Immobilized Enzymes in Biosensor Applications
Abstract
:1. Introduction
2. Enzyme-Based Biosensors
2.1. Enzyme-Based Electrochemical Biosensors
2.1.1. Amperometric Biosensors
2.1.2. Potentiometric Biosensors
Ion Selective Electrodes
Enzyme Field-Effect Transistors
Light-Addressable Potentiometric Sensors (LAPS)
2.1.3. Conductometry
2.1.4. Impedimetric Enzyme Biosensors
2.2. Enzyme-Based Optical Biosensors
2.2.1. Absorbance/Reflectance Transitions
2.2.2. Fluorescence
2.2.3. Luminescence
2.2.4. SPR-Type Biosensors
2.3. Enzyme-Based Thermistors
2.4. Enzyme-Based Piezoelectric Biosensors
3. Approaches in Improving Enzyme Usage in Biosensors
3.1. Biological Modification
3.1.1. Site-Directed Mutagenesis
Enzyme Amino Acid Substitution
Enzyme Amino Acid Removal
Non-Natural Amino Acid Incorporation
Enzymatic Addition of a Genetic Tag
3.1.2. Fusion Protein Technology
3.2. Chemical Modification
3.2.1. Site-Specific Chemical Modification
3.2.2. Nonspecific Modification of the Enzyme Surface
3.3.3. Chemical Cross-Linking
3.3.4. Use of Polymers
3.3. Multi-Enzyme Systems
4. Conclusions
Funding
Conflicts of Interest
References
- Gurung, N.; Ray, S.; Bose, S.; Rai, V. A broader view: Microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Res. Int. 2013, 2013, 329121. [Google Scholar] [CrossRef] [PubMed]
- Katchalski-Katzir, E. Immobilized enzymes -learning from past successes and failures. Trends Biotechnol. 1993, 11, 471–478. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Kim, M. An overview of techniques in enzyme immobilization. Appl. Sci. Converg. Technol. 2017, 26, 157–163. [Google Scholar]
- Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 2012, 30, 489–511. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, N.R.; Marzuki, N.H.C.; Buang, N.A.; Huyop, F.; Wahab, R.A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novick, S.J.; Rozzell, J.D. Immobilization of enzymes by covalent attachment. In Microbial Enzymes and Biotransformations; Barredo, J.L., Ed.; Springer: Berlin, Germany, 2005; pp. 247–271. [Google Scholar]
- Rocchitta, G.; Spanu, A.; Babudieri, S.; Latte, G.; Madeddu, G.; Galleri, G.; Nuvoli, S.; Bagella, P.; Demartis, M.I.; Fiore, V.; et al. Enzyme biosensors for biomedical applications: Strategies for safeguarding analytical performances in biological fluids. Sensors 2016, 16, 780. [Google Scholar] [CrossRef] [PubMed]
- Pastor, M.; Esquisabel, A.; Pedraz, J.L. Biomedical Applications of immobilized enzymes: An update. In Methods in Molecular Biology; Guisan, J.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 285–299. [Google Scholar]
- Nigam, V.K.; Shukla, P. Enzyme based biosensors for detection of environmental pollutants-A review. J. Microbiol. Biotechnol. 2015, 25, 1773–1781. [Google Scholar] [CrossRef]
- Justino, C.I.L.; Armando, C.D.; Rocha-Santos, T.A.P. Recent progress in biosensors for environmental monitoring: A review. Sensors 2017, 17, 2918. [Google Scholar] [CrossRef]
- Amine, A.; Mohammadi, H.; Bourais, I.; Palleschi, G. Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens. Bioelectron. 2006, 21, 1405–1423. [Google Scholar] [CrossRef]
- Monosik, R.; Stredansky, M.; Tkac, J.; Sturdik, E. Application of enzyme biosensors in analysis of food and beverages. Food Anal. Methods 2012, 5, 40–53. [Google Scholar] [CrossRef]
- Mehrotra, P. Biosensors and their applications—A review. J. Oral Biol. Craniofac. Res. 2016, 6, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Molinero-Abad, B.; Alonso-Lomillo, M.A.; Domínguez-Renedo, O.; Arcos-Martínez, M.J. Malate quinone oxidoreductase biosensors based on tetrathiafulvalene and gold nanoparticles modified screen-printed carbon electrodes for malic acid determination in wine. Sens. Actuators B Chem. 2014, 202, 971–975. [Google Scholar] [CrossRef]
- Clark, L.C.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Bollella, P.; Gorton, L. Enzyme based amperometric biosensors. Curr. Opin. Electrochem. 2018, 10, 157–173. [Google Scholar] [CrossRef]
- Kurbanoglu, S.; Zafar, M.N.; Tasca, F.; Aslam, I.; Spadiut, O.; Leech, D.; Haltrich, D.; Gorton, L. Amperometric flow injection analysis of glucose and galactose based on engineered pyranose 2-oxidases and osmium polymers for biosensor applications. Electroanalysis 2018, 30, 1496–1504. [Google Scholar] [CrossRef]
- Fernández, H.; Arévalo, F.J.; Granero, A.M.; Robledo, S.N.; Nieto, C.H.D.; Riberi, W.I.; Zon, M.A. Electrochemical biosensors for the determination of toxic substances related to food safety developed in South America: Mycotoxins and herbicides. Chemosensors 2017, 5, 23. [Google Scholar] [CrossRef]
- Murugaiyan, S.B.; Ramasamy, R.; Gopal, N.; Kuzhandaivelu, V. Biosensors in clinical chemistry: An overview. Adv. Biomed. Res. 2014, 3, 67. [Google Scholar]
- Tseng, T.-F.; Yang, Y.-L.; Chuang, M.-C.; Lou, S.-L.; Galik, M.; Flechsig, G.-U.; Wang, J. Thermally stable improved first-generation glucose biosensors based on nafion/glucose-oxidase modified heated electrodes. Electrochem. Commun. 2009, 11, 1819–1822. [Google Scholar] [CrossRef]
- Mayorga Martinez, C.C.; Treo, E.F.; Madrid, R.E.; Felice, C.C. Real-time measurement of glucose using chrono-impedance technique on a second generation biosensor. Biosens. Bioelectron. 2011, 29, 200–203. [Google Scholar] [CrossRef]
- Palmisano, F.; Zambonin, P.G.; Centonze, D.; Quinto, M. A disposable, reagentless, third-generation glucose biosensor based on overoxidized poly(pyrrole)/tetrathiafulvalene-tetracyanoquinodimethane composite. Anal. Chem. 2002, 74, 5913–5918. [Google Scholar] [CrossRef]
- Tasca, F.; Ludwig, R.; Gorton, L.; Antiochia, R. Determination of lactose by a novel third generation biosensor based on a cellobiose dehydrogenase and aryl diazonium modified single wall carbon nanotubes electrode. Sens. Actuators B Chem. 2013, 177, 64–69. [Google Scholar] [CrossRef]
