Synthesis and Effect of Hierarchically Structured Ag-ZnO Hybrid on the Surface Antibacterial Activity of a Propylene-Based Elastomer Blends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Ag-ZnO
2.3. Preparation of Nanocomposites
2.4. Structural Characterization
2.5. Investigation of Mechanical Properties
2.6. Investigation of Electrical Properties
2.7. Evaluation of Antibacterial Activity
3. Results and Discussion
3.1. Crystal Structure and BET Characterization of the Filler
3.2. Morphology of the Powder Filler
3.3. Characterization of TPO Compounds
3.4. Mechanical Properties of the Polymer Nanocomposites
3.5. Electrical Properties of the Nanocomposites
3.6. Surface Antibacterial Activity
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shaviv, E.; Schubert, O.; Alves-Santos, M.; Goldoni, G.; Di Felice, R.; Vallée, F.; Del Fatti, N.; Banin, U.; Sönnichsen, C. Absorption Properties of Metal–Semiconductor Hybrid Nanoparticles. ACS Nano 2011, 5, 4712–4719. [Google Scholar] [CrossRef] [PubMed]
- Paul, D.R.; Robeson, L.M. Polymer Nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204. [Google Scholar] [CrossRef]
- Palza, H. Antimicrobial Polymers with Metal Nanoparticles. Int. J. Mol. Sci. 2015, 16, 2099–2116. [Google Scholar] [CrossRef] [PubMed]
- Aricò, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nanostructured Materials for Advanced Energy Conversion and Storage Devices. Nat. Mater. 2005, 4, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Scholes, G.D. Book Review of Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications. J. Am. Chem. Soc. 2008, 130, 18028. [Google Scholar] [CrossRef]
- Bazant, P.; Kuritka, I.; Hudecek, O.; Machovsky, M.; Mrlik, M.; Sedlacek, T. Microwave-Assisted Synthesis of Ag/ZnO Hybrid Filler, Preparation, and Characterization of Antibacterial Poly(Vinyl Chloride) Composites Made from the Same. Polym. Compos. 2014, 35, 19–26. [Google Scholar] [CrossRef]
- Lu, W.; Liu, G.; Gao, S.; Xing, S.; Wang, J. Tyrosine-Assisted Preparation of Ag/ZnO Nanocomposites with Enhanced Photocatalytic Performance and Synergistic Antibacterial Activities. Nanotechnology 2008, 19, 445711. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Goudar, V.S.; Padmalekha, K.G.; Bhat, S.V.; Indi, S.S.; Vasan, H.N. ZnO/Ag Nanohybrid: Synthesis, Characterization, Synergistic Antibacterial Activity and Its Mechanism. RSC Adv. 2012, 2, 930–940. [Google Scholar] [CrossRef]
- Bazant, P.; Munster, L.; Machovsky, M.; Sedlak, J.; Pastorek, M.; Kozakova, Z.; Kuritka, I. Wood Flour Modified by Hierarchical Ag/ZnO as Potential Filler for Wood–plastic Composites with Enhanced Surface Antibacterial Performance. Ind. Crops Prod. 2014, 62, 179–187. [Google Scholar] [CrossRef]
- Dufour, D.; Leung, V.; Lévesque, C.M. Bacterial Biofilm: Structure, Function, and Antimicrobial Resistance. Endod. Top. 2010, 22, 2–16. [Google Scholar] [CrossRef]
- Lindsay, D.; von Holy, A. Bacterial Biofilms within the Clinical Setting: What Healthcare Professionals Should Know. J. Hosp. Infect. 2006, 64, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Beuchat, L.R. Pathogenic Microorganisms Associated with Fresh Produce. J. Food Prot. 1996, 59, 204–216. [Google Scholar] [CrossRef]
