Hydrophobicity and Photocatalytic Activity of a Wood Surface Coated with a Fe3+-Doped SiO2/TiO2 Film
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Composite Films
2.3. Characterization of STCF
2.3.1. Microscopic Morphology and Structural Characterization of Wood Surface
2.3.2. Characterizations on Photocatalytic Activity
2.3.3. Characterizations on Hydrophobicity
3. Results and Discussion
3.1. Surface Morphology
3.2. Chemical Structure
3.3. Crystal Structure
3.4. Distribution of Elements
3.5. Analysis on the Photocatalytic Activity
3.5.1. Effect of Doping Amount of Metal Ions on Photocatalytic Activity
3.5.2. Effect of pH on Photocatalytic Activity
3.6. Analysis on Wetting Performance
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Engelund, E.T.; Thygesen, L.G.; Svensson, S.; Hill, C.A. A critical discussion of the physics of wood–water interactions. Wood Sci. Technol. 2013, 47, 141–161. [Google Scholar] [CrossRef]
- Rautkari, L.; Hill, C.A.; Curling, S.; Jalaludin, Z.; Ormondroyd, G. What is the role of the accessibility of wood hydroxyl groups in controlling moisture content. J. Mater. Sci. 2013, 48, 6352–6356. [Google Scholar] [CrossRef]
- Keplinger, T.; Cabane, E.; Chanana, M.; Hass, P.; Merk, V.; Gierlinger, N.; Burgert, I. A versatile strategy for grafting polymers to wood cell walls. Acta Biomater. 2015, 11, 256. [Google Scholar] [CrossRef]
- Link, R.E.; Carll, C.G.; Highley, T.L. Decay of Wood and Wood-Based Products Above Ground in Buildings. J. Test. Eval. 1999, 27, 150–158. [Google Scholar]
- Sudiyani, Y.; Tsujiyama, S.I.; Imamura, Y.; Takahashi, M.; Minato, K.; Kajita, H. Chemical characteristics of surfaces of hardwood and softwood deteriorated by weathering. J. Wood Sci. 1999, 45, 348–353. [Google Scholar] [CrossRef]
- Dányádi, L.; Móczó, J.; Pukánszky, B. Effect of various surface modifications of wood flour on the properties of PP/wood composites. Compos. Part A 2010, 41, 199–206. [Google Scholar] [CrossRef]
- Dominkovics, Z.; Dányádi, L.; Pukánszky, B. Surface modification of wood flour and its effect on the properties of PP/wood composites. Compos. Part A 2007, 38, 1893–1901. [Google Scholar] [CrossRef]
- Kumar, A.; Ryparová, P.; Škapin, A.S.; Humar, M.; Pavlič, M.; Tywoniak, J.; Hajek, P.; Žigon, J.; Petrič, M. Influence of surface modification of wood with octadecyltrichlorosilane on its dimensional stability and resistance against Coniophora puteana, and molds. Cellulose 2016, 23, 3249–3263. [Google Scholar] [CrossRef]
- Temiz, A.; Terziev, N.; Eikenes, M.; Hafren, J. Effect of accelerated weathering on surface chemistry of modified wood. Appl. Surf. Sci. 2007, 253, 5355–5362. [Google Scholar] [CrossRef]
- Sudiyani, Y.; Takahashi, M.; Imamura, Y.; Minato, K. Physical and Biological Properties of Chemically Modified Wood before and after Weathering. Wood Res. 1999, 86, 1–6. [Google Scholar]
- Muff, L.F.; Luxbacher, T.; Burgert, I.; Michen, B. Investigating the time-dependent zeta potential of wood surfaces. J. Colloid Interface Sci. 2018, 518, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Xu, W.; Wang, X.; Wang, C. Modeling and predicting of the color changes of wood surface during CO2 laser modification. J. Clean. Prod. 2018, 183, 818–823. [Google Scholar] [CrossRef]