- Das, P.; Das, M.; Chinnadayyala, S.R.; Singha, I.M.; Goswami, P. Recent advances on developing 3rd generation enzyme electrode for biosensor applications. Biosens. Bioelectron. 2016, 79, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, S.; Velusamy, V.; Chen, S.-W.; Yang, T.C.K.; Balu, S.; Banks, C.E. Enhanced reversible redox activity of hemin on cellulose microfiber integrated reduced graphene oxide for H2O2 biosensor applications. Carbohydr. Polym. 2019, 204, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Grieshaber, D.; Mackenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors-sensor principles and architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.K.; Ameen, S.T.; Saad, B. Tetracaine—selective electrodes with polymer membranes and their application in pharmaceutical formulation control. Arab. J. Chem. 2017, 10, S1484–S1491. [Google Scholar] [CrossRef]
- Gupta, V.K.; Pal, M.K.; Singh, A.K. Drug selective poly(vinyl chloride)-based sensor of desipramine hydrochloride. Electrochim. Acta 2010, 55, 1061–1066. [Google Scholar] [CrossRef] [Green Version]
- Dung, T.T.; Oh, Y.; Choi, S.J.; Kim, I.D.; Oh, M.K.; Kim, M. Applications and advances in bioelectronic noses for odour sensing. Sensors 2018, 18, 103. [Google Scholar] [CrossRef]
- Lee, C.; Kim, S.K.; Kim, M. Ion-sensitive field-effect transistor for biological sensing. Sensors 2009, 9, 7111–7131. [Google Scholar] [CrossRef]
- Caras, S.; Janata, J. Field effect transistor sensitive to penicillin. Anal. Chem. 1980, 52, 1935–1937. [Google Scholar] [CrossRef]
- Yoon, H.; Ko, S.; Jang, J. Field-effect-transistor sensor based on enzyme-functionalized polypyrrole nanotubes for glucose detection. J. Phys. Chem. B 2008, 112, 9992–9997. [Google Scholar] [CrossRef]
- Luo, X.L.; Xu, J.J.; Zhao, W.; Chen, H.-Y. A novel glucose ENFET based on the special reactivity of MnO2 nanoparticles. Biosens. Bioelectron. 2004, 19, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.L.; Xu, J.J.; Zhao, W.; Chen, H.-Y. Glucose biosensor based on ENFET doped with SiO2 nanoparticles. Sens. Actuators B Chem. 2004, 97, 249–255. [Google Scholar] [CrossRef]
- Soldatkin, A.P.; Montoriol, J.; Sant, W.; Martelet, C.; Jaffrezic-Renault, N. A novel urea sensitive biosensor with extended dynamic range based on recombinant urease and ISFETs. Biosens. Bioelectron. 2003, 19, 131–135. [Google Scholar] [CrossRef]
- Rebriiev, A.V.; Starodub, N.F. Enzymatic biosensor based on the ISFET and photopolymeric membrane for the determination of urea. Electroanalysis 2004, 16, 1891–1895. [Google Scholar] [CrossRef]
- Simonian, A.L.; Grimsley, J.K.; Flounders, A.W.; Schoeniger, J.S.; Cheng, T.C.; DeFrank, J.J.; Wild, J.R. Enzyme-based biosensor for the direct detection of fluorine-containing organophosphates. Anal. Chim. Acta 2001, 442, 15–23. [Google Scholar] [CrossRef]
- Simonian, A.L.; Flounders, A.W.; Wild, J.R. FET-based biosensors for the direct detection of organophosphate neurotoxins. Electroanalysis 2004, 16, 1896–1906. [Google Scholar] [CrossRef]
- Dzyadevych, S.V.; Mai Anh, T.; Soldatkin, A.P.; Duc Chien, N.; Jaffrezic-Renault, N.; Chovelon, J.-M. Development of enzyme biosensor based on pH-sensitive field-effect transistors for detection of phenolic compounds. Bioelectrochemistry 2002, 55, 79–81. [Google Scholar] [CrossRef]
- Soldatkin, A.P.; Arkhypova, V.N.; Dzyadevych, S.V.; El’skaya, A.V.; Gravoueille, J.-M.; Jaffrezic-Renault, N.; Martelet, C. Analysis of the potato glycoalkaloids by using of enzyme biosensor based on pH-ISFETs. Talanta 2005, 66, 28–33. [Google Scholar] [CrossRef]
- Sant, W.; Pourciel-Gouzy, M.L.; Launay, J.; Do Conto, T.; Colin, R.; Martinez, A.; Temple-Boyer, P. Development of a creatinine-sensitive sensor for medical analysis. Sens. Actuators B Chem. 2004, 103, 260–264. [Google Scholar] [CrossRef]
- Fung, C.D.; Cheung, P.W.; Ko, W.H. A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor. IEEE Trans. Electron Devices 1986, 33, 8–18. [Google Scholar] [CrossRef]
- Seki, A.; Ikeda, S.I.; Kubo, I.; Karube, I. Biosensors based on light-addressable potentiometric sensors for urea, penicillin and glucose. Anal. Chim. Acta 1998, 373, 9–13. [Google Scholar] [CrossRef]
- Rogers, K.R.; Foley, M.; Alter, S.; Koga, P.; Eldefrawi, M. Light addressable potentiometric biosensor for the detection of anticholinesterases. Anal. Lett. 1991, 24, 191–198. [Google Scholar] [CrossRef]
- Fernando, J.C.; Rogers, K.R.; Anis, N.A.; Valdes, J.J.; Thompson, R.G.; Eldefrawi, A.T.; Eldefrawi, M.E. Rapid detection of anticholinesterase insecticides by a reusable light addressable potentiometric biosensor. J. Agric. Food Chem. 1993, 41, 511–516. [Google Scholar] [CrossRef]
- Wu, S.; Chen, P.; Yu, H.; Liu, Q.; Zong, X.; Cai, H.; Wang, P. A novel biomimetic olfactory-based biosensor for single olfactory sensory neuron monitoring. Biosens. Bioelectron. 2009, 24, 1498–1502. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Cai, H.; Zhang, W.; Xiao, L.; Liu, Q.; Wang, P. A novel design of multifunctional integrated cell-based biosensors for simultaneously detecting cell acidification and extracellular potential. Biosens. Bioelectron. 2009, 24, 1462–1468. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Poghossian, A.; Bronder, T.S.; Schöning, M.J. Sensing of double-stranded DNA molecules by their intrinsic molecular charge using the light-addressable potentiometric sensor. Sens. Actuators B Chem. 2016, 229, 506–512. [Google Scholar] [CrossRef]
- Du, L.; Wang, J.; Chen, W.; Zhao, L.; Wu, C.; Wang, P. Dual functional extracellular recording using a light-addressable potentiometric sensor for bitter signal transduction. Anal. Chim. Acta 2018, 1022, 106–112. [Google Scholar] [CrossRef]
