Comparison of a Novel Ultrasonic Scaler Tip vs. Conventional Design on a Titanium Surface
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zitzmann, N.U.; Berglundh, T. Definition and prevalence of peri-implant diseases. J. Clin. Periodontol. 2008, 35, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Ramanauskaite, A.; Becker, K.; Schwarz, F. Clinical characteristics of peri-implant mucositis and peri-implantitis. Clin. Oral Implants Res. 2018, 29, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Scarano, A.; Piattelli, A.; Quaranta, A.; Lorusso, F. Bone Response to Two Dental Implants with Different Sandblasted/Acid-Etched Implant Surfaces: A Histological and Histomorphometrical Study in Rabbits. Biomed. Res. Int. 2017. [Google Scholar] [CrossRef] [PubMed]
- Sinjari, B.; Guarnieri, S.; Diomede, F.; Merciaro, I.; Mariggio, M.A.; Caputi, S.; Trubiani, O. Influence of titanium laser surface geometry on proliferation and on morphological features of human mandibular primary osteoblasts. J. Biol. Regul. Homeost. Agents 2012, 26, 505–513. [Google Scholar] [PubMed]
- Simion, M.; Kim, D.M.; Pieroni, S.; Nevins, M.; Cassinelli, C. Bacterial Biofilm Morphology on a Failing Implant with an Oxidized Surface: A Scanning Electron Microscope Study. Int. J. Periodontics Restorative Dent. 2016, 36, 485–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drago, L.; Bortolin, M.; De Vecchi, E.; Agrappi, S.; Weinstein, R.L.; Mattina, R.; Francetti, L. Antibiofilm activity of sandblasted and laser-modified titanium against microorganisms isolated from peri-implantitis lesions. J. Chemother. 2016, 28, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Renvert, S.; Roos-Jansåker, A.M.; Claffey, N. Non-surgical treatment of peri-implant mucositis and peri-implantitis: A literature review. J. Clin. Periodontol. 2008, 35, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, S.; Berglundh, T.; Genco, R.; Aass, A.M.; Demirel, K.; Derks, J.; Figuero, E.; Giovannoli, J.L.; Goldstein, M.; Lambert, F.; et al. Primary prevention of peri-implantitis: Managing peri-implant mucositis. J. Clin. Periodontol. 2015, 42, 152–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, M.; Grusovin, M.G.; Worthington, H.V. Treatment of peri-implantitis: What interventions are effective? A Cochrane systematic review. Eur. J. Oral Implantol. 2012, 5, 21–41. [Google Scholar]
- Persson, L.G.; Berglundh, T.; Lindhe, J.; Sennerby, L. Re-osseointegration after treatment of peri-implantitis at different implant surfaces. An experimental study in the dog. Clin. Oral Implants Res. 2001, 12, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Kuempel, D.R.; Johnson, G.K.; Zaharias, R.S.; Keller, J.C. The effects of scaling procedures on epithelial cell growth on titanium surfaces. J. Periodontol. 1995, 66, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Smeets, R.; Henningsen, A.; Jung, O.; Heiland, M.; Hammächer, C.; Stein, J.M. Definition, etiology, prevention and treatment of peri-implantitis—A review. Head Face Med. 2014, 3, 10–34. [Google Scholar] [CrossRef] [PubMed]
- Elemek, E.; Almas, K. Peri-implantitis: Etiology, diagnosis and treatment: An update. J. Clin. Periodontol. 2014, 80, 26–32. [Google Scholar]
- Robertson, K.; Shahbazian, T.; MacLeod, S. Treatment of peri-implantitis and the failing implant. Dent. Clin. North Am. 2015, 59, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Pranskunas, M.; Poskevicius, L.; Juodzbalys, G.; Kubilius, R.; Jimbo, R. Influence of Peri-Implant Soft Tissue Condition and Plaque Accumulation on Peri-Implantitis: A Systematic Review. J. Oral Maxillofac. Res. 2016, 7, e2. [Google Scholar] [CrossRef] [PubMed]
