Effects of the Mg/Si Ratio on Microstructure, Mechanical Properties, and Precipitation Behavior of Al–Mg–Si–1.0 wt %-Zn Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructures
3.2. Deep Drawability Analysis
3.3. Simulated Paint-Bake Cycle and Precipitation-Hardening Behavior
4. Conclusions
- The composition-optimized alloy was a medium-Mg/Si-ratio alloy. In this alloy, more homogeneous and smaller recrystallized microstructures combined with high r value and excellent deep drawability were developed in comparison with the other two alloys.
- In the medium-Mg/Si-ratio alloy, the denser and larger strengthening precipitates contributed to a better paint-bake hardening response. Zn atoms existed in the matrix as supersaturated solute atoms and strengthened the alloys to a certain extent.
- The addition of Zn did not affect the precipitation sequence of the Al–Mg–Si alloy. No other precipitates formed, and the dual-phase strengthening effect was not achieved in the three groups of alloys during paint-bake treatment at 175 °C.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Troeger, L.P.; Starke, E.A. Microstructural and mechanical characterization of a superplastic 6XXX aluminum alloy. Mater. Sci. Eng. A 2000, 277, 102–113. [Google Scholar] [CrossRef]
- Miller, W.S.; Zhuang, L.; Bottema, J.; Wittebrood, A.J.; Smet, P.D.; Haszler, A.; Vieregge, A. Recent development in aluminum alloys for the automotive industry. Mater. Sci. Eng. A 2000, 280, 37–49. [Google Scholar] [CrossRef]
- Prillhofer, R.; Rank, G.; Berneder, J.; Antrekowitsch, H.; Uggowitzer, P.; Pogatscher, S. Property Criteria for Automotive Al-Mg-Si Sheet Alloys. Materials 2014, 7, 5047–5068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, G.J.; Li, Y.; Wang, Z.D.; Misra, R.D.K.; Li, J.D.; Xu, G.M. Study of retrogression response in naturally and multi-step aged Al-Mg-Si automotive sheets. J. Alloy. Compd. 2018, 753, 457–464. [Google Scholar] [CrossRef]
- Gao, G.; He, C.; Li, Y.; Li, J.; Wang, Z.; Misra, R.D.K. Influence of different solution methods on microstructure, precipitation behavior and mechanical properties of Al-Mg-Si alloy. Trans. Nonferr. Metal Soc. 2018, 28, 839–847. [Google Scholar] [CrossRef]
- Osuch, P.; Walkowicz, M.; Knych, T.; Dymek, S. Impact of the Direct Ageing Procedure on the Age Hardening Response of Al-Mg-Si 6101 Alloy. Materials 2018, 11, 1239. [Google Scholar] [CrossRef] [PubMed]
- Edwards, G.A.; Stiller, K.; Dunlop, G.L.; Couper, M.J. The precipitation sequence in Al-Mg-Si alloys. Acta Mater. 1998, 46, 3893–3904. [Google Scholar] [CrossRef]
- Hasting, H.S.; Frøseth, A.G.; Andersen, S.J.; Vissers, R.; Walmsley, J.C.; Marioara, C.D.; Danoix, F.; Lefebvre, W.; Holmestad, R. Composition of β″ precipitates in Al-Mg-Si alloys by atom probe tomography and first principles calculations. J. Appl. Phys. 2009, 106, 1–9. [Google Scholar] [CrossRef]
- Vissers, R.; van Huis, M.A.; Jansen, J.; Zandbergen, H.W.; Marioara, C.D.; Andersen, S.J. The crystal structure of the β′ phase in Al-Mg-Si alloys. Acta Mater. 2007, 55, 3815–3823. [Google Scholar] [CrossRef]
- Saito, T.; Marioara, C.D.; Andersen, S.J.; Lefebvre, W.; Holmestad, R. Aberration-corrected HAADF-STEM investigations of precipitate structures in Al-Mg-Si alloys with low Cu additions. Philos. Mag. 2014, 94, 520–531. [Google Scholar] [CrossRef]
- Saito, T.; Wenner, S.; Osmundsen, E.; Marioara, C.D.; Andersen, S.J.; Røyset, J.; Lefebvre, W.; Holmestad, R. The effect of Zn on precipitation in Al-Mg-Si alloys. Philos. Mag. 2014, 94, 2410–2425. [Google Scholar] [CrossRef]