- Soldatkin, A.P.; El’skaya, A.V.; Shul’ga, A.A.; Jdanova, A.S.; Dzyadevich, S.V.; Jaffrezic-Renault, N.; Martelet, C.; Clechet, P. Glucose sensitive conductometric biosensor with additional Nafion membrane: reduction of influence of buffer capacity on the sensor response and extension of its dynamic range. Anal. Chim. Acta 1994, 288, 197–203. [Google Scholar] [CrossRef]
- Lee, W.-Y.; Kim, S.-R.; Kim, T.-H.; Lee, K.S.; Shin, M.-C.; Park, J.-K. Sol–gel-derived thick-film conductometric biosensor for urea determination in serum. Anal. Chim. Acta 2000, 404, 195–203. [Google Scholar] [CrossRef]
- Mikkelsen, S.R.; Rechnitz, G.A. Conductometric transducers for enzyme-based biosensors. Anal. Chem. 1989, 61, 1737–1742. [Google Scholar] [CrossRef]
- Bilitewski, U.; Drewes, W.; Schmid, R.D. Thick film biosensors for urea. Sens. Actuators B Chem. 1992, 7, 321–326. [Google Scholar] [CrossRef]
- Shul’ga, A.A.; Soldatkin, A.P.; El’skaya, A.V.; Dzyadevich, S.V.; Patskovsky, S.V.; Strikha, V.I. Thin-film conductometric biosensors for glucose and urea determination. Biosens. Bioelectron. 1994, 9, 217–223. [Google Scholar] [CrossRef]
- Kirdeciler, S.K.; Soy, E.; Oztürk, S.; Kucherenko, I.; Soldatkin, O.; Dzyadevych, S.; Akata, B. A novel urea conductometric biosensor based on zeolite immobilized urease. Talanta 2011, 85, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.O.; Krause, S.; McNell, C.J.; Pritchard, J.A.; Armstrong, R.D.; Athey, D.; Rawson, K. Electrochemical sensor for measurement of urea and creatinine in serum based on ac impedance measurement of enzyme-catalyzed polymer transformation. Anal. Chem. 1999, 71, 1940–1946. [Google Scholar] [CrossRef] [PubMed]
- Cullen, D.C.; Sethi, R.S.; Lowe, C.R. Multi-analyte miniature conductance biosensor. Anal. Chim. Acta 1990, 231, 33–40. [Google Scholar] [CrossRef]
- Jin, P.; Yamaguchi, A.; Oi, F.A.; Matsuo, S.; Tan, J.; Misawa, H. Glucose sensing based on interdigitated array microelectrode. Anal. Sci. 2001, 17, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Marrakchi, M.; Dzyadevych, S.V.; Lagarde, F.; Martelet, C.; Jaffrezic-Renault, N. Conductometric biosensor based on glucose oxidase and β-galactosidase for specific lactose determination in milk. Mater. Sci. Eng. C 2008, 28, 872–875. [Google Scholar] [CrossRef]
- Sergeyeva, T.A.; Lavrik, N.V.; Rachkov, A.E.; Kazantseva, Z.I.; Piletsky, S.A.; El’skaya, A.V. Hydrogen peroxide–Sensitive enzyme sensor based on phthalocyanine thin film. Anal. Chim. Acta 1999, 391, 289–297. [Google Scholar] [CrossRef]
- Dzyadevych, S.V.; Soldatkin, A.P.; Chovelon, J.-M. Assessment of the toxicity of methyl parathion and its photodegradation products in water samples using conductometric enzyme biosensors. Anal. Chim. Acta 2002, 459, 33–41. [Google Scholar] [CrossRef]
- Dzyadevych, S.V.; Chovelon, J.-M. A comparative photodegradation studies of methyl parathion by using Lumistox test and conductometric biosensor technique. Mater. Sci. Eng. C 2002, 21, 55–60. [Google Scholar] [CrossRef]
- Nyamsi Hendji, A.M.; Jaffrezic-Renault, N.; Martelet, C.; Shul’ga, A.A.; Dzydevich, S.V.; Soldatkin, A.P.; El’skaya, A.V. Enzyme biosensor based on a micromachined interdigitated conductometric transducer: application to the detection of urea, glucose, acetyl- and butyrylcholine chlordes. Sens. Actuators B Chem. 1994, 21, 123–129. [Google Scholar] [CrossRef]
- Dzydevich, S.V.; Shuľga, A.A.; Soldatkin, A.P.; Hendji, A.M.N.; Jaffrezic-Renault, N.; Martelet, C. Conductometric biosensors based on cholinesterases for sensitive detection of pesticides. Electroanalysis 1994, 6, 752–758. [Google Scholar] [CrossRef]
- Arkhypova, V.N.; Dzyadevych, S.V.; Soldatkin, A.P.; El’skaya, A.V.; Jaffrezic-Renault, N.; Jaffrezic, H.; Martelet, C. Multibiosensor based on enzyme inhibition analysis for determination of different toxic substances. Talanta 2001, 55, 919–927. [Google Scholar] [CrossRef]
- Castillo-Ortega, M.M.; Rodriguez, D.E.; Encinas, J.C.; Plascencia, M.; Méndez-Velarde, F.A.; Olayo, R. Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline–poly(n-butyl methacrylate) composites. Sens. Actuators B Chem. 2002, 85, 19–25. [Google Scholar] [CrossRef]
- Dzyadevych, S.V.; Arkhypova, V.N.; Korpan, Y.I.; El’skaya, A.V.; Soldatkin, A.P.; Jaffrezic-Renault, N.; Martelet, C. Conductometric formaldehyde sensitive biosensor with specifically adapted analytical characteristics. Anal. Chim. Acta 2001, 445, 47–55. [Google Scholar] [CrossRef]
- Anh, T.M.; Dzyadevych, S.V.; Van, M.C.; Renault, N.J.; Duc, C.N.; Chovelon, J.M. Conductometric tyrosinase biosensor for the detection of diuron, atrazine and its main metabolites. Talanta 2004, 63, 365–370. [Google Scholar] [CrossRef]
- Dzyadevych, S.V.; Soldatkin, A.P.; Arkhypova, V.N.; El’skaya, A.V.; Chovelon, J.-M.; Georgiou, C.A.; Martelet, C.; Jaffrezic-Renault, N. Early-warning electrochemical biosensor system for environmental monitoring based on enzyme inhibition. Sens. Actuators B Chem. 2005, 105, 81–87. [Google Scholar] [CrossRef]
- Shervedani, R.K.; Mehrjardi, A.H.; Zamiri, N. A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor. Bioelectrochemistry 2006, 69, 201–208. [Google Scholar] [CrossRef]
- Zehani, N.; Dzyadevych, S.V.; Kherrat, R.; Jaffrezic-Renault, N.J. Sensitive impedimetric biosensor for direct detection of diazinon based on lipases. Front. Chem. 2014, 2, 1–7. [Google Scholar] [CrossRef]
- Chan, D.; Barsan, M.M.; Korpan, Y.; Brett, C.M.A. l-lactate selective impedimetric bienzymatic biosensor based on lactate dehydrogenase and pyruvate oxidase. Electrochim. Acta 2017, 231, 209–215. [Google Scholar] [CrossRef]
- Shamsipur, M.; Asgari, M.; Maragheh, M.G.; Moosavi-Movahedi, A.A. A novel impedimetric nanobiosensor for low level determination of hydrogen peroxide based on biocatalysis of catalase. Bioelectrochemistry 2012, 83, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Zane, D.; Appetecchi, G.B.; Bianchini, C.; Passerini, S.; Curulli, A. An impedimetric glucose biosensor based on overoxidized polypyrrole thin film. Electroanalysis 2011, 23, 1134–1141. [Google Scholar] [CrossRef]