- Samuel, U.; Guggenbichler, J.P. Prevention of Catheter-Related Infections: The Potential of a New Nano-Silver Impregnated Catheter. Int. J. Antimicrob. Agents 2004, 23, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Okelo, P.O.; Wagner, D.D.; Carr, L.E.; Wheaton, F.W.; Douglass, L.W.; Joseph, S.W. Optimization of Extrusion Conditions for Elimination of Mesophilic Bacteria during Thermal Processing of Animal Feed Mash. Anim. Feed Sci. Technol. 2006, 129, 116–137. [Google Scholar] [CrossRef]
- Flores, G.E.; Bates, S.T.; Knights, D.; Lauber, C.L.; Stombaugh, J.; Knight, R.; Fierer, N. Microbial Biogeography of Public Restroom Surfaces. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, K.H.; Kennedy, S.M.; Brauer, M.; van Netten, C.; Dill, B. Evaluation and Determinants of Airborne Bacterial Concentrations in School Classrooms. J. Occup. Environ. Hyg. 2004, 1, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Seaton, A.; Tran, L.; Aitken, R.; Donaldson, K. Nanoparticles, Human Health Hazard and Regulation. J. R. Soc. Interface 2009. [Google Scholar] [CrossRef] [PubMed]
- De Jong, W.H.; Borm, P.J. Drug Delivery and Nanoparticles: Applications and Hazards. Int. J. Nanomed. 2008, 3, 133–149. [Google Scholar] [CrossRef]
- Wiesner, M.R.; Lowry, G.V.; Alvarez, P.; Dionysiou, D.; Biswas, P. Assessing the Risks of Manufactured Nanomaterials. Environ. Sci. Technol. 2006, 40, 4336–4345. [Google Scholar] [CrossRef] [PubMed]
- Bazant, P.; Kuritka, I.; Munster, L.; Machovsky, M.; Kozakova, Z.; Saha, P. Hybrid Nanostructured Ag/ZnO Decorated Powder Cellulose Fillers for Medical Plastics with Enhanced Surface Antibacterial Activity. J. Mater. Sci. Mater. Med. 2014, 25, 2501–2512. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Meng, L.M.; Toprak, M.S.; Kim, D.K.; Muhammed, M. Nanocomposites of Polymer and Inorganic Nanoparticles for Optical and Magnetic Applications. Nano Rev. 2010, 1, 5214. [Google Scholar] [CrossRef] [PubMed]
- Clemons, C.M.; Caulfield, D.F. Natural Fibers. In Functional Fillers for Plastics; Xanthos, M., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005; pp. 195–206. [Google Scholar] [CrossRef]
- Müller, K.; Bugnicourt, E.; Latorre, M.; Jorda, M.; Echegoyen Sanz, Y.; Lagaron, J.M.; Miesbauer, O.; Bianchin, A.; Hankin, S.; Bölz, U.; et al. Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. Nanomaterials 2017, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Tanahashi, M. Development of Fabrication Methods of Filler/Polymer Nanocomposites: With Focus on Simple Melt-Compounding-Based Approach without Surface Modification of Nanofillers. Materials 2010, 3, 1593–1619. [Google Scholar] [CrossRef]
- Hornsby, P. Compounding of Particulate-Filled Thermoplastics. In Polymers and Polymeric Composites: A Reference Series; Palsule, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–16. [Google Scholar]
- Machovsky, M.; Kuritka, I.; Bazant, P.; Vesela, D.; Saha, P. Antibacterial Performance of ZnO-Based Fillers with Mesoscale Structured Morphology in Model Medical PVC Composites. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 41, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.H.; Kochuveedu, S.T.; Cha, M.-A.; Jang, Y.J.; Lee, J.Y.; Lee, J.; Lee, J.; Kim, J.; Ryu, D.Y.; Kim, D.H. Synthesis and Photocatalytic Properties of Hierarchical Metal Nanoparticles/ZnO Thin Films Hetero Nanostructures Assisted by Diblock Copolymer Inverse Micellar Nanotemplates. J. Colloid Interface Sci. 2010, 345, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zheng, L.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K. Ag/ZnO Heterostructure Nanocrystals: Synthesis, Characterization, and Photocatalysis. Inorg. Chem. 2007, 46, 6980–6986. [Google Scholar] [CrossRef] [PubMed]
