Study on the Degradation of Optical Silicone Exposed to Harsh Environments
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
4. Conclusions
- (1)
- Silicone samples showed a great degree of stability against light exposures (both UV and blue light). A total of 3500 h of radiation at 100 °C did not result in any change in the optical characteristics of silicone samples.
- (2)
- Exposure to saline and high-temperature environmental conditions had major negative implications for the optical characteristics of the samples. Saline water exposure at 100 °C resulted in a significant reduction in the transmission of samples in the visible light range, reduction in the maximum radiant power at 450 nm, and a change in the color chromaticity values.
- (3)
- Saline water exposure at 100 °C changed the mechanical properties of silicone plates by making them more brittle.
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, G.Q.; van Roosmalen, A.J. Reliability challenges in the nanoelectronics era. J. Microelectron. Reliab. 2006, 46, 1403–1414. [Google Scholar]
- Van Driel, W.D.; Fan, X.J. Solid State Lighting Reliability: Components to Systems; Springer: New York, NY, USA, 2012. [Google Scholar]
- Yazdan Mehr, M.; van Driel, W.D.; Jansen, K.M.B.; Deeben, P.; Boutelje, M.; Zhang, G.Q. Photodegradation of bisphenol A polycarbonate under blue light radiation and its effect on optical properties. Opt. Mater. 2013, 35, 504–508. [Google Scholar] [CrossRef]
- De Buyl, F.; Beukema, M.; Van Tiggelen, K.; Rong, K.W.; Rankey, N.L.; Steinbrecher, J. Dow Corning Moldable Silicone Leading Innovation in LED Light Fixtures. J. Soc. Silicone Chem. Japan 2014, 31, 23–38. [Google Scholar]
- De Buyl, F.; Beukema, M.; Van Tiggelen, K. How Silicones are Evolving to Meet the Growing Needs of LED Lighting Industry. LED Prof. 2013, 36, 40–44. [Google Scholar]
- Approved Method for Lumen Maintenance Testing of LED Light Source (IES-LM-80-08); Illuminating Engineering Society: San Jose, CA, USA, 2008.
- Projecting Long Term Lumen Maintenance of LED Light Sources (IES-TM-21-11); Illuminating Engineering Society: San Jose, CA, USA, 2011.
- Fan, J.J.; Yung, K.C.; Pecht, M. Lifetime estimation of high-power white LED using degradation-data-driven method. Trans. Device Mater. Reliab. 2012, 12, 470–477. [Google Scholar] [CrossRef]
- Wang, F.K.; Lu, Y.C. Useful lifetime analysis for high-power white LEDs. Microelectron. Reliab. 2014, 54, 1307–1315. [Google Scholar] [CrossRef]
- Fan, J.J.; Yung, K.C.; Pecht, M. Prognostics of lumen maintenance for high power white light emitting diodes using a nonlinear filter-based approach. Reliab. Eng. Syst. Saf. 2014, 123, 63–72. [Google Scholar] [CrossRef]
- Wang, X.; Balakrishnan, N.; Guo, B. Residual life estimation based on a generalized Wiener degradation process. Reliab. Eng. Syst. Saf. 2014, 124, 13–23. [Google Scholar] [CrossRef]
- Huang, J.L.; Golubović, D.S.; Koh, S.; Yang, D.G.; Li, X.P.; Fan, X.J.; Zhang, G.Q. Degradation modelling of mid-power white-light LEDs by using Wiener process. Opt. Express 2015, 23, A966–A978. [Google Scholar] [CrossRef] [PubMed]
- Tseng, S.T.; Peng, C.Y. Stochastic diffusion modeling of degradation data. J. Data. Sci. 2007, 5, 315–333. [Google Scholar]
- Yazdan Mehr, M.; van Driel, W.D.; Zhang, G.Q. Reliability and life time prediction of remote phosphor plates in solid state lighting applications using accelerated degradation testing. J. Electr. Mater. 2016, 45, 444–452. [Google Scholar] [CrossRef]
- Lu, G.; van Driel, W.D.; Fan, X.; Yazdan Mehr, M.; Fan, J.; Jansen, K.M.B.; Zhang, G.Q. Degradation of microcellular PET reflective materials used in LED-based products. Opt. Mater. 2015, 49, 79–84. [Google Scholar] [CrossRef]
- Lu, G.; Yazdan Mehr, M.; Fan, X.; Fan, J.; Jansen, K.M.B.; Zhang, G.Q. Color shift investigations for LED secondary Optical designs: Comparison between BPA-PC and PMMA. Opt. Mater. 2015, 45, 37–41. [Google Scholar] [CrossRef]
- Yazdan Mehr, M.; van Driel, W.D.; Jansen, K.M.B.; Deeben, P.; Zhang, G.Q. Lifetime Assessment of Bisphenol-A polycarbonate (BPA-PC) Plastic Lens, used in LED-based Products. Microelectron. Reliab. 2014, 54, 138–142. [Google Scholar] [CrossRef]
- Van Driel, W.D.; Fan, X.J. Solid State Lighting Reliability: Components to Systems; Springer: Basel, Switzerland, 2012; ISBN 978-1-4614-3066-7. [Google Scholar]
