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Abstract: The carbonation rate of reinforced concrete is influenced by three parameters, namely
temperature, relative humidity, and concentration of carbon dioxide (CO2) in the surroundings.
As knowledge of the service lifespan of reinforced concrete is crucial in terms of corrosion,
the carbonation process is important to study, and high-performance durable reinforced concretes
can be produced to prolong the effects of corrosion. To examine carbonation resistance, accelerated
carbonation testing was conducted in accordance with the standards of BS 1881-210:2013. In this study,
10–30% of micro palm oil fuel ash (mPOFA) and 0.5–1.5% of nano-POFA (nPOFA) were incorporated
into concrete mixtures to determine the optimum amount for achieving the highest carbonation
resistance after 28 days water curing and accelerated CO2 conditions up to 70 days of exposure.
The effect of carbonation on concrete specimens with the inclusion of mPOFA and nPOFA was
investigated. The carbonation depth was identified by phenolphthalein solution. The highest
carbonation resistance of concrete was found after the inclusion of 10% mPOFA and 0.5% nPOFA,
while the lowest carbonation resistance was found after the inclusion of 30% mPOFA and 1.5% nPOFA.

Keywords: carbonation depth; concrete; microstructure; morphology; palm oil fuel ash; sorptivity

1. Introduction

Durability of concrete is a major concern when exposed to aggressive environments, especially
chloride and carbon dioxide (CO2) causing chlorination and carbonation, respectively. These ions
induce the corrosion of embedded steel rebars [1]. Once the steel rebar starts to corrode, the corrosion
products induce internal expansion, resulting in cracks and spalling, which leads to the failure of
concrete structures [2].
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Chlorination can also affect the durability of concrete more often than carbonation [3]. However,
the increase of urban population density and industrialization as well as more technologies have led to
higher emission of carbon, which dramatically increases the concentration of CO2 in the atmosphere.

The theory of carbonation is a complex process. Carbonation occurs once calcium carbonate
(CaCO3) forms [4]. Generally, the formation of CaCO3 occurs when calcium hydroxide (Ca(OH)2)
encounters atmospheric CO2 in the presence of water [5]. Ca(OH)2 is an alkaline substance, which
is consumed during carbonation process; thereafter the concrete becomes more acidic, causing a
reduction in the pH of the pore solution and successfully breaking down all other hydrate phases [6].
Thus, the final products become a mixture of carbonates with silicate, ferrite and aluminum-hydroxide
phases. In other words, the chemistry of carbonation is always the same; however, the penetration
difficulties into the concrete vary in different concrete mixtures.

The carbonation process begins when CO2 from the atmosphere diffuses into concrete.
The gaseous CO2 cannot directly react with the hydrates of cement paste. However, it dissolves
in water (H2O) and forms bicarbonate (HCO3

−) ions (Equation (1)) and thereafter reacts with calcium
ions (Ca2+) of the pore water [6]. However, since the pH value inside the concrete is high, the HCO3

−

will dissociate and form carbonate (CO3
2−) ions (Equation (2)). Lastly, the carbonate ions will react

with the Ca2+ ions in the pore solution and form CaCO3 in Equation (3) [7]. The carbonation process is
described by the following chemical equations [8]:

CO2(g) + H2O→ HCO−3 (bicarbonate ion) + H+ (1)

HCO−3 + H2O→ CO2−
3 + H3O+ (2)

H2CO3 + Ca(OH)2 → CaCO3 + 2H2O (3)

There are three different factors affecting the carbonation process, namely the temperature, relative
humidity, and concentration of CO2 present in the surroundings [7]. When the temperature increases,
the diffusivity of CO2 into concrete is amplified due to the increase of molecular activity [9]. Secondly,
the relative humidity acts as the major role in determining the diffusivity of CO2. The highest rate of
carbonation happens at the relative humidity of 50–70% [10]. The carbonation process generally occurs
in the presence of water. However, if it is too wet, water acts as the obstruction for penetration of
CO2, which in turn decreases the rate of the carbonation process. Lastly, the CO2 concentration in the
environment is certainly the main factor controlling the carbonation process. If the atmosphere has
high concentration of CO2, this can induce the carbonation process [11]. In the diffusion process of
carbonation, CO2 flows from higher concentration to lower concentration. Therefore, the rate of
diffusivity depends on the level of concentration. However, different surface-repairing materials are
becoming prominent to reduce the carbonation effect on concrete [12,13]; but there are some issues
related to post-treatment regarding cost, durability, and practical application.