- Augthun, M.; Tinschert, J.; Huber, A. In vitro studies on the effect of cleaning methods on different implant surfaces. J. Periodontol. 1998, 69, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Menezes, K.M.; Fernandes-Costa, A.N.; Silva-Neto, R.D.; Calderon, P.S.; Gurgel, B.C. Efficacy of 0.12% Chlorhexidine Gluconate for Non-Surgical Treatment of Peri-Implant Mucositis. J. Periodontol. 2016, 87, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Ziebolz, D.; Klipp, S.; Schmalz, G.; Schmickler, J.; Rinke, S.; Kottmann, T.; Fresmann, S.; Einwag, J. Comparison of different maintenance strategies within supportive implant therapy for prevention of peri-implant inflammation during the first year after implant restoration. A randomized, dental hygiene practice-based multicenter study. Am. J. Dent. 2017, 30, 190–196. [Google Scholar] [PubMed]
- Mengel, R.; Buns, C.E.; Mengel, C.; Flores-de-Jacoby, L. An in vitro study of the treatment of implant surfaces with different instruments. Int. J. Oral Maxillofac. Implants 1998, 13, 91–96. [Google Scholar] [PubMed]
- Barnes, C.M.; Fleming, L.S.; Mueninghoff, L.A. SEM evaluation of the in–vitro effects of an air-abrasive system on various implant surfaces. Int. J. Oral Maxillofac. Implants 1991, 6, 463–469. [Google Scholar] [PubMed]
- Kawashima, H.; Sato, S.; Kishida, M.; Ito, K. A comparison of root surface instrumentation using two piezoelectric ultrasonic scalers and a hand scaler in vivo. J. Periodontal Res. 2007, 42, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Trejo, P.M.; Bonaventura, G.; Weng, D.; Caffesse, R.G.; Bragger, U.; Lang, N.P. Effect of mechanical and antiseptic therapy on peri-implant mucositis: An experimental study in monkeys. Clin. Oral Implants Res. 2006, 17, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Louropoulou, A.; Slot, D.E.; Van der Weijden, F.A. Titanium surface alterations following the use of different mechanical instruments: A systematic review. Clin. Oral Implants Res. 2012, 23, 643–658. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; Ferrari, D.; Popovski, K.; Hartig, B.; Becker, J. Influence of different air-abrasive powders on cell viability at biologically contaminated titanium dental implants surfaces. J. Biomed. Mater. Res. B. Appl. Biomater. 2009, 88, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; Rothamel, D.; Sculean, A.; Georg, T.; Scherbaum, W.; Becker, J. Effects of an Er: YAG laser and the Vector ultrasonic system on the biocompatibility of titanium implants in cultures of human osteoblast-like cells. Clin. Oral Implants Res. 2003, 14, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Meschenmoser, A.; d’Hoedt, B.; Meyle, J.; Elssner, G.; Korn, D.; Hämmerle, H.; Schulte, W. Effects of various hygiene procedures on the surface characteristics of titanium abutments. J. Periodontol. 1996, 67, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Mann, M.; Parmar, D.; Walmsley, A.D.; Lea, S.C. Effect of plastic-covered ultrasonic scalers on titanium implant surfaces. Clin. Oral Implants Res. 2012, 23, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Plotnick, R.E.; Gardner, R.H.; Hargrove, W.W.; Prestegaard, K.; Perlmutter, M. Lacunarity analysis: A general technique for the analysis of spatial patterns. Phys. Rev. E 1996, 53, 5461–5468. [Google Scholar] [CrossRef]
