Investigation of Particles and Gas Bubbles in Zr–0.8Sn–1Nb–0.3Fe Zr Alloys Irradiated by Krypton Ions
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
3.1. Microstructure of the As-Received Alloys
3.2. Irradiation Behavior of Particles
3.3. Irradiation Behavior of Gas Bubbles
- for Zr alloy #1:f = 4.51 + 3.33/(1 + exp(F − 7.87)),
- for Zr alloy #2:f = 4.66 + 4.91/(1 + exp(F − 8.06)).
- for Zr alloy #1:f = 4.63 + 0.86/(1 + 10(0.0625×(638−T))),
- for Zr alloy #2:f = 5.11 + 1.31/(1 + 10(0.0625×(638−T))).
4. Conclusions
- (1)
- The sizes of the Zr crystal and its particles became large after additional cold rolling and annealing steps. The sizes of the crystal and particles grew from 3.9 μm to 6.0 μm and from 74.6 nm to 89.6 nm, respectively. Most particles in the Zr matrix were (Zr,Nb)2Fe compounds with an FCC structure.
- (2)
- Amorphization of particles was observed in both irradiated alloys, and the amorphization dose was significantly influenced by the fabrication process and irradiation parameters. The particles in alloy #1 had higher irradiation tolerance than did those in alloy #2. The threshold values of displacement damage inducing particle change from crystal to amorphous were 3.2 dpa and 3.5 dpa in alloys #1 and #2, respectively, at 320 °C. The threshold value was 4.9 dpa in alloy #2 at 360 °C. At the corresponding displacement damage and irradiation temperature, particles retained a crystal structure in Zr alloy #1.
- (3)
- Kr+ irradiation induced krypton bubble formation in the Zr alloy matrix. The size of the krypton bubbles increased with increasing displacement damage and irradiation temperature. The average size of gas bubbles in Zr alloy #2 was larger than that in Zr alloy #1 under the same experimental conditions. Equations relating bubble size with experiment parameters were obtained from the experiment data.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gabory, B.D.; Motta, A.T.; Wang, K. Transmission electron microscopy characterization of Zircaloy-4 and ZIRLO™ oxide layers. J. Nucl. Mater. 2015, 456, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.H.; Peng, S.M.; Xiang, X.; Naab, F.N.; Sun, K.; Zu, X.T. Proton irradiation effects on the particle in a Zr-1.6Sn-0.6Nb-0.2Fe-0.1Cr alloy. J. Nucl. Mater. 2014, 452, 335–342. [Google Scholar] [CrossRef]
- Ran, G.; Xu, J.K.; Shen, Q.; Zhang, J.; Li, N.; Wang, L.M. In situ TEM observation of growth behavior of Kr bubbles in Zr alloy during post-implantation annealing. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 307, 516–521. [Google Scholar] [CrossRef]
- Shishov, V.N. The evolution of microstructure and deformation stability in Zr-Nb-(Sn,Fe) alloys under neutron irradiation. J. ASTM Int. 2010, 7, 479–500. [Google Scholar] [CrossRef]
- Lei, P.H.; Ran, G.; Liu, C.W.; Shen, Q.; Zhang, R.Q.; Ye, C.; Li, N.; Yang, P.H.; Yang, Y.C. Microstructure analysis of Kr+ irradiation and post-irradiation corrosion of modified N36 Zr alloy. Nucl. Instrum. Methods Phys. Res. B 2017, 406, 648–655. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Y.; Jiang, H.; Peng, Q. Effect of heat treatment and Nb and H contents on the phase transformation of N18 and N36 Zr alloys. J. Alloys Compd. 2008, 462, 103–108. [Google Scholar] [CrossRef]