Blended cement has now become very popular, owing to better performance in terms of
mechanical properties as well as carbonation resistance when compared with ordinary Portland
cement (OPC) [14,15]. As a result, the trend of using pozzolanic materials as partial replacement of
cement is expanding [16].

The three largest producers of palm oil fuel ash (POFA) are Indonesia, Malaysia, and Thailand.
In 1960, palm oil cultivation was limited to 54,000 hectares in Malaysia; however, it has substantially
increased to 4.85 million hectares in 2010 and 5.39 million hectares in 2014. Moreover, in Indonesia,
palm oil cultivation was 6.5 million hectares in 2012. Palm oil cultivation produces large portions of
biomass waste such as fronds, effluent, leaves, trunks, kernel shell, mesocarp fiber, and empty fruit
branches after the harvesting of fruits, and processing and re-plantation of palm trees [16]. These huge
portions of biomass are burnt at 800–1000 ◦C in an industry to generate electricity [16]. The end
product of this burning process is known as POFA, which is normally thrown into the landfill causing
an environmental impact. Moreover, when wind is blown through the landfill, it could cause health
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hazards, as it is toxic to breathe [17]. Due to the high production of POFA, it is a severe risk to
health conditions and environmental damage. The situation will be worse as it is forecast that the
generation of POFA will tend to increase in the future. Therefore, reusing POFA from landfill is good
opportunity for reducing environmental and health effects and at the same time achieving better
performance of concrete.

Raw POFA has zero cost and the treating process requires only a few devices such as an oven,
grinder and ball mill, and thus it is not expensive. This is helping the environment, because all
unused raw POFA will be thrown into landfill, causing pollution. As a result, reusing POFA can
save the environment. The cost can also be reduced by using POFA instead of cement. Cement is
more expensive than POFA. Therefore, replacing cement with POFA can make concrete production
cost-effective in addition to reducing the environmental load.

POFA has very good potential for improving concrete’s properties due to its chemical composition,
such as calcium and silicon oxides present inside [18]. Thus, POFA is proven to be the emerging waste
material for improving the durability of concrete, owing to the formation of secondary calcium
silicate hydrate (C-S-H) gel through a pozzolanic reaction, which is caused by silica [19]. A certain
amount of micro POFA (mPOFA) enhances the durability of concrete, which is 10–30% in replacement
of OPC [20–23]. POFA shows a lower strength activity index at an early stage of curing, but it exhibits
improved values at a later stage [24]. It is used in the production of high-strength concrete by reducing
the average size to around 10 µm with a 0–30% replacement of OPC [22,25,26]. At the age of 28
days, the highest compressive strength was found with 20% replacement of OPC by POFA [22,25].
The inclusion of ultrafine POFA reduces the early-stage compressive strength up to 7 days and it was
particularly observed for a higher amount of POFA [27]. It was also seen that if mPOFA is converted
into nano-POFA (nPOFA) and included together to produce concrete, the result had a positive influence
in filling out the porosity of concrete and enhancing the compressive strength [28].

According to Thomas et al. [16], POFA has been proven to bring benefits to carbonation resistance
by using micro sizes of POFA. There is a high possibility of using nano-size POFA to achieve higher
carbonation resistance of concrete, compared to micro POFA [29]. Therefore, this study tried to use
POFA as a supplementary cementitious material for concrete. Islam et al. found that using 30% mPOFA
exhibited better performance, but once the amount increased, it showed detrimental effects to the
concrete [18]. Furthermore, it was found that using a little amount of nPOFA can replace a huge
amount of mPOFA [30]. Therefore, in the present study, the concrete mixtures containing a low amount
of nPOFA along with mPOFA were prepared and their synergistic effects on carbonation resistance
under accelerated conditions were measured.

In the present study, the amount of POFA has been optimized for high resistance to carbonation.
This study emphasizes the assessment of the carbonation resistance properties of concrete by
incorporating micro and nano-POFA. The accelerated carbonation experiment was performed
according to BS 1881-2010:2013 in 4.0% (±0.5%) CO2 at 20 ◦C (±5 ◦C) temperature and 55% (±5%)
relative humidity [31]. In this standard method, there is a tolerance value for both temperature and
relative humidity of±5 ◦C and±5%, respectively. This would not have any effect on the acceleration of
carbonation if the temperature is around room temperature and relative humidity is within 50–70% [7].
Under these circumstances, a maximized effect would be gained in this research.