- Chen, J.H.; Costan, E.; van Huis, M.A.; Xu, Q.; Zandbergen, H.W. Atomic Pillar-Based Nanoprecipitates Strengthen AlMgSi Alloys. Science 2006, 312, 416–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Yang, Z.; Ye, Y.; Wang, G.; He, X. Effects of various Mg/Si ratios on microstructure and performance property of Al-Mg-Si alloy cables. Mater. Char. 2016, 119, 114–119. [Google Scholar] [CrossRef]
- Zhao, Q.; Qian, Z.; Cui, X.; Wu, Y.; Liu, X. Influences of Fe, Si and homogenization on electrical conductivity and mechanical properties of dilute Al-Mg-Si alloy. J. Alloy. Comp. 2016, 666, 50–57. [Google Scholar] [CrossRef]
- Remøe, M.S.; Marthinsen, K.; Westermann, I.; Pedersen, K.; Røyset, J.; Marioara, C. The effect of alloying elements on the ductility of Al-Mg-Si alloys. Mater. Sci. Eng. A 2017, 693, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.P.; Cui, H.; Zhang, J.X.; Li, H.X.; Guo, M.X.; Lin, Z.; Zhuang, L.Z.; Zhang, J.S. The effect of Zn on the age hardening response in an Al-Mg-Si alloy. Mater. Des. 2015, 65, 1229–1235. [Google Scholar] [CrossRef]
- Marlaud, T.; Deschamps, A.; Bley, F.; Lefebvre, W.; Baroux, B. Influence of alloy composition and heat treatment on precipitate composition in Al-Zn-Mg-Cu alloys. Acta Mater. 2010, 58, 248–260. [Google Scholar] [CrossRef]
- Tanihata, H.; Sugawara, T.; Matsuda, K.; Ikeno, S. Effect of casting and homogenizing treatment conditions on the formation of Al-Fe-Si intermetallic compounds in 6063 Al-Mg-Si alloys. J. Mater. Sci. 1999, 34, 1205–1210. [Google Scholar] [CrossRef]
- Kuijpers, N.C.W.; Kool, W.H.; Koenis, P.T.G.; Nilsen, K.E.; Todd, I.; Zwaag, S.V.D. Assessment of different techniques for quantification of α-Al(FeMn)Si and β-AlFeSi intermetallics in AA6xxx alloys. Mater. Char. 2002, 49, 409–420. [Google Scholar] [CrossRef]
- Kuijpers, N.C.W.; Vermolen, F.J.; Vuik, C.; Koenis, P.T.G.; Nilsen, K.E.; Zwaag, S.V.D. The dependence of the β-AlFeSi to α-Al(FeMn)Si transformation kinetics in Al-Mg-Si alloys on the alloying elements. Mater. Sci. Eng. A 2005, 394, 9–19. [Google Scholar] [CrossRef]
- Engler, O.; Hirsch, J. Texture control by thermomechanical processing of AA6xxx Al-Mg-Si sheet alloys for automotive applications—A review. Mater. Sci. Eng. A 2002, 336, 249–262. [Google Scholar] [CrossRef]
- Wang, X.; Guo, M.; Zhang, Y.; Xing, H.; Li, Y.; Luo, J.; Zhang, J.; Zhuang, L. The dependence of microstructure, texture evolution and mechanical properties of Al-Mg-Si-Cu alloy sheet on final cold rolling deformation. J. Alloy. Comp. 2016, 657, 906–916. [Google Scholar] [CrossRef]
- Engler, O.; Yang, P.; Kong, X.W. On the formation of recrystallization textures in binary Al-1.3% Mn investigated by means of local texture analysis. Acta Mater. 1996, 44, 3349–3369. [Google Scholar] [CrossRef]
- Wang, X.; Guo, M.; Cao, L.; Luo, J.; Zhang, J.; Zhuang, L. Effect of heating rate on mechanical property, microstructure and texture evolution of Al-Mg-Si-Cu alloy during solution treatment. Mater. Sci. Eng. A 2015, 621, 8–17. [Google Scholar] [CrossRef]
- Liu, Y.S.; Kang, S.B.; Ko, H.S. Texture and plastic anisotropy of Al-Mg-0.3Cu-1.0Zn alloys. Scripta Mater. 1997, 37, 411–417. [Google Scholar] [CrossRef]
- Aruga, Y.; Kozuka, M.; Takaki, Y.; Sato, T. Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al-Mg-Si alloy. Scripta Mater. 2016, 116, 82–86. [Google Scholar] [CrossRef]