- Maalouf, R.; Chebib, H.; Saïkali, Y.; Vittori, O.; Sigaud, M.; Jaffrezic-Renault, N. Amperometric and impedimetric characterization of a glutamate biosensor based on Nafion® and a methyl viologen modified glassy carbon electrode. Biosens. Bioelectron. 2007, 22, 2682–2688. [Google Scholar] [CrossRef] [PubMed]
- Myler, S.; Collyer, S.D.; Davis, F.; Gornall, D.D.; Higson, S.P.J. Sonochemically fabricated microelectrode arrays for biosensors: Part III. AC impedimetric study of aerobic and anaerobic response of alcohol oxidase within polyaniline. Biosens. Bioelectron. 2005, 21, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Bouyahia, N.; Hamlaoui, M.L.; Hnaien, M.; Lagarde, F.; Jaffrezic-Renault, N. Impedance spectroscopy and conductometric biosensing for probing catalase reaction with cyanide as ligand and inhibitor. Bioelectrochemistry 2011, 80, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Cortina, M.; Esplandiu, M.J.; Alegret, S.; del Valle, M. Urea impedimetric biosensor based on polymer degradation onto interdigitated electrodes. Sens. Actuators B Chem. 2006, 118, 84–89. [Google Scholar] [CrossRef]
- Abdelmalek, F.; Shadaram, M.; Boushriha, H. Ellipsometry measurements and impedance spectroscopy on Langmuir-Blodgett membranes on Si/SiO2 for ion sensitive sensor. Sens. Actuators B Chem. 2001, 72, 208–213. [Google Scholar] [CrossRef]
- Free, A.H.; Adams, E.C.; Kercher, M.L.; Free, H.M.; Cook, M.H. Simple specific test for urine glucose. Clin. Chem. 1957, 3, 163–168. [Google Scholar]
- Sanz, V.; de Marcos, S.; Galbán, J. A reagentless optical biosensor based on the intrinsic absorption properties of peroxidase. Biosens. Bioelectron. 2007, 22, 956–964. [Google Scholar] [CrossRef]
- Sanz, V.; de Marcos, S.; Galbán, J. Direct glucose determination in blood using a reagentless optical biosensor. Biosens. Bioelectron. 2007, 22, 2876–2883. [Google Scholar] [CrossRef]
- Lan, W.; Chen, G.; Cui, F.; Tan, F.; Liu, R.; Yushupujiang, M. Development of a novel optical biosensor for detection of organophoshorus pesticides based on methyl parathion hydrolase immobilized by metal-chelate affinity. Sensors 2012, 12, 8477–8490. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-W.; Kim, Y.-K.; Lee, I.-H.; Min, J.; Lee, W.H. Optical organophosphorus biosensor consisting of acetylcholinesterase/viologen hetero Langmuir-Blodgett film. Biosens. Bioelectron. 2001, 16, 937–943. [Google Scholar] [CrossRef]
- Wang, J.; Krause, R.; Block, K.; Musameh, M.; Mulchandani, A.; Schöning, M.J. Flow injection amperometric detection of OP nerve agents based on an organophosphorus-hydrolase biosensor detector. Biosens. Bioelectron. 2003, 18, 255–260. [Google Scholar] [CrossRef]
- Rosa, C.C.; Cruz, H.J.; Vidal, M.; Oliva, A.G. Optical biosensor based on nitrite reductase immobilised in controlled pore glass. Biosens. Bioelectron. 2002, 17, 45–52. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Park, J.; Hwang, S.; Kwon, O.S.; Lee, C.-S.; Shin, Y.-B.; Ha, T.H.; Kim, M. On-chip fluorescence switching system for constructing a rewritable random access data storage device. Sci. Rep. 2018, 8, 337. [Google Scholar] [CrossRef] [PubMed]
- Galbán, J.; Andreu, Y.; Sierra, J.F.; de Marcos, S.; Castillo, J.R. Intrinsic fluorescence of enzymes and fluorescence of chemically modified enzymes for analytical purposes: A review. Luminescence 2001, 16, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Hussain, F.; Birch, D.J.S.; Pickup, J.C. Glucose sensing based on the intrinsic fluorescence of sol-gel immobilized yeast hexokinase. Anal. Biochem. 2005, 339, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Maity, H.; Maiti, N.C.; Jarori, G.K. Time-resolved fluorescence of tryptophans in yeast hexokinase-PI: effect of subunit dimerization and ligand binding. J. Photochem. Photobiol. B 2000, 55, 20–26. [Google Scholar] [CrossRef]
- Portaccio, M.; Lepore, M.; Della Ventura, B.; Stoilova, O.; Manolova, N.; Rashkov, I.; Mita, D.G. Fiber-optic glucose biosensor based on glucose oxidase immobilised in a silica gel matrix. J. Solgel Sci. Technol. 2009, 50, 437–448. [Google Scholar] [CrossRef]
- Sierra, J.F.; Galban, J.; de Marcos, S.; Castillo, J.R. Fluorimetric-enzymatic determination of glucose based on labelled glucose oxidase. Anal. Chim. Acta 1998, 368, 97–104. [Google Scholar] [CrossRef]
- Sanz, V.; Galban, J.; de Marcos, S.; Castillo, J.R. Fluorometric sensors based on chemically modified enzymes glucose determination in drinks. Talanta 2003, 60, 415–423. [Google Scholar] [CrossRef]
- Sierra, J.F.; Galban, J.; De Marcos, S.; Castillo, J.R. Direct determination of glucose in serum by fluorimetry using a labeled enzyme. Anal. Chim. Acta 2000, 414, 33–41. [Google Scholar] [CrossRef]
- Galbán, J.; Sierra, J.F.; López Sebastián, J.M.; de Marcos, S.; Castillo, J.R. Direct fluorometric determination of total cholesterol in serum using derivatized cholesterol oxidase. Appl. Spectrosc. 2000, 54, 1157–1162. [Google Scholar] [CrossRef]
- Andreu, Y.; Ostra, M.; Ubide, C.; Galbán, J.; de Marcos, S.; Castillo, J.R. Study of a fluorometric-enzymatic method for bilirubin based on chemically modified bilirubin-oxidase and multivariate calibration. Talanta 2002, 57, 343–353. [Google Scholar] [CrossRef]
- Hartnett, A.M.; Ingersoll, C.M.; Baker, G.A.; Bright, F.V. Kinetics and thermodynamics of free flavins and the flavin-based redox active site within glucose oxidase dissolved in solution or sequestered within a sol−gel-derived glass. Anal. Chem. 1999, 71, 1215–1224. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Romero, R.; Petty, H.R. An enzymatic colorimetric assay for glucose-6-phosphate. Anal. Biochem. 2011, 419, 266–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gessei, T.; Arakawa, T.; Kudo, H.; Mitsubayashi, K. A fiber-optic sorbitol biosensor based on NADH fluorescence detection toward rapid diagnosis of diabetic complications. Analyst 2015, 140, 6335–6342. [Google Scholar] [CrossRef] [PubMed]