2. Materials and Methods

2.1. Materials

2.1.1. Binders

Two types of binder, known as OPC and POFA, were used in the present study. The chemical
composition of binders will be discussed in the Test Results and Discussion section.
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The raw POFA was obtained from a palm oil mill at Miri, Sarawak, Malaysia, and the details
about the procedure to obtain POFA are described in a recently published work [32]. The raw POFA
was dried in an oven at 105 ± 5 ◦C for 24 h to remove the moisture. After drying, POFA was sieved
through a 150 µm mesh to remove 15–22% of the coarser particles. The coarser particles include
unwanted waste, such as dry branches, dry leaves, tiny pieces of palm oil shell, etc. The sieved POFA
then went through the grinding process to ensure 90% passes through 45-µm size. Thereafter, the fine
POFA powder was heated up to 500 ◦C for 1 h in a furnace. After trial and error, it was found that
500 ◦C was the optimum temperature which successfully removed the unburnt carbon from POFA.
Several authors, such as Al-Mulali et. al. [33], Zeyad et. al. [34], and Chandara et al. [35] have also
found similar results. At this stage, POFA had turned from black to brownish color [28]; this form of
POFA is known as the treated mPOFA. The color had changed due to the removal of excessive carbon
from POFA during the heating process. Next, the mPOFA was subjected to further grinding by using
a high-energy ball mill, as shown in Figure 1, to obtain treated nPOFA [36]. The specific gravity of
mPOFA and nPOFA used in this research was 2.63 and 4.65, respectively.
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2.1.2. High-Energy Ball Mill

A high-energy ball mill (Model 3 VS, Capco Test Equipment Company, Suffolk, UK) was used to
grind the mPOFA into nPOFA [37]. A similar ball mill was used by Rizlan and Mamat [38] to produce
nano-size particles. The volume of the ceramic jar was 0.032 m3 and the total weight of the stainless steel
balls was 30 kg. Three different diameters of stainless steel ball i.e., 12.7 mm, 19.0 mm and 25.4 mm
with 9.0 kg, 9.0 kg and 25.4 kg weight, respectively, were used to grind the mPOFA. An mPOFA
amount of 1.8 kg was loaded into the ball mill, placing it on top of the stainless steel balls and the
grinding operation was performed for 5 h to obtain 1.5 kg nPOFA. The mass loss of 0.3 kg might be
attributed to flying of some fine particles of nPOFA which is very light in weight.

2.1.3. Aggregates

The standards used for analyzing the aggregates were ACI 211-4R [39] and ASTM C33-16 [40].
The ACI 211-4R was used to obtain the density of coarse aggregates and ASTM C33-16 was used to
check the grading requirement of coarse aggregates. The coarse aggregates used in this research
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were crushed granite from a local source with nominal size range from 9.5 mm to 12.5 mm.
The fineness modulus, specific gravity, and water absorption of the coarse aggregates were 2.3, 2.71,
and 0.5%, respectively.

There were two elements used as fine aggregates, known as river sand and quarry dust. River
sand was obtained from a local source of Sarawak, Malaysia. The quarry dust was incorporated into
the concrete mixture due to the low fineness modulus of river sand. The fineness modulus [0.99] of
river sand obtained in Miri, Sarawak, Malaysia itself did not meet the requirements in accordance with
the standards; hence, quarry dust was required to be mixed with sand. The amount of river sand used
was 50% and that of quarry dust was 50%. The size of the sand was smaller than 4.5 mm while the
size of the quarry dust was between 4.5 mm and 9.5 mm. The fineness modulus of the combined fine
aggregates (river sand plus quarry dust) was 2.67.

2.1.4. Superplasticizer

A polycarboxylate ether was used as superplasticizer (SP) in this study. It met the requirements of
ASTM C494-16 [41]. The selected SP was able to work for the concrete mixtures with low-cement ratio
while obtaining extended slump retention.

2.2. Concrete Mix Proportions and Specimens Preparation

The mixture proportions of different concretes were derived based on ACI 211-4R [39]. The cement
content, water/binder ratio, density of coarse aggregates, density of combined fine aggregates
(sand and quarry dust), and SP dosages was 588 kg/m3, 0.35, 1093 kg/m3, 268 kg/m3 and 0.2%
by weight of binder, respectively. The binder proportions and the weights of different constituent
materials are shown in Tables 1 and 2, respectively. The concrete specimens were prepared in triplicate
for each mixture. The dimensions of concrete specimens used for carbonation resistance test were
280 mm × 70 mm × 70 mm. In the case of sorption test, 100 mm diameter × 50 mm height cylinders
were used. These concrete specimens were cast by using prism and cylinder mold, respectively.