- Guo, H.; Büchel, M.; Li, X.; Wäckerlin, A.; Chen, Q.; Burgert, I. Dictating anisotropic electric conductivity of a transparent copper nanowire coating by the surface structure of wood. J. R. Soc. Interface 2018, 15, 20170864. [Google Scholar] [CrossRef] [PubMed]
- Bente, M.; Avramidis, G.; Förster, S.; Rohwer, E.G.; Viöl, W. Wood surface modification in dielectric barrier discharges at atmospheric pressure for creating water repellent characteristics. Holz Als Roh-und Werkstoff 2004, 62, 157–163. [Google Scholar] [CrossRef]
- Wolkenhauer, A.; Avramidis, G.; Cai, Y.; Militz, H.; Viöl, W. Investigation of Wood and Timber Surface Modification by Dielectric Barrier Discharge at Atmospheric Pressure. Plasma Process. Polym. 2007, 4, S470–S474. [Google Scholar] [CrossRef]
- Saka, S.; Tanno, F. Wood-inorganic composites prepared by the sol–gel process. VI. Effects of a property-enhancer on fire-resistance in SiO2–P2O5 and SiO2–B2O3 wood-inorganic composites. J. Jpn. Wood Res. Soc. 1996, 42, 81–86. [Google Scholar]
- Saka, S.; Sasaki, M.; Tanahashi, M. Wood-inorganic composites prepared by sol–gel processing, 1: Wood-inorganic composites with porous structure. J. Jpn. Wood Res. Soc. 1992, 38, 1043–1049. [Google Scholar]
- Saka, S.; Miyafuji, H.; Tanno, F. Wood-inorganic composites prepared by the sol–gel process. J. Jpn. Wood Res. Soc. 1993, 39, 308–314. [Google Scholar]
- Unger, B.; Bücker, M.; Reinsch, S.; Hübert, T. Chemical aspects of wood modification by sol–gel-derived silica. Wood Sci. Technol. 2013, 47, 83–104. [Google Scholar] [CrossRef]
- Mahr, M.S.; Hübert, T.; Stephan, I.; Bücker, M.; Militz, H. Reducing copper leaching from treated wood by sol–gel derived TiO2 and SiO2 depositions. Holzforschung 2013, 67, 429–435. [Google Scholar] [CrossRef]
- Man, X.; Wu, R.; Lv, H.; Wang, W. Synthesis of a montmorillonite-supported titania nanocomposite with grafted cellulose as a template and its application in photocatalytic degradation. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, W.; Chen, Y. Structure and Photocatalytic Properties of Mn-Doped TiO2 Loaded on Wood-Based Activated Carbon Fiber Composites. Materials 2017, 10, 631. [Google Scholar] [CrossRef]
- Goncalves, G.; Marques, P.A.; Pinto, R.J.; Trindade, T.; Neto, C.P. Surface modification of cellulosic fibers for multi-purpose TiO2 based nanocomposites. Compos. Sci. Technol. 2009, 69, 1051–1056. [Google Scholar] [CrossRef]
- Lenza, R.F.; Vasconcelos, W.L. Preparation of silica by sol–gel method using formamide. Mater. Res. 2001, 4, 189–194. [Google Scholar] [CrossRef]
- Borca, E.; Bercu, M.; Georgescu, S.; Hodorogea, S.; Cotoi, E. XRD and FTIR characterization of nanocrystalline YVO4: Eu derived by coprecipitation process. Z. Kristallogr. Suppl. 2008, 457–462. [Google Scholar] [CrossRef]
- Latthe, S.S.; Imai, H.; Ganesan, V.; Rao, A.V. Superhydrophobic silica films by sol–gel co-precursor method. Appl. Surf. Sci. 2009, 256, 217–222. [Google Scholar] [CrossRef]
- Pandey, K.K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J. Appl. Polym. Sci. 2015, 71, 1969–1975. [Google Scholar] [CrossRef]