- Cordek, J.; Wang, X.; Tan, W. Direct immobilization of glutamate dehydrogenase on optical fiber probes for ultrasensitive glutamate detection. Anal. Chem. 1999, 71, 1529–1533. [Google Scholar] [CrossRef]
- Thompson, R.B.; Jones, E.R. Enzyme-based fiber optic zinc biosensor. Anal. Chem. 1993, 65, 730–734. [Google Scholar] [CrossRef]
- Blum, L.J.; Coulet, P.R. Luminescent biosensors. In Biosensors and Their Applications; Yang, V.C., Ngo, T.T., Eds.; Springer: Boston, MA, USA, 2000; pp. 213–223. [Google Scholar]
- Klimant, I.; Belser, P.; Wolfbeis, O.S. Novel metal-organic ruthenium(II) diimin complexes for use as longwave excitable luminescent oxygen probes. Talanta 1994, 41, 985–991. [Google Scholar] [CrossRef]
- Papkovsky, D.B.; Ovchinnikov, A.N.; Ogurtsov, V.I.; Ponomarev, G.V.; Korpela, T. Biosensors on the basis of luminescent oxygen sensor: The use of microporous light-scattering support materials. Sens. Actuators B Chem. 1998, 51, 137–145. [Google Scholar] [CrossRef]
- Andrus, L.P.; Unruh, R.; Wisniewski, N.A.; McShane, M.J. Characterization of lactate sensors based on lactate oxidase and palladium benzoporphyrin immobilized in hydrogels. Biosensors 2015, 5, 398–416. [Google Scholar] [CrossRef] [PubMed]
- Scully, P.J.; Betancor, L.; Bolyo, J.; Dzyadevych, S.; Guisan, J.M.; Fernández-Lafuente, R.; Jaffrezic-Renault, N.; Kuncová, G.; Matějec, V.; O’Kennedy, B.; et al. Optical fibre biosensors using enzymatic transducers to monitor glucose. Meas. Sci. Technol. 2007, 18, 3177–3186. [Google Scholar] [CrossRef]
- Gautier, S.M.; Blum, L.J.; Coulet, P.R. Fibre-optic biosensor based on luminescence and immobilized enzymes: Microdetermination of sorbitol, ethanol and oxaloacetate. J. Biolumin. Chemilumin. 1990, 5, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Lan, D.; Zhang, Z. Chemiluminescence flow-through biosensor for glucose with eggshell membrane as enzyme immobilization platform. Anal. Biochem. 2008, 374, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.C.; Torijas, M.C.; Navas Díaz, A. Enhanced chemiluminescence biosensor for the determination of phenolic compounds and hydrogen peroxide. Sens. Actuators B Chem. 2001, 73, 71–75. [Google Scholar] [CrossRef]
- Cattaneo, M.V.; Luong, J.H.T. Monitoring glutamine in animal cell cultures using a chemiluminescence fiber optic biosensor. Biotechnol. Bioeng. 1993, 41, 659–665. [Google Scholar] [CrossRef]
- Freeman, T.M.; Seitz, W.R. Chemiluminescence fiber optic probe for hydrogen peroxide based on the luminol reaction. Anal. Chem. 1978, 50, 1242–1246. [Google Scholar] [CrossRef]
- Syshchyk, O.; Skryshevsky, V.A.; Soldatkin, O.O.; Soldatkin, A.P. Enzyme biosensor systems based on porous silicon photoluminescence for detection of glucose, urea and heavy metals. Biosens. Bioelectron. 2015, 66, 89–94. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface Plasmon Resonance: A versatile technique for biosensor applications. Sensors 2015, 15, 10481–10510. [Google Scholar] [CrossRef]
- Fong, C.C.; Lai, W.P.; Leung, Y.C.; Lo, S.C.L.; Wong, M.S.; Yang, M. Study of substrate-enzyme interaction between immobilized pyridoxamine and recombinant porcine pyridoxal kinase using surface plasmon resonance biosensor. Biochim. Biophys. Acta Proteins Struct. Mol. Enzymol. 2002, 1596, 95–107. [Google Scholar] [CrossRef]
- Jabbari, S.; Dabirmanesh, B.; Arab, S.S.; Amanlou, M.; Daneshjou, S.; Gholami, S.; Khajeh, K. A novel enzyme based SPR-biosensor to detect bromocriptine as an ergoline derivative drug. Sens. Actuators B Chem. 2017, 240, 519–527. [Google Scholar] [CrossRef]
- Milkani, E.; Lambert, C.R.; McGimpsey, W.G. Direct detection of acetylcholinesterase inhibitor binding with an enzyme-based surface plasmon resonance sensor. Anal. Biochem. 2011, 408, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, C.M.; Shimizu, F.M.; Mejía-Salazar, J.R.; Oliveira, O.N.; Ferreira, M. Surface plasmon resonance biosensor for enzymatic detection of small analytes. Nanotechnology 2017, 28, 145501. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.K.; Solanki, P.R.; Singh, S.P.; Kaneto, K.; Pandey, M.K.; Datta, M.; Malhotra, B.D. Poly-(3-hexylthiophene) self-assembled monolayer based cholesterol biosensor using surface plasmon resonance technique. Biosens. Bioelectron. 2007, 22, 2516–2524. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Cheng, G.; Dong, S. A novel electrochemical SPR biosensor. Electrochem. commun. 2001, 3, 489–493. [Google Scholar] [CrossRef]
- Geitmann, M.; Danielson, U.H. Studies of substrate-induced conformational changes in human cytomegalovirus protease using optical biosensor technology. Anal. Biochem. 2004, 332, 203–214. [Google Scholar] [CrossRef]
- Mishra, G.K.; Sharma, A.; Deshpande, K.; Bhand, S. Flow injection analysis biosensor for urea analysis in urine using enzyme thermistor. Appl. Biochem. Biotechnol. 2014, 174, 998–1009. [Google Scholar] [CrossRef]
- Mattiasson, B.; Borrebaeck, C.; Sanfridson, B.; Mosbach, K. Thermometric enzyme linked immunosorbent assay: TELISA. Biochim. Biophys. Acta 1977, 483, 221–227. [Google Scholar] [CrossRef]
- Scheper, T.; Brandes, W.; Maschke, H.; Plotz, F.; Muller, C. Two FIA-based biosensor systems studied for bioprocess monitoring. J. Biotechnol. 1993, 31, 345–356. [Google Scholar] [CrossRef]