- Dou, P.; Tan, F.; Wang, W.; Sarreshteh, A.; Qiao, X.; Qiu, X.; Chen, J. One-Step Microwave-Assisted Synthesis of Ag/ZnO/Graphene Nanocomposites with Enhanced Photocatalytic Activity. J. Photochem. Photobiol. A Chem. 2015, 302, 17–22. [Google Scholar] [CrossRef]
- Motshekga, S.C.; Ray, S.S.; Onyango, M.S.; Momba, M.N.B. Microwave-Assisted Synthesis, Characterization and Antibacterial Activity of Ag/ZnO Nanoparticles Supported Bentonite Clay. J. Hazard. Mater. 2013, 262, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.-Y.; Zhou, Y.-M.; Sun, Y.-Q.; Chen, J.; Wang, Z.-Q. Preparation and Characterization of Ag/ZnO Composites via a Simple Hydrothermal Route. J. Nanopart. Res. 2009, 11, 1159–1166. [Google Scholar] [CrossRef]
- Kakhki, R.M.; Tayebee, R.; Ahsani, F. New and Highly Efficient Ag Doped ZnO Visible Nano Photocatalyst for Removing of Methylene Blue. J. Mater. Sci. Mater. Electron. 2017, 28, 5941–5952. [Google Scholar] [CrossRef]
- Patil, S.S.; Mali, M.G.; Tamboli, M.S.; Patil, D.R.; Kulkarni, M.V.; Yoon, H.; Kim, H.; Al-Deyab, S.S.; Yoon, S.S.; Kolekar, S.S.; et al. Green Approach for Hierarchical Nanostructured Ag-ZnO and Their Photocatalytic Performance under Sunlight. Catal. Today 2016, 260, 126–134. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, Q.; Yuan, S.; Zhang, Y.; Zhang, M. One-Pot Facile Synthesis of Branched Ag-ZnO Heterojunction Nanostructure as Highly Efficient Photocatalytic Catalyst. Appl. Surf. Sci. 2015, 353, 949–957. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, S.; Gao, W. Ag/ZnO Heterostructures and Their Photocatalytic Activity under Visible Light: Effect of Reducing Medium. J. Hazard. Mater. 2015, 287, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Drobny, J.G. 7-Polyolefin-Based Thermoplastic Elastomers. In Handbook of Thermoplastic Elastomers; Plastics Design Library; William Andrew Publishing: Norwich, NY, USA, 2007; pp. 191–199. ISBN 9780323221368. [Google Scholar]
- O’Connor, K.S.; Watts, A.; Vaidya, T.; LaPointe, A.M.; Hillmyer, M.A.; Coates, G.W. Controlled Chain Walking for the Synthesis of Thermoplastic Polyolefin Elastomers: Synthesis, Structure, and Properties. Macromolecules 2016, 49, 6743–6751. [Google Scholar] [CrossRef]
- Leone, G.; Mauri, M.; Pierro, I.; Ricci, G.; Canetti, M.; Bertini, F. Polyolefin Thermoplastic Elastomers from 1-Octene Chain-Walking Polymerization. Polymer 2016, 100, 37–44. [Google Scholar] [CrossRef]
- Rouquerol, J.; Rouquerol, F.; Llewellyn, P.; Maurin, G.; Sing, K.S.W. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications; Academic Press: Cambridge, MA, USA, 2013; ISBN 978-0-12-598920-6. [Google Scholar]
- Plastics—Determination of Flexural Properties; ISO 178:2010; International Organization for Standardization: Geneva, Switzerland, 2010.
- Standard Test Methods for DC Resistance or Conductance of Insulating Materials; ASTM D257-14; ASTM International Standard: West Conshohocken, PA, USA, 2014.
- Plastics—Measurement of Antibacterial Activity on Plastics Surfaces; ISO 22196:2007; International Organization for Standardization: Geneva, Switzerland, 2007.