Table 1. Binder composition of different concretes.

Mixture OPC mPOFA nPOFA Mixture OPC mPOFA nPOFA

M0 100% 0% 0% M20N2 79.0% 20% 1.0%
M10N1 89.5% 10% 0.5% M30N2 69.0% 30% 1.0%
M20N1 79.5% 20% 0.5% M10N3 88.5% 10% 1.5%
M30N1 69.5% 30% 0.5% M20N3 78.5% 20% 1.5%
M10N2 89.0% 10% 1.0% M30N3 68.5% 30% 1.5%

Table 2. Batch weights (kg) of different constituent materials in various concretes (Batch volume =
0.001373 m3)

Mixture Cement
POFA Coarse

Aggregates
Quarry

Dust
Sand

Water
SP Dosage

(0.2% of Binder *)Micro Nano Wet Dry

M0 2.9 0 0 5.40 1.33 0.266 1.06 0.90 0.0058
M10N1 2.6 0.288 0.0144 5.40 1.33 0.266 1.06 0.90 0.0058
M20N1 2.31 0.58 0.0144 5.40 1.33 0.266 1.06 0.90 0.0058
M30N1 2.02 0.871 0.0144 5.40 1.33 0.266 1.06 0.90 0.0058
M10N2 2.58 0.288 0.0288 5.40 1.33 0.266 1.06 0.90 0.0058
M20N2 2.3 0.58 0.0288 5.40 1.33 0.266 1.06 0.90 0.0058
M30N2 2 0.871 0.0288 5.40 1.33 0.266 1.06 0.90 0.0058
M10N3 2.57 0.288 0.0432 5.40 1.33 0.266 1.06 0.90 0.0058
M20N3 2.28 0.58 0.0432 5.40 1.33 0.266 1.06 0.90 0.0058
M30N3 1.99 0.871 0.0432 5.40 1.33 0.266 1.06 0.90 0.0058

* Binder: Cement plus POFA.
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Mixing of the concrete was carried out by a pan mixer. The pouring of the concrete into the mold
was done in three layers; compaction was done after every layer filled. The specimens were demolded
after 24 h of casting and transferred to water curing at 20 ± 2 ◦C for 28 days.

2.3. Testing Procedures

2.3.1. X-ray Fluorescence (XRF)

The XRF (Rigaku ZSX Primus IV, Tokyo, Japan) was used to determine the chemical
compositions of OPC and POFA. For this, OPC, mPOFA and nPOFA were prepared and stored
in the sealed plastic bag with 150 g of each sample.

2.3.2. X-ray Diffraction (XRD)

The acquired POFA from Miri, Sarawak, Malaysia was subjected to XRD (Bruker AXS, Billerica,
Germany) analysis to determine its phase composition. Prior to analysis, the samples were prepared in
powder form. To collect the XRD spectrum, Cu Kα radiation (λ = 1.54059 Å) generated at 40 kV and 40
mA was used. The 2θ scan range was 20–70◦. The step size was 0.015. The database of Joint Committee
on Powder Diffraction Standards (JCPDS) was used to ascertain the phase composition of POFA.

2.3.3. Scanning Electron Microscopy (SEM)

The determination of morphology of POFA was carried out by SEM (Philips XL 30, North Billerica,
MA, USA) and operated at 15 kV. Prior to perform the SEM experiment, the specimens were mounted
into the aluminum stubs. The purpose of mounting was to stabilize the sample for viewing and
maneuvering in the SEM chamber. Next, the gold splutter coater was used to coat the mounted
specimens. Lastly, the coated specimens were placed inside the SEM instrument. The particle size
calculation was carried out by ImageJ software (version Java 1.8.0_172).

2.3.4. Slump Test

The slump test was carried out according to ASTM C143 standards [42] to determine the
workability of concrete mixtures.

2.3.5. Carbonation Experiment: Accelerated Method

The size of concrete specimens used for the accelerated carbonation testing was 280 mm × 70 mm
× 70 mm. Accelerated carbonation testing was carried out to determine the carbonation depth in
accordance to BS 1881-210:2013 [31]. The concrete specimens were cast and placed inside the water
curing room for 28 days. There were 10 mixtures with 3 specimens each. The total number of specimens
tested was 30. Once the concrete specimens were cast and cured, paraffin wax was required to seal the
top and bottom longitudinal faces and the two end faces of prism. This was to avoid multi directional
penetration of CO2.