- Yakovleva, M.; Bhand, S.; Danielsson, B. The enzyme thermistor—A realistic biosensor concept. A critical review. Anal. Chim. Acta 2013, 766, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Si, S.; Dai, H.; Zhang, C. Piezoelectric urea biosensor based on immobilization of urease onto nanoporous alumina membranes. Biosens. Bioelectron. 2007, 22, 3283–3287. [Google Scholar] [CrossRef] [PubMed]
- Seker, Ş.; Arslan, Y.E.; Elçin, Y.M. Electrospun nanofibrous PLGA/fullerene-C60 coated quartz crystal microbalance for real-time gluconic acid monitoring. IEEE Sens. J. 2010, 10, 1342–1348. [Google Scholar] [CrossRef]
- Abad, J.M.; Pariente, F.; Hernández, L.; Abruña, H.D.; Lorenzo, E. Determination of organophosphorus and carbamate pesticides using a piezoelectric biosensor. Anal. Chem. 1998, 70, 2848–2855. [Google Scholar] [CrossRef]
- Alfonta, L.; Katz, E.; Willner, I. Sensing of acetylcholine by a tricomponent-enzyme layered electrode using faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance transduction methods. Anal. Chem. 2000, 72, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Karousos, N.G.; Aouabdi, S.; Way, A.S.; Reddy, S.M. Quartz crystal microbalance determination of organophosphorus and carbamate pesticides. Anal. Chim. Acta 2002, 469, 189–196. [Google Scholar] [CrossRef]
- Juřík, T.; Skládal, P. Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface. Chem. Pap. 2015, 69, 167–175. [Google Scholar] [CrossRef]
- Martin, S.P.; Lamb, D.J.; Lynch, J.M.; Reddy, S.M. Enzyme-based determination of cholesterol using the quartz crystal acoustic wave sensor. Anal. Chim. Acta 2003, 487, 91–100. [Google Scholar] [CrossRef]
- Tang, S.; Ma, W.; Xie, G.; Su, Y.; Jiang, Y. Acetylcholinesterase-reduced graphene oxide hybrid films for organophosphorus neurotoxin sensing via quartz crystal microbalance. Chem. Phys. Lett. 2016, 660, 199–204. [Google Scholar] [CrossRef]
- Campàs, M.; Prieto-Simón, B.; Marty, J.L. A review of the use of genetically engineered enzymes in electrochemical biosensors. Semin. Cell Dev. Biol. 2009, 20, 3–9. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Park, J.; Park, S.J.; Lee, C.-S.; Hwang, S.; Shin, Y.-B.; Ha, T.H.; Kim, M. Long-term stability and integrity of plasmid-based DNA data storage. Polymers 2018, 10, 28. [Google Scholar] [CrossRef]
- Istamboulie, G.; Andreescu, S.; Marty, J.-L.; Noguer, T. Highly sensitive detection of organophosphorus insecticides using magnetic microbeads and genetically engineered acetylcholinesterase. Biosens. Bioelectron. 2007, 23, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Sotiropoulou, S.; Fournier, D.; Chaniotakis, N.A. Genetically engineered acetylcholinesterase-based biosensor for attomolar detection of dichlorvos. Biosens. Bioelectron. 2005, 20, 2347–2352. [Google Scholar] [CrossRef] [PubMed]
- Boublik, Y.; Saint-Aguet, P.; Lougarre, A.; Arnaud, M.; Villatte, F.; Estrada-Mondaca, S.; Fournier, D. Acetylcholinesterase engineering for detection of insecticide residues. Protein Eng. 2002, 15, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamazaki, T.; Kojima, K.; Sode, K. Extended-range glucose sensor employing engineered glucose dehydrogenases. Anal. Chem. 2000, 72, 4689–4693. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.N.J.; Katz, E.; Willner, I. Electrocatalytic reduction of organic peroxides in organic solvents by microperoxidase-11 immobilized as a monolayer on a gold electrode. J. Electroanal. Chem. 1996, 417, 189–192. [Google Scholar] [CrossRef]
- Behera, S.; Raj, C.R. Mercaptoethylpyrazine promoted electrochemistry of redox protein and amperometric biosensing of uric acid. Biosens. Bioelectron. 2007, 23, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Niu, W.; Guo, J. Novel fluorescence-based biosensors incorporating unnatural amino acids. Methods Enzymol. 2017, 589, 191–219. [Google Scholar] [PubMed]
- Wang, A.; Winblade, N.; Marelli, M.; Grabstei, K. Protein engineering with non-natural amino acids. In Protein Engineering; Kaumaya, P., Ed.; InTech: London, UK, 2012; pp. 253–290. [Google Scholar]
- Ugwumba, I.N.; Ozawa, K.; Xu, Z.Q.; Ely, F.; Foo, J.L.; Herlt, A.J.; Coppin, C.; Brown, S.; Taylor, M.C.; Ollis, D.L.; et al. Improving a natural enzyme activity through incorporation of unnatural amino acids. J. Am. Chem. Soc. 2011, 133, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Madoz-Gúrpide, J.; Abad, J.M.; Fernández-Recio, J.; Vélez, M.; Vázquez, L.; Gómez-Moreno, C.; Fernández, V.M. Modulation of electroenzymatic NADPH oxidation through oriented immobilization of ferredoxin:NADP+ reductase onto modified gold electrodes. J. Am. Chem. Soc. 2000, 122, 9808–9817. [Google Scholar] [CrossRef]
- Andreescu, S.; Magearu, V.; Lougarre, A.; Fournier, D.; Marty, J.-L. Immobilization of enzymes on screen-printed sensors via an histidine tail. Application to the detection of pesticides using modified cholinesterase. Anal. Lett. 2001, 34, 529–540. [Google Scholar] [CrossRef]
- Kapp, A.; Beissenhirtz, M.K.; Geyer, F.; Scheller, F.; Viezzoli, M.S.; Lisdat, F. Electrochemical and sensorial behavior of SOD mutants immobilized on gold electrodes in aqueous/organic solvent mixtures. Electroanalysis 2006, 18, 1909–1915. [Google Scholar] [CrossRef]
- Uematsu, K.; Minami, Y.; Taira, S.; Katano, H. Promotion and suppression effects of cationic polymer ε-poly-L-lysine on the glucose oxidase reaction with ferrocene derivatives as oxidants with different charges. Anal. Sci. 2014, 30, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.F.; Zhang, X.E.; Liu, H.; Zhang, Z.P.; Zhang, C.G.; Cass, A.E. Construction of a fusion enzyme system by gene splicing as a new molecular recognition element for a sequence biosensor. Bioconjug. Chem. 2001, 12, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-Q.; Zhang, X.-E.; Xie, W.-H.; Zhou, Y.-F.; Zhang, Z.-P.; Cass, A.E.G. Genetic modification of glucose oxidase for improving performance of an amperometric glucose biosensor. Biosens. Bioelectron. 2002, 17, 851–857. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R. Coupling chemical modification and immobilization to improve the catalytic performance of enzymes. Adv. Synth. Catal. 2011, 353, 2216–2238. [Google Scholar] [CrossRef]