- Zhou, X.; Liu, D.; Bu, H.; Deng, L.; Liu, H.; Yuan, P.; Du, P.; Song, H. XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review. Solid Earth Sci. 2018, 3, 16–29. [Google Scholar] [CrossRef]
- Saoud, K.; Alsoubaihi, R.; Bensalah, N.; Bora, T.; Bertino, M.; Dutta, J. Synthesis of Supported Silver Nano-Spheres on Zinc Oxide Nanorods for Visible Light Photocatalytic Applications. Mater. Res. Bull. 2015, 63, 134–140. [Google Scholar] [CrossRef]
- Machovský, M.; Mrlík, M.; Plachý, T.; Kuřitka, I.; Pavlínek, V.; Kožáková, Z.; Kitano, T. The Enhanced Magnetorheological Performance of Carbonyl Iron Suspensions Using Magnetic Fe3O4/ZHS Hybrid Composite Sheets. RSC Adv. 2015, 5, 19213–19219. [Google Scholar] [CrossRef]
- Plastics—Determination of Tensile Properties—Part 2: Test Condition for Moulding and Extrusion Plastics; ISO 527-2:2012; International Organization for Standardization: Geneva, Switzerland, 2012.
- Look, D.C. Progress in ZnO Materials and Devices. J. Electron. Mater. 2006, 35, 1299–1305. [Google Scholar] [CrossRef]
- Matula, R.A. Electrical Resistivity of Copper, Gold, Palladium, and Silver. J. Phys. Chem. Ref. Data 1979, 8, 1147–1298. [Google Scholar] [CrossRef]
- Gulrez, S.K.H.; Ali Mohsin, M.E.; Shaikh, H.; Anis, A.; Pulose, A.M.; Yadav, M.K.; Qua, E.H.P.; Al-Zahrani, S.M. A Review on Electrically Conductive Polypropylene and Polyethylene. Polym. Compos. 2014, 35, 900–914. [Google Scholar] [CrossRef]
- Antimicrobial Products—Test for Antimicrobial Activity and Efficacy; JIS Z 2801:2010; Japanese Industrial Standard: Tokyo, Japan, 2000.
- Bazant, P.; Kuritka, I.; Munster, L.; Kalina, L. Microwave Solvothermal Decoration of the Cellulose Surface by Nanostructured Hybrid Ag/ZnO Particles: A Joint XPS, XRD and SEM Study. Cellulose 2015, 22, 1275–1293. [Google Scholar] [CrossRef]
- Marambio-Jones, C.; Hoek, E.M.V. A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment. J. Nanopart. Res. 2010, 12, 1531–1551. [Google Scholar] [CrossRef]
- Kong, H.; Jang, J. Antibacterial Properties of Novel Poly(Methyl Methacrylate) Nanofiber Containing Silver Nanoparticles. Langmuir 2008, 24, 2051–2056. [Google Scholar] [CrossRef] [PubMed]
- AshaRani, P.; Hande, M.P.; Valiyaveettil, S. Anti-Proliferative Activity of Silver Nanoparticles. BMC Cell Biol. 2009, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Klapiszewski, Ł.; Rzemieniecki, T.; Krawczyk, M.; Malina, D.; Norman, M.; Zdarta, J.; Majchrzak, I.; Dobrowolska, A.; Czaczyk, K.; Jesionowski, T. Kraft Lignin/Silica-AgNPs as a Functional Material with Antibacterial Activity. Colloid Surf. B 2015, 134, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.M.; Feris, K.; Bell, J.; Wingett, D.G.; Hanley, C.; Punnoose, A. Selective Toxicity of Zinc Oxide Nanoparticles to Prokaryotic and Eukaryotic Systems. Appl. Phys. Lett. 2007, 90, 213902. [Google Scholar] [CrossRef] [PubMed]