The accelerated carbonation experiment was performed in 4.0± 0.5% CO2, 20± 5 ◦C temperature
and 55 ± 5% relative humidity in accordance with BS 1881-210:2013 [31].

Generally, the CO2 concentration in the atmosphere was estimated to be 0.2% while in urban
or industrial areas, the CO2 may rise to 0.4% [43]. Since the carbonation chamber used 4.0% CO2,
it is almost 10 times higher compared with natural process. This concluded that using 4.0% CO2 can
accelerate the carbonation process.

The concrete specimens were placed inside the carbonation chamber for up to 70 days.
The carbonation chamber was fabricated by Johndec Centigrade Company in Perth, Australia
with acrylic box. The carbonation depth measurement was carried out after 56, 63 and 70 days.
The measurement of carbonation depth before 56 days was not recorded, as the carbonation depth was
too small to be seen. The overview for the set-up of carbonation chamber is shown in Figure 2.
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The phenolphthalein solution was used to determine the carbonation depth of concrete.
The solution was produced by using 1 g of phenolphthalein powder dissolved in a 100 mL solution of
30 mL deionized water and 70 mL of ethanol solution. After spraying on the concrete specimen,
the carbonated area was colorless while the uncarbonated area changed to purple color.
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The concrete specimens used for sorptivity experiment were 100 mm diameter × 50 mm height
cylinders. Triplicate specimens were used for each of 10 concrete mixtures; therefore, a total of
30 specimens were tested. The sorptivity test was carried out in accordance with the ASTM C1585-13
standards [44]. This test method is to determine the rate of absorption of water. Specimens were placed
inside the water curing room for 28 days. After the curing process, the side surface of the specimens
was sealed with plastic sheet. The test set-up is shown in Figure 3. The purpose of this testing was to
measure the water absorptivity of concrete. This can show the penetrability of concrete to relate it to
the penetration of CO2. The sorptivity measurement of the specimens with different time intervals and
tolerance is shown in Table 3.
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3. Test Results and Discussion

3.1. Characterization of POFA

3.1.1. X-ray Fluorescence

The chemical compositions of OPC and POFA are presented in Table 4. The major chemical
components of OPC are CaO and SiO2 while POFA contains SiO2 along with high SiO2 + Al2O3 +
Fe2O3. The presence of high content of SiO2 in POFA indicates that it is a pozzolanic material. Table 4
also shows the loss on ignition (LOI) for both OPC and POFA. The high LOI in raw POFA is attributed to
the presence of organic component but once it was treated, the amount of organic material decreased
dramatically. Hence, the LOI values are significantly lower for mPOFA and nPOFA. From Table 4,
it can be seen that the LOI is decreased from 10.5% for raw POFA to 1.71% and 1.60% for mPOFA
and nPOFA, respectively. The lower LOI values emphasize that the quality of treated POFA improves
compared with raw POFA. After the treatment of raw POFA, the LOI is reduced by 28.75% and 33.33%
for mPOFA and nPOFA, respectively. Such quality improvement of POFA may increase its potential to
enhance the properties of concrete.

Table 4. Chemical compositions of OPC and POFA.

Chemical Composition (%) OPC Raw POFA mPOFA nPOFA

SiO2 16.40 59.1 69.19 68.07
Al2O3 4.24 4.5 3.34 3.71
Fe2O3 3.53 6.5 3.19 3.24
CaO 68.30 8.6 6.70 7.41
MgO 2.39 2.6 4.65 5.10
SO3 4.39 2.7 0.605 0.626

SiO2 + Al2O3 + Fe2O3 24.17 70.1 75.19 75.02
LOI 2.40 10.5 1.71 1.60

3.1.2. X-Ray Diffraction

The XRD of mPOFA and nPOFA are presented in Figure 4. Figure 4a shows the full range of
scanning from 2θ = 20–70◦ where small peaks were suppressed due to high intensity of Quartz.
Therefore, to make it clear, it has been plotted using 2θ = 45–70◦ in Figure 4b. There are some
broadening in peaks and appearance of hump which suggest that POFA has certain amorphous
phases (Figure 4b). From Figure 4, it can be seen that mPOFA and nPOFA contain Quartz (JCPDS
= 88-2487), Cristobalite (JCPDS = 82-1410), and amorphous silica (JCPDS = 89-1665) which agree
with other researchers’ work [24,28,32,45–47]. As the temperature was increased while treating raw
POFA, the amorphous silica transformed into the crystalline phase. However, 500 ◦C temperature with
1 h of heating time was not sufficient to transform all amorphous silica into crystalline phase in the
present study. Therefore, amorphous silica phase is observed at 2θ = 50–70◦. There is a chance that this
amorphous phase of silica might react with Ca(OH)2 liberated from cement hydration in concrete to
form secondary C-S-H.