- Mandelbrot, B. The Fractal Geometry of Nature; W.H. Freeman and Co: New York, NY, USA, 1982. [Google Scholar]
- Voss, R.F. Random Fractals: Characterization and measurement. In Scaling Phenomena in Disordered Systems; Pynn, R., Skjeltorp, A., Eds.; Springer: Boston, MA, USA, 1991. [Google Scholar]
- Bojović, B.; Koruga, Đ. Micro and nano lubricant behavior of tear film aqueous layer. Contemp. Mater. 2012, 3, 55–62. [Google Scholar] [CrossRef]
- Tomic, M.; Bojovic, B.; Stamenkovic, D.; Mileusnic, I.; Koruga, Đ. Lacunarity Properties of Nanophotonic Materials Based on Poly(Methyl Methacrylate) for Contact Lenses. Mater. Technol. 2017, 51, 145–151. [Google Scholar]
- Hoechstetter, S.; Walz, U.; Thinh, N. Adapting lacunarity techniques for gradient-based analyses of landscape surfaces. Ecol. Complex. 2011, 8, 229–238. [Google Scholar] [CrossRef]
- Tey, V.H.S.; Phillips, R.; Tan, K. Five-year retrospective study on success, survival and incidence of complications of single crowns supported by dental implants. Clin. Oral Implants Res. 2017, 28, 620–625. [Google Scholar] [CrossRef] [PubMed]
- Berglundh, T.; Gotfredsen, K.; Zitzmann, N.U.; Lang, N.P.; Lindhe, J. Spontaneous progression of ligature induced peri-implantitis at implants with different surface roughness: An experimental study in dogs. Clin. Oral Implants Res. 2007, 18, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Ramaglia, L.; di Lauro, A.E.; Morgese, F.; Squillace, A. Profilometric and standard error of the mean analysis of rough implant surfaces treated with different instrumentations. Implant Dent. 2006, 15, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Simion, M.; Gionso, L.; Grossi, G.B.; Briguglio, F.; Fontana, F. Twelve-Year Retrospective Follow-Up of Machined Implants in the Posterior Maxilla: Radiographic and Peri-Implant Outcome. Clin. Implant Dent. Relat. Res. 2015, 17, e343–e351. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.H.; Shon, W.J.; Bae, K.S.; Kum, K.Y.; Lee, W.C.; Park, Y.S. Evaluation of the safety and efficiency of novel metallic ultrasonic scaler tip on titanium surfaces. Clin. Oral Implants Res. 2012, 23, 1269–1274. [Google Scholar] [CrossRef] [PubMed]
- Mellado-Valero, A.; Buitrago-Vera, P.; Solá-Ruiz, M.F.; Ferrer-García, J.C. Decontamination of dental implant surface in peri-implantitis treatment: A literature review. Med. Oral Patol. Oral Cir. Bucal. 2013, 18, e869–e876. [Google Scholar] [CrossRef] [PubMed]
- Subramani, K.; Wismeijer, D. Decontamination of titanium implant surface and re-osseointegration to treat peri-implantitis: A literature review. Int. J. Oral Maxillofac. Implants. 2012, 27, 1043–1054. [Google Scholar] [PubMed]
- Matarasso, S.; Quaremba, G.; Coraggio, F.; Vaia, E.; Cafiero, C.; Lang, N.P. Maintenance of implants: An in vitro study of titanium implant surface modifications subsequent to the application of different prophylaxis procedures. Clin. Oral Implants Res. 1996, 7, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Park, J.B.; Kim, N.; Ko, Y. Effects of ultrasonic scaler tips and toothbrush on titanium disc surfaces evaluated with confocal microscopy. J. Craniofac. Surg. 2012, 23, 1552–1558. [Google Scholar] [CrossRef] [PubMed]
- Quirynen, M.; Vogels, R. Clinical relevance of surface characteristics on the formation of plaque on teeth and implants. Ned. Tijdschr. Tandheelkd. 2002, 109, 422–429. [Google Scholar] [PubMed]