- Padmavathy, N.; Vijayaraghavan, R. Enhanced Bioactivity of ZnO Nanoparticles—An Antimicrobial Study. Sci. Technol. Adv. Mater. 2008, 9. [Google Scholar] [CrossRef] [PubMed]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc Oxide-From Synthesis to Application: A Review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [PubMed]
- Nowacka, M.; Modrzejewska-Sikorska, A.; Chrzanowski, Ł.; Ambrożewicz, D.; Rozmanowski, T.; Myszka, K.; Czaczyk, K.; Bula, K.; Jesionowski, T. Electrokinetic and Bioactive Properties of CuO∙SiO2 Oxide Composites. Bioelectrochemistry 2012, 87, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Fortunati, E.; Armentano, I.; Zhou, Q.; Iannoni, A.; Saino, E.; Visai, L.; Berglund, L.A.; Kenny, J.M. Multifunctional Bionanocomposite Films of Poly(Lactic Acid), Cellulose Nanocrystals and Silver Nanoparticles. Carbohydr. Polym. 2012, 87, 1596–1605. [Google Scholar] [CrossRef]
- Tomacheski, D.; Pittol, M.; Ferreira Ribeiro, V.; Marlene Campomanes Santana, R. Efficiency of Silver-Based Antibacterial Additives and Its Influence in Thermoplastic Elastomers. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Pittol, M.; Tomacheski, D.; Simoes, D.N.; Ribeiro, V.F.; Campomanes Santana, R.M. Antimicrobial Performance of Thermoplastic Elastomers Containing Zinc Pyrithione and Silver Nanoparticles. Mater. Res. 2017, 20, 1266–1273. [Google Scholar] [CrossRef]
BET Method | XRD Method | |||||
---|---|---|---|---|---|---|
SSA, ABET (m2·g−1) | Grain Size, dBETm (nm) | Pore Size, (BJH) (nm) | Phase | Crystallite Size, ddiffr (nm) | SSA for Pure Phase, Adiffr (m2·g−1) | Contribution of Phases to SSA for Ag-ZnO (m2·g−1) |
16.6 | 64 | 17 | Ag | 51 | 11.2 | 0.15 |
ZnO | 49 | 21.8 | 21.52 | |||
Total SSA of Ag-ZnO, Adiffr Ag-ZnO | 21.7 |
Samples | Yield Stress (MPa) | Strain at Break (%) | Flexural Modulus (MPa) |
---|---|---|---|
Mean ± SD a | Mean ± SD a | Mean ± SD a | |
Neat PP100 | 30.9 ± 2.2 | 14.5 ± 1.3 | 850 ± 50 |
PP100/Ag-ZnO1 | 34.2 ± 2.5 | 12.3 ± 1.4 | 840 ± 40 |
PP100/Ag-ZnO3 | 32 ± 3 | 13.6 ± 1.3 | 840 ± 40 |
PP100/Ag-ZnO5 | 30 ± 5 | 17.4 ± 2.6 | 830 ± 40 |
Neat PP75 | 18.8 ± 1.3 | 1120 ± 120 | 183 ± 15 |
PP75/Ag-ZnO1 | 18.6 ± 1.4 | 1100 ± 110 | 180 ± 19 |
PP75/Ag-ZnO3 | 18.5 ± 1.2 | 1035 ± 150 | 178 ± 17 |
PP75/Ag-ZnO5 | 18.5 ± 1.6 | 1020 ± 130 | 181 ± 20 |
Neat PP50 | 15.5 ± 0.9 | 1300 ± 130 | 34 ± 7 |
PP50/Ag-ZnO1 | 15.2 ± 1.3 | 1280 ± 150 | 32 ± 10 |
PP50/Ag-ZnO3 | 14.8 ± 0.7 | 1260 ± 130 | 37 ± 7 |
PP50/Ag-ZnO5 | 14.5 ± 1.1 | 1250 ± 170 | 38 ± 8 |