- Baslé, E.; Joubert, N.; Pucheault, M. Protein chemical modification on endogenous amino acids. Chem. Biol. 2010, 17, 213–227. [Google Scholar] [CrossRef]
- Davis, B.G. Chemical modification of biocatalysts. Curr. Opin. Biotechnol. 2003, 14, 379–386. [Google Scholar] [CrossRef]
- Liu, D.S.; Tangpeerachaikul, A.; Selvaraj, R.; Taylor, M.T.; Fox, J.M.; Ting, A.Y. Diels–Alder Cycloaddition for fluorophore targeting to specific proteins inside living cells. J. Am. Chem. Soc. 2011, 134, 792–795. [Google Scholar] [CrossRef]
- Chalker, J.M.; Bernardes, G.J.L.; Lin, Y.A.; Davis, B.G. Chemical modification of proteins at cysteine: Opportunities in chemistry and biology. Chem. Asian J. 2009, 4, 630–640. [Google Scholar] [CrossRef]
- Groups, G. Chemical modification of amino groups and guanidino groups of trypsin. Biochem. J. 1975, 147, 71–81. [Google Scholar]
- Li, X.; Zhang, L.; Hall, S.E.; Tam, J.P. A new ligation method for N-terminal tryptophan-containing peptides using the Pictet–Spengler reaction. Tetrahedron Lett. 2000, 41, 4069–4073. [Google Scholar] [CrossRef]
- Dawson, P.E.; Muir, T.W.; Clark-Lewis, I.; Kent, S.B. Synthesis of proteins by native chemical ligation. Science 1994, 266, 776–779. [Google Scholar] [CrossRef] [PubMed]
- Tam, J.P.; Yu, Q.; Miao, Z. Orthogonal ligation strategies for peptide and protein. Biopolymers 1999, 51, 311–332. [Google Scholar] [CrossRef]
- Geoghegan, K.F.; Stroh, J.G. Site-directed conjugation of nonpeptide groups to peptides and proteins via periodate oxidation of a 2-amino alcohol. Application to modification at N-terminal serine. Bioconjug. Chem. 1992, 3, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Ó’Fágáin, C. Enzyme stabilization—recent experimental progress. Enzyme Microb. Technol. 2003, 33, 137–149. [Google Scholar] [CrossRef]
- Palomo, J.M.; Fernández-Lorente, G.; Guisán, J.M.; Fernández-Lafuente, R. Modulation of immobilized lipase enantioselectivity via chemical amination. Adv. Synth. Catal. 2007, 349, 1119–1127. [Google Scholar] [CrossRef]
- Khajeh, K.; Naderi-Manesh, H.; Ranjbar, B.; Moosavi-Movahedi, A.; Nemat-Gorgani, M. Chemical modification of lysine residues in Bacillus a-amylases: effect on activity and stability. Enzyme Microb. Technol. 2001, 28, 543–549. [Google Scholar] [CrossRef]
- Sangeetha, K.; Abraham, T.E. Chemical modification of papain for use in alkaline medium. J. Mol. Catal. B Enzym. 2006, 38, 171–177. [Google Scholar] [CrossRef]
- Fass, D.; Thorpe, C. Chemistry and enzymology of disulfide cross-linking in proteins. Chem. Rev. 2018, 118, 1169–1198. [Google Scholar] [CrossRef] [PubMed]
- Migneault, I.; Dartiguenave, C.; Bertrand, M.J.; Waldron, K.C. Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 2004, 37, 790–802. [Google Scholar] [CrossRef] [PubMed]
- Torchilin, V.P.; Maksimenko, A.V.; Smirnov, V.N.; Berezin, I.V.; Martinek, K. Principles of enzyme stabilization V. The possibility of enzyme selfstabilization under the action of potentially reversible intramolecular cross-linkages of different length. Biochim. Biophys. Acta–Enzymol. 1979, 568, 1–10. [Google Scholar] [CrossRef]
- Reiner, R.; Siebeneick, H.-U.; Christensen, I.; Döring, H. Chemical modification of enzymes II. Conformational stability of cross-linked bovine pancreatic ribonuclease. J. Mol. Catal. 1977, 1, 3–12. [Google Scholar] [CrossRef]
- Herzig, D.J.; Rees, A.W.; Day, R.A. Bifunctional reagents and protein structure determination. The reaction of phenolic disulfonyl chlorides with lysozyme. Biopolymers 1964, 2, 349–360. [Google Scholar] [CrossRef]
- Cowan, D.A.; Fernandez-Lafuente, R. Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb. Technol. 2011, 49, 326–346. [Google Scholar] [CrossRef] [PubMed]
- Torchilin, V.P.; Trubetskoy, V.S. Stabilization of subunit enzymes by intramolecular crosslinking with bifunctional reagents. Ann. N. Y. Acad. Sci. 1984, 434, 27–30. [Google Scholar] [CrossRef]
- Kim, W.; Chae, I.; Park, C.; Lee, K. Stability and activity of cross-linked enzyme crystals of cyclodextrin glucanotransferase isolated from Bacillus macerans. J. Mol. Catal. B Enzym. 2003, 26, 287–292. [Google Scholar] [CrossRef]
- Cui, J.D.; Li, L.L.; Bian, H.J. Immobilization of cross-linked phenylalanine ammonia lyase aggregates in microporous silica gel. PLoS One 2013, 8, e80581. [Google Scholar] [CrossRef]
- López-Serrano, P.; Cao, L.; van Rantwijk, F.; Sheldon, R.A. Cross-linked enzyme aggregates with enhanced activity: Application to lipases. Biotechnol. Lett. 2002, 24, 1379–1383. [Google Scholar] [CrossRef]
- Van Rijn, P. Polymer directed protein assemblies. Polymers 2013, 5, 576–599. [Google Scholar] [CrossRef]
- Romero, O.; Filice, M.; de las Rivas, B.; Carrasco-Lopez, C.; Klett, J.; Morreale, A.; Hermoso, J.A.; Guisan, J.M.; Abian, O.; Palomo, J.M. Semisynthetic peptide–lipase conjugates for improved biotransformations. Chem. Commun. 2012, 48, 9053–9055. [Google Scholar] [CrossRef] [PubMed]
- Bolivar, J.M.; Rocha-Martin, J.; Mateo, C.; Cava, F.; Berenguer, J.; Fernandez-Lafuente, R.; Guisan, J.M. Coating of soluble and immobilized enzymes with ionic polymers: Full stabilization of the quaternary structure of multimeric enzymes. Biomacromolecules 2009, 10, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, K.; Maruyama, T.; Kamiya, N.; Goto, M. Homogeneous enzymatic reactions in ionic liquids with poly(ethylene glycol)-modified subtilisin. Org. Biomol. Chem. 2006, 4, 3462–3467. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.N.; Roy, I. Enzymes in organic media: Forms, functions and applications. Eur. J. Biochem. 2004, 271, 2575–2583. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Nishimura, H.; Yoshimoto, T.; Okada, M.; Ajima, A.; Matsushima, A.; Tamaura, Y.; Saito, Y.; Inada, Y. Polyethylene glycol-modified enzymes trap water on their surface and exert enzymic activity in organic solvents. Biotechnol. Lett. 1984, 6, 765–770. [Google Scholar] [CrossRef]