- Zeitler, V.A.; Brown, C.A. The Infrared Spectra of Some Ti–O–Si, Ti–O–Ti and Si–O–Si Compounds. J. Phys. Chem. 1957, 61, 48–59. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Liu, G.; Zhang, M.; Li, J.; Wang, C. Fabrication of superhydrophobic wood surface by a sol–gel process. Appl. Surf. Sci. 2011, 258, 806–810. [Google Scholar] [CrossRef]
- Li, Y.; Ma, G.; Peng, S.; Lu, G.; Li, S. Boron and nitrogen co-doped titania with enhanced visible-light photocatalytic activity for hydrogen evolution. Appl. Surf. Sci. 2008, 254, 6831–6836. [Google Scholar] [CrossRef]
- Christoforidis, K.C.; Iglesias-Juez, A.; Figueroa, S.J.A.; Di Michiel, M.; Newton, M.A.; Fernández-García, M. Structure and Activity of Iron-doped TiO2-anatase Nanomaterials for Gas-phase Toluene Photo-oxidation. Catal. Sci. Technol. 2012, 3, 626–634. [Google Scholar] [CrossRef]
- Hung, W.C.; Chen, Y.C.; Chu, H.; Tseng, T.K. Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and the performance for photocatalytic degradation of 1,2–dichloroethane. Appl. Surf. Sci. 2008, 255, 2205–2213. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, J.; Xiao, L.; Chen, F. Properties of carbon and iron modified TiO2, photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light. Appl. Surf. Sci. 2010, 256, 4260–4268. [Google Scholar] [CrossRef]
- Wang, C.Y.; Böttcher, C.; Bahnemann, D.W.; Dohrmann, J.K. A comparative study of nanometer sized Fe (III)-doped TiO2 photocatalysts: Synthesis, characterization and activity. J. Mater. Chem. 2003, 13, 2322–2329. [Google Scholar] [CrossRef]
- Zhu, J.; Zheng, W.; He, B.; Zhang, J.; Anpo, M. Characterization of Fe–TiO2, photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J. Mol. Catal. A-Chem. 2004, 216, 35–43. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, F.; Zhang, J.; Chen, H.; Anpo, M. Fe3+–TiO2, photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization. J. Photochem. Photobiol. A-Chem. 2006, 180, 196–204. [Google Scholar] [CrossRef]
- Fang, J.; Bi, X.; Si, D.; Jiang, Z.; Huang, W. Spectroscopic studies of interfacial structures of CeO2–TiO2 mixed oxides. Appl. Surf. Sci. 2007, 253, 8952–8961. [Google Scholar] [CrossRef]
- Yang, S.; Zhu, W.; Jiang, Z.; Chen, Z.; Wang, J. The surface properties and the activities in catalytic wet air oxidation over CeO2–TiO2 catalysts. Appl. Surf. Sci. 2006, 252, 8499–8505. [Google Scholar] [CrossRef]
- Xu, L.; Li, X.; Chen, Y.; Xu, F. Structural and optical properties of ZnO thin films prepared by sol–gel method with different thickness. Appl. Surf. Sci. 2011, 257, 4031–4037. [Google Scholar] [CrossRef]
- Que, W.; Zhou, Y.; Lam, Y.L.; Chan, Y.C.; Kam, C.H. Preparation and characterizations of SiO2/TiO2/γ-glycidoxypropyltrimethoxysilane composite materials for optical waveguides. Appl. Phys. A 2001, 73, 171–176. [Google Scholar] [CrossRef]
- Liqiang, J.; Xiaojun, S.; Weimin, C.; Zili, X.; Yaoguo, D.; Honggang, F. The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity. J. Phys. Chem. Solids 2003, 64, 615–623. [Google Scholar] [CrossRef]
- Dake, L.S.; Lad, R.J. Electronic and chemical interactions at aluminum/TiO2 (110) interfaces. Surf. Sci. 1993, 289, 297–306. [Google Scholar] [CrossRef]
- Chang, F.; Jiao, M.; Xu, Q.; Deng, B.; Hu, X. Facile fabrication of mesoporous Fe–Ti–SBA15 silica with enhanced visible-light-driven simultaneous photocatalytic degradation and reduction reactions. Appl. Surf. Sci. 2018, 435, 708–717. [Google Scholar] [CrossRef]