- Novikov, V.V.; Markelov, V.A.; Tselishchev, A.V. Structure-phase changes and corrosion behavior of E110 and E635 claddings of fuels in water cooled reactors. J. Nucl. Sci. Technol. 2006, 43, 991–997. [Google Scholar] [CrossRef]
- Younker, I.; Fratoni, M. Neutronic evaluation of coating and cladding materials for accident tolerant fuels. Prog. Nucl. Energy 2016, 88, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Charit, I.; Murty, K.L. Creep behavior of niobium-modified Zr alloys. J. Nucl. Mater. 2008, 374, 354–363. [Google Scholar] [CrossRef]
- Christensen, M.; Angeliu, T.M.; Ballard, J.D.; Vollmer, J.; Najafabadi, R.; Wimmer, E. Effect of impurity and alloying elements on Zr crystal boundary strength from first-principles computations. J. Nucl. Mater. 2010, 404, 121–127. [Google Scholar] [CrossRef]
- Yan, M.; Yin, Q.W.; Wang, P.F.; Liang, B.; Wang, M.L. I-SCC behavior evaluation of N36 Zr alloy cladding using ring tensile test. Rare Met. Mater. Eng. 2015, 44, 58–61. [Google Scholar]
- Rafique, M.; Chae, S.; Kim, Y.S. Surface, structural and tensile properties of proton beam irradiated Zr. Nucl. Instrum. Methods Phys. Res. Sect. B 2016, 368, 120–128. [Google Scholar] [CrossRef]
- Yan, C.G.; Wang, R.S.; Wang, Y.L.; Wang, X.T.; Bai, G.H. Effects of ion irradiation on microstructure and properties of Zr alloys—A review. Nucl. Eng. Technol. 2015, 47, 323–331. [Google Scholar] [CrossRef]
- Hayashi, H.; Hashimoto, N.; Ohnuki, S. Stability of precipitates in ZIRLO under high energy particle irradiation. J. Nucl. Mater. 2013, 442, S830–S833. [Google Scholar] [CrossRef]
- Shen, H.H.; Zhang, J.M.; Peng, S.M.; Xiang, X.; Sun, K.; Zu, X.T. In situ TEM investigation of amorphization and recrystallization of Zr(Fe,Cr,Nb)2 particles under Ne ion irradiation. Vacuum 2014, 110, 24–29. [Google Scholar] [CrossRef]
- Zu, X.T.; Sun, K.; Atzmon, M.; Wang, L.M.; You, L.P.; Wan, F.R.; Busby, J.T.; Was, G.S.; Adamson, R.B. Effect of proton and Ne irradiation on the microstructure of Zircaloy 4. Philos. Mag. 2005, 85, 649–659. [Google Scholar] [CrossRef]
- Jin, H.J.; Kim, T.K. Neutron irradiation performance of Zircaloy-4 under research reactor operating conditions. Ann. Nucl. Energy 2015, 75, 309–315. [Google Scholar] [CrossRef]
- Ma, Y.Z.; Ran, G.; Chen, N.J.; Lei, P.H.; Shen, Q. Investigation of mechanical properties and proton irradiation behaviors of SA738 Gr.B steel used as reactor containment. Nucl. Mater. Energy 2016, 8, 8–22. [Google Scholar]
- Zhao, W.J.; Miao, Z.; Jiang, H. Corrosion behavior of Zr-Sn-Nb alloy. J. Chin. Soc. Corros. Prot. 2002, 2, 124–128. [Google Scholar]
- Nikulina, A.V.; Markelov, V.A.; Peregud, M.M.; Voevodin, V.N.; Panchenko, V.L.; Kobylyansky, G.P. Irradiation-induced microstructural changes in Zr-1% Sn-1% Nb-0.4% Fe. J. Nucl. Mater. 1996, 238, 205–210. [Google Scholar] [CrossRef]
- Toffolon-masclet, C.; Brachet, J.C.; Servant, C.; Joubert, J.M.; Barberis, P.; Dupin, N.; Zeller, P. Contribution of Thermodynamic Calculations to Metallurgical Studies of Multi-Component Zr Based Alloys/Zr in the Nuclear Industry, Fifteenth Symposium, ASTM STP 1505; ASTM International: West Conshohocken, PA, USA, 2008. [Google Scholar]