- Yazdan Mehr, M.; van Driel, W.D.; Zhang, G.Q. Reliability and Accelerated Tests of Plastic Materials in LED-Based Products. In Proceedings of the 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystem, Budapet, Haungry, 22 April 2015. [Google Scholar]
- Van Driel, W.D.; Yazdan Mehr, M.; Zhang, G.Q. Reliability of LED based Products is a Matter of Balancing Temperatures. In Proceedings of the Therminic Conference, London, UK, 20–24 September 2014. [Google Scholar]
- Han, D. Time and cost constrained optimal designs of constant-stress and stepstress accelerated life tests. Reliab. Eng. Syst. Saf. 2015, 140, 1–14. [Google Scholar] [CrossRef]
- Oh, H.; Choi, S.; Kim, K.; Youn, B.D.; Pecht, M. An empirical model to describe performance degradation for warranty abuse detection in portable electronics. Reliab. Eng. Syst. Saf. 2015, 142, 92–99. [Google Scholar] [CrossRef]
- Yazdan Mehr, M.; van Driel, W.D.; Koh, S.; Zhang, G.Q. Reliability and optical properties of LED lens plates under high temperature stress. Microelectron. Reliab. 2014, 54, 2440–2447. [Google Scholar] [CrossRef]
- Yazdan Mehr, M.; van Driel, W.D.; Zhang, G.Q. Progress in Understanding Color Maintenance in Solid-State Lighting Systems. Engineering 2015, 1, 170–178. [Google Scholar] [CrossRef]
- Mehr, M.Y.; Volgbert, S.; van Driel, W.D.; Zhang, G.Q. Effects of Graphene Monolayer Coating on the Optical Performance of Remote Phosphors. J. Electr. Mater. 2017, 46, 5866–5872. [Google Scholar] [CrossRef] [Green Version]
- Yazdan Mehr, M.; van Driel, W.D.; Udono, H.; Zhang, G.Q. Surface aspects of discolouration in Bisphenol A Polycarbonate (BPA-PC), used as lens in LED-based products. Opt. Mater. 2014, 37, 155–159. [Google Scholar] [CrossRef]
- Davis, J.L.; Lamvik, M.; Bittle, J.; Shepherd, S.; Yaga, R.; Baldasaro, N.; Solano, E.; Bobashev, G. Insights into accelerated aging of SSL luminaires. In Proceedings of the SPIE 8835, LED-based Illumination Systems, 88350L, Bellingham, DC, USA, 30 September 2013. [Google Scholar] [CrossRef]
- Ghanbari-Siahkali, A.; Mitra, S.; Kingshott, P.; Almdal, K.; Bloch, C.; Rehmeie, H.K. Investigation of the hydrothermal stability of cross-linked liquid silicone rubber (LSR). Polym Degrad. Stab. 2005, 90, 471–480. [Google Scholar] [CrossRef]
- Wu, X.; Li, X.; Hao, L.; Wen, X.; Lan, L.; Yuan, X.; Zhang, Q. Effect of vulcanization temperature and humidity on the properties of RTV silicone rubber. IOP Conf. Ser. Mater. Sci. Eng. 2017, 207, 012011. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Fu, J.; Yu, L.; Yang, Z.; Guo, W. Comparative Research on Aging Properties of HTV Silicone Rubber via Outdoor Electric Aging and Ultraviolet Accelerated Aging. Adv. Mater. Res. 2013, 641–642, 333–337. [Google Scholar] [CrossRef]
- Thong-Om, S.; Payakcho, W.; Grasasom, J.; Marungsri, B. Comparison of Ageing Deterioration of Silicone Rubber Housing Material for Outdoor Polymer Insulators. Int. J. Mater. Metall. Eng. 2011, 80, 533–539. [Google Scholar]
Sample/Variables | Temperature (°C) | UV Light | Blue Light | Environment |
---|---|---|---|---|
#1 | 35 | 360 nm | - | Air |
#2 | 100 | - | 450 nm | Air |
#3 | 35 | - | - | Water (standard swimming pool water) |
#4 | 100 | - | - | Water (100% RH) |
#5 | 100 | - | - | Water (100% RH, 3 wt % Salt) |
Samples | x | y | z |
---|---|---|---|
As-received | 0.236 | 0.145 | 0.619 |
770 h | 0.241 | 0.151 | 0.610 |
1440 h | 0.246 | 0.161 | 0.573 |
3500 h | 0.251 | 0.167 | 0.582 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yazdan Mehr, M.; Van Driel, W.; De Buyl, F.; Zhang, K. Study on the Degradation of Optical Silicone Exposed to Harsh Environments. Materials 2018, 11, 1305. https://doi.org/10.3390/ma11081305
Yazdan Mehr M, Van Driel W, De Buyl F, Zhang K. Study on the Degradation of Optical Silicone Exposed to Harsh Environments. Materials. 2018; 11(8):1305. https://doi.org/10.3390/ma11081305
Chicago/Turabian StyleYazdan Mehr, Maryam, Willem Van Driel, Francois De Buyl, and Kouchi Zhang. 2018. "Study on the Degradation of Optical Silicone Exposed to Harsh Environments" Materials 11, no. 8: 1305. https://doi.org/10.3390/ma11081305
APA StyleYazdan Mehr, M., Van Driel, W., De Buyl, F., & Zhang, K. (2018). Study on the Degradation of Optical Silicone Exposed to Harsh Environments. Materials, 11(8), 1305. https://doi.org/10.3390/ma11081305