- Choi, W.; Termin, A.; Hoffmann, M.R. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem. 1994, 98, 13669–13679. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Albanis, T.A. TiO-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B-Environ. 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Fan, S.; Sun, Z.; Wu, Q.; Li, Y. Adsorption and Photocatalytic Oxidation Kinetics of Azo Dyes. Acta Phys.-Chim. Sin. 2003, 19, 25–29. [Google Scholar] [CrossRef]
Wavenumbers | Corresponding Groups |
---|---|
3400 cm−1 | –OH |
3500–3000 cm−1 | Si–OH&H2O |
1384 cm−1 | NO3- |
1086&800&495 cm−1 | Si–O–Si |
783&660 cm−1 | Ti–O–Ti |
935 cm−1 | Ti–O–Si |
Sample | TiO2 Prepared in This Work | JCPDS 21-1272 | ||||
---|---|---|---|---|---|---|
(h k l) | 2θ (°) | d (Å) | FWHM | 2θ (°) | d (Å) | |
0.1 wt % Fe–TiO2 | (1 0 1) | 25.210 | 3.5296 | 0.932 | 25.281 | 3.5200 |
(2 0 0) | 48.650 | 1.8700 | 0.800 | 48.049 | 1.8920 | |
1.0 wt % Fe–TiO2 | (1 0 1) | 25.380 | 3.5065 | 1.042 | 25.281 | 3.5200 |
(0 0 4) | 37.750 | 2.3810 | 0.902 | 37.800 | 2.3780 | |
(2 0 0) | 48.290 | 1.8831 | 0.937 | 48.049 | 1.8920 | |
10 wt % Fe–TiO2 | (1 0 1) | 25.460 | 3.4956 | 1.020 | 25.281 | 3.5200 |
(0 0 4) | 37.980 | 2.3672 | 0.929 | 37.800 | 2.3780 | |
(2 0 0) | 47.830 | 1.9001 | 0.968 | 48.049 | 1.8920 |
Sample | Unit Cell Parameters | Grain Size (nm) | ||
---|---|---|---|---|
a = b (Å) | c (Å) | TiO2 Anatase (101) | TiO2 Anatase (200) | |
0.1 wt % Fe–TiO2 | 3.740 | 10.674 | 8.637 | 10.777 |
1.0 wt % Fe–TiO2 | 3.766 | 9.609 | 7.728 | 9.188 |
10 wt % Fe–TiO2 | 3.800 | 8.911 | 7.308 | 8.878 |
Sample | Unit Cell Parameters | Grain Size (nm) | ||
---|---|---|---|---|
a = b (Å) | c (Å) | TiO2 Anatase (101) | TiO2 Anatase (200) | |
0.1 wt % Fe–SiO2–TiO2 | 3.774 | 9.461 | 9.007 | 9.068 |
0.5 wt % Fe–SiO2–TiO2 | 3.782 | 9.081 | 9.091 | 9.579 |
1.0 wt % Fe–SiO2–TiO2 | 3.760 | 9.522 | 9.080 | 8.743 |
5.0 wt % Fe–SiO2–TiO2 | 3.798 | 8.721 | 8.980 | 8.740 |
10.0 wt % Fe–SiO2–TiO2 | 3.796 | 8.900 | 8.698 | 9.812 |
STCF-0 | STCF-0.05 | STCF-0.1 | STCF-0.5 | STCF-1 | STCF-2.5 | |
---|---|---|---|---|---|---|
4 h | 110.7 | 101 | 106 | 101.5 | 112.1 | 100.9 |
6 h | 114.2 | 111.5 | 107.3 | 108.1 | 115.8 | 113.8 |
8 h | 120.9 | 121 | 126.2 | 124.1 | 117.6 | 114.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xuan, L.; Fu, Y.; Liu, Z.; Wei, P.; Wu, L. Hydrophobicity and Photocatalytic Activity of a Wood Surface Coated with a Fe3+-Doped SiO2/TiO2 Film. Materials 2018, 11, 2594. https://doi.org/10.3390/ma11122594
Xuan L, Fu Y, Liu Z, Wei P, Wu L. Hydrophobicity and Photocatalytic Activity of a Wood Surface Coated with a Fe3+-Doped SiO2/TiO2 Film. Materials. 2018; 11(12):2594. https://doi.org/10.3390/ma11122594
Chicago/Turabian StyleXuan, Luning, Yunlin Fu, Zhigao Liu, Penglian Wei, and Lihong Wu. 2018. "Hydrophobicity and Photocatalytic Activity of a Wood Surface Coated with a Fe3+-Doped SiO2/TiO2 Film" Materials 11, no. 12: 2594. https://doi.org/10.3390/ma11122594
APA StyleXuan, L., Fu, Y., Liu, Z., Wei, P., & Wu, L. (2018). Hydrophobicity and Photocatalytic Activity of a Wood Surface Coated with a Fe3+-Doped SiO2/TiO2 Film. Materials, 11(12), 2594. https://doi.org/10.3390/ma11122594