- Granovsky, M.S.; Canay, M.; Lena, E.; Arias, D. Experimental investigation of the Zr corner of the ternary Zr–Nb–Fe phase diagram. J. Nucl. Mater. 2002, 302, 1–8. [Google Scholar] [CrossRef]
- Faulkner, D.; Woo, C.H. Void swelling in Zr. J. Nucl. Mater. 1980, 90, 307–316. [Google Scholar] [CrossRef]
- Hood, G.M.; Zou, H.; Schultz, R.J. Hf diffusion in pure and ultrapure α-Zr. J. Nucl. Mater. 1992, 189, 226–230. [Google Scholar] [CrossRef]
- Buckley, S.N.; Manthorpe, S.A. Irradiation Damage in a-Zirconium and Zirconium-Titanium Solid Solutions. In Proceedings of the International Conference on Physical Metallurgy of Reactor Fuel Elements, Berkeley, UK, 2 September 1973. [Google Scholar]
- Goodhew, P.J.; Tyler, S.K. Helium bubble behaviour in BCC metals below 0.65Tm. Proc. R. Soc. Lond. Ser. A 1981, 377, 151–184. [Google Scholar] [CrossRef]
- Nelson, R.S. The stability of gas bubbles in an irradiation environment. J. Nucl. Mater. 1969, 31, 153–161. [Google Scholar] [CrossRef]
- Rimmer, D.E.; Cottrell, A.H. The solution of inert gas atoms in metals. Philos. Mag. 1957, 2, 1345–1353. [Google Scholar] [CrossRef]
- Blackburn, R. Inert gases in metals. Metall. Rev. 1966, 11, 159–176. [Google Scholar]
- Ran, G.; Huang, S.L.; Huang, Z.J.; Yan, Q.Z.; Xu, J.K.; Li, N.; Wang, L.M. In situ observation of microstructure evolution in tungsten under 400 keV Kr+ irradiation. J. Nucl. Mater. 2014, 455, 320–324. [Google Scholar] [CrossRef]
- Chernikov, V.N.; Trinkaus, H.; Ullmaier, H. Helium Bubbles in Nickel Annealed at T > 0.7 Tm. J. Nucl. Mater. 1997, 250, 103–110. [Google Scholar] [CrossRef]
Experiment Conditions | Irradiation Temperature, T, 360 °C | Displacement Damage, F, 10 dpa | |||||
---|---|---|---|---|---|---|---|
Samples | 5 dpa | 10 dpa | 25 dpa | 320 °C | 360 °C | 400 °C | |
Bubble Size, nm | Zr alloy #1 | 2.5 ± 0.03 | 2.8 ± 0.03 | 3.6 ± 0.03 | 2.5 ± 0.03 | 2.8 ± 0.03 | 3.2 ± 0.03 |
Zr alloy #2 | 3.0 ± 0.03 | 3.1 ± 0.03 | 3.7 ± 0.03 | 2.8 ± 0.03 | 3.1 ± 0.03 | 3.7 ± 0.03 | |
f Value | Zr alloy #1 | 7.84 | 4.9 | 4.47 | 4.63 | 4.9 | 5.49 |
Zr alloy #2 | 9.46 | 5.54 | 4.66 | 5.11 | 5.54 | 6.44 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, W.; Liu, C.; Lei, P.; Ran, G. Investigation of Particles and Gas Bubbles in Zr–0.8Sn–1Nb–0.3Fe Zr Alloys Irradiated by Krypton Ions. Materials 2018, 11, 2056. https://doi.org/10.3390/ma11102056
Shen W, Liu C, Lei P, Ran G. Investigation of Particles and Gas Bubbles in Zr–0.8Sn–1Nb–0.3Fe Zr Alloys Irradiated by Krypton Ions. Materials. 2018; 11(10):2056. https://doi.org/10.3390/ma11102056
Chicago/Turabian StyleShen, Wenzhu, Chenwei Liu, Penghui Lei, and Guang Ran. 2018. "Investigation of Particles and Gas Bubbles in Zr–0.8Sn–1Nb–0.3Fe Zr Alloys Irradiated by Krypton Ions" Materials 11, no. 10: 2056. https://doi.org/10.3390/ma11102056
APA StyleShen, W., Liu, C., Lei, P., & Ran, G. (2018). Investigation of Particles and Gas Bubbles in Zr–0.8Sn–1Nb–0.3Fe Zr Alloys Irradiated by Krypton Ions. Materials, 11(10), 2056. https://doi.org/10.3390/ma11102056