- Altikatoglu, M.; Basaran, Y.; Arioz, C.; Ogan, A.; Kuzu, H. Glucose oxidase-dextran conjugates with enhanced stabilities against temperature and pH. Appl. Biochem. Biotechnol. 2010, 160, 2187–2197. [Google Scholar] [CrossRef] [PubMed]
- Wollenberger, U.; Schubert, F.; Pfeiffer, D.; Scheller, F.W. Enhancing biosensor performance using multienzyme systems. Trends Biotechnol. 1993, 11, 255–262. [Google Scholar] [CrossRef]
- Muschiol, J.; Peters, C.; Oberleitner, N.; Mihovilovic, M.D.; Bornscheuer, U.T.; Rudroff, F. Cascade catalysis–strategies and challenges en route to preparative synthetic biology. Chem. Commun. 2015, 51, 5798–5811. [Google Scholar] [CrossRef] [PubMed]
- Bongiovanni, C.; Ferri, T.; Poscia, A.; Varalli, M.; Santucci, R.; Desideri, A. An electrochemical multienzymatic biosensor for determination of cholesterol. Bioelectrochemistry 2001, 54, 17–22. [Google Scholar] [CrossRef]
- Fang, Y.; Umasankar, Y.; Ramasamy, R.P. A novel bi-enzyme electrochemical biosensor for selective and sensitive determination of methyl salicylate. Biosens. Bioelectron. 2016, 81, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Mansor, N.N.N.; Leong, T.T.; Safitri, E.; Futra, D.; Ahmad, N.S.; Nasuruddin, D.N.; Itnin, A.; Zaini, I.Z.; Arifin, K.T.; Heng, L.Y.; et al. An amperometric biosensor for the determination of bacterial sepsis biomarker, secretory phospholipase group 2-IIA using a tri-enzyme system. Sensors 2018, 18, 686. [Google Scholar] [CrossRef] [PubMed]
- Bóka, B.; Korózs, M.; Nánási, M.; Adányi, N. Novel Amperometric Tri-enzyme biosensor for lysine determination in pharmaceutical products and food samples. Electroanalysis 2015, 27, 817–824. [Google Scholar] [CrossRef]
- Hamid, J.A.; Moody, G.J.; Thomas, J.D.R. Flow-through multi-enzyme electrodes for the determination of lactose. Analyst 1989, 114, 1587–1592. [Google Scholar] [CrossRef]
Substrates | Immobilized Enzymes | Immobilization Methods | Ref. |
---|---|---|---|
Urea | Urease | Cross-linking (GTA (4)) | [55] |
Creatinine | Creatinine deiminase | Adsorption | [56] |
l-asparagine | l-asparaginase | Cross-linking (GTA) | [57] |
Glucose | GOx (1) | Covalent bonding (EDC (5)-NHS (6)) | [58] |
Lactose | GOx, β-galactosidase | Cross-linking (GTA) | [59] |
Hydrogen peroxide | Peroxidase | Cross-linking (GTA) | [60] |
d-amino acids | d-amino acid oxidase | Cross-linking (GTA) Covalent bonding (Hydrazine) | [52] |
Organophosphates | AChE (2), BChE (3) | Cross-linking (GTA) | [61,62] |
Acetylcholine | AChE | Cross-linking (GTA) | [63,64] |
Butyrylcholine | BChE | Cross-linking (GTA) | [63,64] |
Heavy metal ions | Urease | Cross-linking (GTA) | [65] |
Uric acid | Uricase | – | [66] |
Formaldehyde | Alcohol oxidase | Cross-linking (GTA) | [67] |
Triazine herbicides | Tyrosinase | Cross-linking (GTA) | [68] |
Carbamate pesticides | AChE | Cross-linking (GTA) | [69] |
Analytes | Immobilized Enzymes | Immobilization Methods | LOD (8) | Ref. |
---|---|---|---|---|
H2O2 | CAT (1) | Adsorption | 0.025 nM | [73] |
Glucose | GOx (2) | Covalent bonding (EDC (4)-NHS (5)) | 15.6 µM | [70] |
GOx | Adsorption | 1 mM | [74] | |
Glutamate | GLOD (3) | Cross-linking (GTA (6)) | 20 µM | [75] |
Alcohol | Alcohol oxidase | Electrochemical polymerization (aniline) | – | [76] |
Cyanide | Glycerol catalase | Photopolymerization (PVA-SbQ (7)) | 4 µM | [77] |
Urea | Urease | Covalent bonding (Eudragit S-100, carbodiimide) | 0.02 M | [78] |
Diazinon | Lipase | Cross linking (GTA) | 10 nM | [71] |
Trichlorfon | Butyrylcholinesterase | Adsorption | 0.1 ppm | [79] |
Enzymes | Reactants | −ΔH (kJ·mol−1) |
---|---|---|
NADH dehydrogenase | NADH | 225 |
β-Lactamase | Penicillin G | 115 |
Catalase | Hydrogen peroxide | 100 |
Glucose oxidase | Glucose | 80–100 |
Hexokinase | Glucose | 75 |
Lactate dehydrogenase | Sodium pyruvate | 62 |
Urease | Urea | 61 |
Cholesterol oxidase | Cholesterol | 53 |
Uricase | Urate | 49 |
Trypsin | Benzoyl-l-arginine amide | 29 |
Analytes | Immobilized Enzymes | Immobilization Methods | Detection Range/LOD | Ref. |
---|---|---|---|---|
Acetylcholine | HRP (1), choline OD, AChE (2) | Covalent bonding (DSP (7), GTA) | 1 × 10−5 M | [128] |
Carbaryl | AChE, ChE (3) | Adsorption, Covalent bonding (Cystamine, GTA (8)) | 1.0 × 10−7 M | [127] |
Dichlorvos | Adsorption | 1 ppm | [129] | |
Paroxon | AChE | Adsorption, Covalent bonding (Cystamine, GTA) | 5.0 × 10−8 M | [127] |
Hydrogen peroxide | HRP or HRP/GOx (4) | Covalent bonding (Cystamine, GTA) | 0.13–80 µmol·L−1 | [130] |
Glucose | 0.08–10 µmol·L−1 | |||
Cholesterol | Cease (5), Cox (6), HRP | – | 3 × 10−4 M | [131] |
Urea | Urease | Adsorption, Cross linking (GTA) | 0.2 mM | [125] |
Gluconic acid | GOx | Adsorption | 1.4–14.0 mM | [126] |
Dimethyl methylphosphonate | AChE | Cross linking (GTA) | 0–50 mg·m−3 | [132] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized Enzymes in Biosensor Applications. Materials 2019, 12, 121. https://doi.org/10.3390/ma12010121
Nguyen HH, Lee SH, Lee UJ, Fermin CD, Kim M. Immobilized Enzymes in Biosensor Applications. Materials. 2019; 12(1):121. https://doi.org/10.3390/ma12010121
Chicago/Turabian StyleNguyen, Hoang Hiep, Sun Hyeok Lee, Ui Jin Lee, Cesar D. Fermin, and Moonil Kim. 2019. "Immobilized Enzymes in Biosensor Applications" Materials 12, no. 1: 121. https://doi.org/10.3390/ma12010121
APA StyleNguyen, H. H., Lee, S. H., Lee, U. J., Fermin, C. D., & Kim, M. (2019). Immobilized Enzymes in Biosensor Applications. Materials, 12(1), 121. https://doi.org/10.3390/ma12010121