- Di Giulio, M.; Traini, T.; Sinjari, B.; Nostro, A.; Caputi, S.; Cellini, L. Porphyromonas gingivalis biofilm formation in different titanium surfaces, an in vitro study. Clin. Oral Implants Res. 2016, 27, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Sinjari, B.; Traini, T.; Caputi, S.; Mortellaro, C.; Scarano, A. Evaluation of Fibrin Clot Attachment on Titanium Laser-Conditioned Surface Using Scanning Electron Microscopy. J. Craniofac. Surg. 2018. [Google Scholar] [CrossRef] [PubMed]
- Rapley, J.W.; Swan, R.H.; Hallmon, W.W.; Mills, M.P. The surface char- acteristics produced by various oral hygiene instruments and mate- rials on titanium implant abutments. Int. J. Oral Maxillofac. Implants 1990, 5, 47–52. [Google Scholar] [PubMed]
- Fox, S.C.; Moriarty, J.D.; Kusy, R.P. The effects of scaling a titanium implant surface with metal and plastic instruments: An in vitro study. J. Periodontol. 1990, 61, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Mengel, R.; Meer, C.; Flores-de-Jacoby, L. The treatment of uncoated and titanium nitride-coated abutments with different instruments. Int. J. Oral Maxillofac. Implants 2004, 19, 232–238. [Google Scholar] [PubMed]
- Bailey, G.M.; Gardner, J.S.; Day, M.H.; Kovanda, B.J. Implant surface alterations from a nonmetallic ultrasonic tip. J. West. Soc. Periodontol. Periodontal Abstr. 1998, 46, 69–73. [Google Scholar] [PubMed]
- Tawse-Smith, A.; Atieh, M.A.; Tompkins, G.; Duncan, W.J.; Reid, M.R.; Stirling, C.H. The effect of piezoelectric ultrasonic instrumentation on titanium discs: A microscopy and trace elemental analysis in vitro study. Int. J. Dent. Hyg. 2016, 14, 191–201. [Google Scholar] [CrossRef] [PubMed]
Group Members | Group | N | Mean (St. Dev) | St. Error | |||||
A | Steel | 10 | 1.8736 (0.08767) | 0.02772 | |||||
B | Silver Coated | 10 | 1.2630 (0.05034) | 0.01592 | |||||
Statistical Analysis | Levene’s Test Used to Assess the Equality of Variances | t-test Used for Comparison of Means | |||||||
F | Sig. | t | df | Sig. (2-code) | Difference between means | Difference Standard error | a 95% confidence interval | ||
Inferior | Superior | ||||||||
Equal variances | 2.149 | 0.160 | 19.099 | 18 | 0.000 | 0.61060 | 0.03197 | 0.54343 | 0.67777 |
Non-equal variances | 19.099 | 14.353 | 0.000 | 0.61060 | 0.03197 | 0.54219 | 0.67901 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinjari, B.; D’Addazio, G.; Bozzi, M.; Celletti, R.; Traini, T.; Mavriqi, L.; Caputi, S. Comparison of a Novel Ultrasonic Scaler Tip vs. Conventional Design on a Titanium Surface. Materials 2018, 11, 2345. https://doi.org/10.3390/ma11122345
Sinjari B, D’Addazio G, Bozzi M, Celletti R, Traini T, Mavriqi L, Caputi S. Comparison of a Novel Ultrasonic Scaler Tip vs. Conventional Design on a Titanium Surface. Materials. 2018; 11(12):2345. https://doi.org/10.3390/ma11122345
Chicago/Turabian StyleSinjari, Bruna, Gianmaria D’Addazio, Martina Bozzi, Renato Celletti, Tonino Traini, Luan Mavriqi, and Sergio Caputi. 2018. "Comparison of a Novel Ultrasonic Scaler Tip vs. Conventional Design on a Titanium Surface" Materials 11, no. 12: 2345. https://doi.org/10.3390/ma11122345
APA StyleSinjari, B., D’Addazio, G., Bozzi, M., Celletti, R., Traini, T., Mavriqi, L., & Caputi, S. (2018). Comparison of a Novel Ultrasonic Scaler Tip vs. Conventional Design on a Titanium Surface. Materials, 11(12), 2345. https://doi.org/10.3390/ma11122345