss, T.F. Systematic design of flat band slow light in photonic crystal waveguides. Opt. Express 2008, 16, 6227–6232. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Gu, T.Y.; McMillan, J.F.; Yu, M.B.; Lo, G.Q.; Kwong, D.L.; Feng, G.Y.; Zhou, S.H.; Wong, C.W. Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides. Appl. Phys. Lett. 2016, 108, 111106. [Google Scholar] [CrossRef] [Green Version]
- Tang, B.; Dai, L.; Jiang, C. Electromagnetic response of a compound plasmonic–dielectric system with coupled-grating-induced transparency. Phys. Lett. A 2012, 376, 1234–1238. [Google Scholar] [CrossRef]
- Lu, H.; Liu, X.M.; Wang, G.X.; Mao, D. Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency. Nanotechnology 2012, 23, 444003. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.; Ramunno, L.; Young, J.F.; Sipe, J.E. Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity. Phys. Rev. Lett. 2005, 94, 033903. [Google Scholar] [CrossRef] [PubMed]
- McNab, S.J.; Moll, N.; Vlasov, Y.A. Ultra-low loss photonic intergrated circuit with membrane-type photonic crystal waveguides. Opt. Express 2003, 11, 2927–2939. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, W.H.; Cui, L.; Yu, L.; Duan, G.Y.; Zhao, Y.F.; Xiao, J.H. Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system. Plasmonics 2015, 10, 721–727. [Google Scholar] [CrossRef]
- Han, Z.; Forsberg, E.; He, S. Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photon. Technol. Lett. 2007, 19, 91–93. [Google Scholar] [CrossRef]
- Gong, Y.; Liu, X.; Wang, L. High-channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings. Opt. Lett. 2010, 35, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Fussell, D.P.; Hughes, S.; Dignam, M.M. Influence of fabrication disorder on the optical properties of coupled-cavity photonic crystal waveguides. Phys. Rev. B 2008, 78, 144201. [Google Scholar] [CrossRef]
- Varmazyari, V.; Habibiyan, H.; Ghafoorifard, H. All-optical tunable slow light achievement in photonic crystal coupled-cavity waveguides. Appl. Opt. 2013, 52, 6497–6505. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Qiu, C.; Wu, J.; Jiang, X.; Liu, B.; Yang, Y.; Zhou, H.; Soref, R.; Su, Y. Analysis of an electro-optic modulator based on a graphene-silicon hybrid 1D photonic crystal nanobeam cavity. Opt. Express 2015, 23, 23357–23364. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, A.; Kim, J.; Vuckovic, J.; Wang, F. Electrical Control of Photonic Crystal Cavity by Graphene. In Proceedings of the CLEO: Science and Innovations 2013, San Jose, CA, USA, 9–14 June 2013. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Tan, J.; Liu, P.; Bian, L.-a.; Zha, S. Tunable Coupled-Resonator-Induced Transparency in a Photonic Crystal System Based on a Multilayer-Insulator Graphene Stack. Materials 2018, 11, 2042. https://doi.org/10.3390/ma11102042
Liu H, Tan J, Liu P, Bian L-a, Zha S. Tunable Coupled-Resonator-Induced Transparency in a Photonic Crystal System Based on a Multilayer-Insulator Graphene Stack. Materials. 2018; 11(10):2042. https://doi.org/10.3390/ma11102042
Chicago/Turabian StyleLiu, Hanqing, Jianfeng Tan, Peiguo Liu, Li-an Bian, and Song Zha. 2018. "Tunable Coupled-Resonator-Induced Transparency in a Photonic Crystal System Based on a Multilayer-Insulator Graphene Stack" Materials 11, no. 10: 2042. https://doi.org/10.3390/ma11102042
APA StyleLiu, H., Tan, J., Liu, P., Bian, L. -a., & Zha, S. (2018). Tunable Coupled-Resonator-Induced Transparency in a Photonic Crystal System Based on a Multilayer-Insulator Graphene Stack. Materials, 11(10), 2042. https://doi.org/10.3390/ma11102042