- Tugcu, K.; Sha, G.; Liao, X.Z.; Trimby, P.; Xia, J.H.; Murashkin, M.Y.; Xie, Y.; Valiev, R.Z.; Ringer, S.P. Enhanced grain refinement of an Al-Mg-Si alloy by high-pressure torsion processing at 100 °C. Mater. Sci. Eng. A 2012, 552, 415–418. [Google Scholar] [CrossRef]
- Loucif, A.; Figueiredo, R.B.; Baudin, T.; Brisset, F.; Chemam, R.; Langdon, T.G. Ultrafine grains and the Hall–Petch relationship in an Al-Mg-Si alloy processed by high-pressure torsion. Mater. Sci. Eng. A 2012, 532, 139–145. [Google Scholar] [CrossRef]
- Toda, H.; Kobayashi, T. Damage behaviours of various coarse Al-Fe-Si particles in model wrought alloys. Mater. Sci. Forum 2003, 426–432, 393–398. [Google Scholar] [CrossRef]
- Yang, W.; Wang, M.; Zhang, R.; Zhang, Q.; Sheng, X. The diffraction patterns from β″ precipitates in 12 orientations in Al-Mg-Si alloy. Scripta Mater. 2010, 62, 705–708. [Google Scholar] [CrossRef]
- Chang, C.S.T.; Banhart, J. Low-Temperature Differential Scanning Calorimetry of an Al-Mg-Si Alloy. Metall. Mater. Trans. A 2011, 42, 1960–1964. [Google Scholar] [CrossRef]
- Bryant, J.D. The effects of preaging treatments on aging kinetics and mechanical properties in AA6111 aluminum autobody sheet. Metall. Mater. Trans. A 1999, 30, 1999–2006. [Google Scholar] [CrossRef]
- Daoudi, M.I.; Triki, A.; Redjaimia, A. DSC study of the kinetic parameters of the metastable phases formation during non-isothermal annealing of an Al-Si-Mg alloy. J. Therm. Anal. Calorim. 2010, 104, 627–633. [Google Scholar] [CrossRef]
- Milkereit, B.; Giersberg, L.; Kessler, O.; Schick, C. Isothermal Time-Temperature-Precipitation Diagram for an Aluminum Alloy 6005A by In Situ DSC Experiments. Materials 2014, 7, 2631–2649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murayama, M.; Hono, K. Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys. Acta Mater. 1999, 47, 1537–1548. [Google Scholar] [CrossRef]
Alloy | Zn wt % | Mg wt % | Si wt % | Fe wt % | Mg + Si | Mg/Si | Comment |
---|---|---|---|---|---|---|---|
A | 1.04 | 0.75 | 0.76 | 0.129 | 1.51 | 0.99 | Medium Mg/Si |
B | 1.06 | 1.04 | 0.52 | 0.126 | 1.56 | 2.00 | Excess Mg |
C | 1.03 | 0.51 | 1.03 | 0.128 | 1.54 | 0.50 | Excess Si |
Alloy | Component | Intensity | Volume Fraction (%) |
---|---|---|---|
A | CubeND | 5.61 | 5.72 |
P | 2.09 | 9.71 | |
B | CubeND | 13.12 | 9.82 |
P | 1.34 | 4.58 | |
C | CubeND | 6.72 | 8.28 |
P | 1.16 | 3.11 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Gao, G.; Wang, Z.; Di, H.; Li, J.; Xu, G. Effects of the Mg/Si Ratio on Microstructure, Mechanical Properties, and Precipitation Behavior of Al–Mg–Si–1.0 wt %-Zn Alloys. Materials 2018, 11, 2591. https://doi.org/10.3390/ma11122591
Li Y, Gao G, Wang Z, Di H, Li J, Xu G. Effects of the Mg/Si Ratio on Microstructure, Mechanical Properties, and Precipitation Behavior of Al–Mg–Si–1.0 wt %-Zn Alloys. Materials. 2018; 11(12):2591. https://doi.org/10.3390/ma11122591
Chicago/Turabian StyleLi, Yong, Guanjun Gao, Zhaodong Wang, Hongshuang Di, Jiadong Li, and Guangming Xu. 2018. "Effects of the Mg/Si Ratio on Microstructure, Mechanical Properties, and Precipitation Behavior of Al–Mg–Si–1.0 wt %-Zn Alloys" Materials 11, no. 12: 2591. https://doi.org/10.3390/ma11122591
APA StyleLi, Y., Gao, G., Wang, Z., Di, H., Li, J., & Xu, G. (2018). Effects of the Mg/Si Ratio on Microstructure, Mechanical Properties, and Precipitation Behavior of Al–Mg–Si–1.0 wt %-Zn Alloys. Materials, 11(12), 2591. https://doi.org/10.3390/ma11122591