Sample | Resistivity, R | Dielectric Strength | |
---|---|---|---|
Surface Resistivity (Ω/sq) | Volume Resistivity (Ω·cm) | Mean ± SD a (kV/mm) | |
Ag-ZnO filler | - | 6.6 × 106 | - |
Neat PP100 | 1.1 × 1013 | 9.8 × 1015 | 17.4 ± 0.5 |
PP100/Ag-ZnO1 | 3.6 × 1012 | 5.5 × 1015 | 15.6 ± 1.4 |
PP100/Ag-ZnO3 | 3.0 × 1012 | 4.1 × 1015 | 14.8 ± 1.2 |
PP100/Ag-ZnO5 | 3.5 × 1012 | 4.2 × 1015 | 13.6 ± 0.6 |
Neat PP75 | 7.5 × 1012 | 8.7 × 1015 | 16.8 ± 0.7 |
PP75/Ag-ZnO1 | 3.2 × 1012 | 4.8 × 1015 | 15.5 ± 1.2 |
PP75/Ag-ZnO3 | 4.0 × 1012 | 5.5 × 1015 | 15.2 ± 1.3 |
PP75/Ag-ZnO5 | 3.7 × 1012 | 6.1 × 1015 | 14.1 ± 0.6 |
Neat PP50 | 3.2 × 1012 | 7.2 × 1015 | 17.2 ± 1.1 |
PP50/Ag-ZnO1 | 2.7 × 1012 | 5.5 × 1015 | 14.4 ± 1.2 |
PP50/Ag-ZnO3 | 3.0 × 1012 | 4.0 × 1015 | 15.5 ± 2.6 |
PP50/Ag-ZnO5 | 3.2 × 1012 | 3.9 × 1015 | 14.6 ± 1.4 |
Sample | R-Value for S. aureus (-) | Efficiency against S. aureus (%) | R-Value for E. coli (-) | Efficiency against E. coli (%) |
---|---|---|---|---|
Neat PP100 | Ut = 5.4 | Ut = 6.2 | ||
PP100/Ag-ZnO1 | 2.2 | 99.3690 | 4.2 | 99.9937 |
PP100/Ag-ZnO3 | 4.6 | 99.9975 | 5.5 | 99.9997 |
PP100/Ag-ZnO5 | 4.8 | 99.9984 | >6.2 | 99.9999 |
Neat PP75 | Ut = 5.7 | Ut = 6.3 | ||
PP75/Ag-ZnO1 | 0.7 | 80.0474 | 2.5 | 99.6838 |
PP75/Ag-ZnO3 | 2.2 | 99.3690 | 5.5 | 99.9997 |
PP75/Ag-ZnO5 | 2.8 | 99.8415 | >6.3 | 99.9999 |
Neat PP50 | Ut = 5.9 | Ut = 6.3 | ||
PP50/Ag-ZnO1 | 0.5 | 68.3772 | 1.5 | 96.8377 |
PP50/Ag-ZnO3 | 1.8 | 98.4151 | 2.5 | 99.6838 |
PP50/Ag-ZnO5 | 2.5 | 99.6838 | >6.3 | 99.9999 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazant, P.; Sedlacek, T.; Kuritka, I.; Podlipny, D.; Holcapkova, P. Synthesis and Effect of Hierarchically Structured Ag-ZnO Hybrid on the Surface Antibacterial Activity of a Propylene-Based Elastomer Blends. Materials 2018, 11, 363. https://doi.org/10.3390/ma11030363
Bazant P, Sedlacek T, Kuritka I, Podlipny D, Holcapkova P. Synthesis and Effect of Hierarchically Structured Ag-ZnO Hybrid on the Surface Antibacterial Activity of a Propylene-Based Elastomer Blends. Materials. 2018; 11(3):363. https://doi.org/10.3390/ma11030363
Chicago/Turabian StyleBazant, Pavel, Tomas Sedlacek, Ivo Kuritka, David Podlipny, and Pavlina Holcapkova. 2018. "Synthesis and Effect of Hierarchically Structured Ag-ZnO Hybrid on the Surface Antibacterial Activity of a Propylene-Based Elastomer Blends" Materials 11, no. 3: 363. https://doi.org/10.3390/ma11030363
APA StyleBazant, P., Sedlacek, T., Kuritka, I., Podlipny, D., & Holcapkova, P. (2018). Synthesis and Effect of Hierarchically Structured Ag-ZnO Hybrid on the Surface Antibacterial Activity of a Propylene-Based Elastomer Blends. Materials, 11(3), 363. https://doi.org/10.3390/ma11030363