The crystallite size (L) of different mineral phases was calculated by the Scherrer equation as
shown below.

L =
Kλ

β× cos θ
(4)

where λ is the X-ray wavelength in nanometer (nm), β is the peak width of the diffraction peak profile
at maximum height from small crystallite size in radians and K is a constant related to crystallite shape
taken as 0.9.

The crystallite size of Quartz was 68.75 nm in nPOFA whereas it was 79.1 nm in mPOFA.
The crystallite size of Cristobalite was 91.7 nm and 93.8 nm in nPOFA and mPOFA, respectively.
On the other hand, the crystallite size of amorphous silica was found to be 77.10 nm in nPOFA whereas
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it was 80.9 nm in mPOFA. These results suggest that the crystallite/grain size of nPOFA is lower than
that of mPOFA.Materials 2018, 11, x FOR PEER REVIEW  9 of 20 
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Figure 4. XRD of micro- and nano-POFA at 2θ = 20–70◦ (a) and 2θ = 45–70◦ (b).

3.1.3. Scanning Electron Microscope

The surface morphology of mPOFA and nPOFA particles are shown in Figure 5. Figure 5a
shows that the mPOFA had crushed or irregularly shaped particles and found to be bigger in size
compared with nPOFA. Figure 5b demonstrates that the particles of nPOFA were finer and more
crushed. The nano particle size is in between 33.50 nm and 58.10 nm. The advantage of the smaller
and irregular particle size is that it can improve the properties of the concrete due to the greater filling
ability. However, to confirm the particle size of nPOFA, it was also characterized by transmission
electron microscopy (TEM, JEOL-1230, Tokyo, Japan) and the results are shown in Figure 6. This figure
also shows that the average particle size of nPOFA is around 38–52 nm at different locations [28].
The particle sizes of raw POFA and mPOFA are greater and beyond the limit of TEM. Therefore,
it was not possible to perform this experiment for them.
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3.2. Workability of Concretes

The workability of different concrete mixtures in terms of slump measurement is shown in
Table 5 along with their slump loss value. The loss of slump was calculated with respect to OPC
concrete (M0). From Table 5, it is evident that using both mPOFA and nPOFA increased the
workability of concretes, especially M10N1 (slump loss = 15 mm), M10N2 (slump loss = 0 mm)
and M10N3 (slump loss = −5 mm). The slump loss value in most of the mixtures was higher while
M10N3 showed no slump loss. M10N1 showed only 10.7% slump loss, which means the workability of
it was almost identical with that of OPC concrete. It was reported that the fine particles of treated POFA
are adsorbed on the oppositely charged surface of cement particles which then prevent them from
flocculation [48]. As a result, this would cause the cement particles to be more dispersed and, therefore,
would not trap a large amount of water. In the present study, M10N2 and M10N3 contained higher
amount of nPOFA which is smaller in particle size compared to mPOFA and OPC. Test results revealed
that using nPOFA instead of a higher amount of mPOFA had increased the workability of concretes,
as in the case of M10N3. Thus, the introduction of nPOFA reduces the negative impact of mPOFA on
concrete workability. However, it has been reported that once the content of POFA is greatly increased,
more than 20%, the slump value decreases, that is, the workability of concrete decreases [21,26,49–52].
This is in good agreement with the present study where a high amount (20–30%) of mPOFA decreased
the workability of concrete. This is due to the higher amount of unburnt carbon which absorbs more
SP than other particles [27,53].
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Table 5. Slump test results.

Mixture Slump Value (mm) Slump Loss (mm) Mixture Slump Value (mm) Slump Loss (mm)

M0 140 0 M20N2 65 75
M10N1 125 15 M30N2 45 95
M20N1 50 90 M10N3 145 −5
M30N1 40 100 M20N3 80 60
M10N2 140 0 M30N3 65 75

3.3. Microstructure of Concretes

There is obvious densification of concrete when incorporating mPOFA and nPOFA as shown
in Figure 7. Evidently, in Figure 7a (M0, without POFA), it was hard to find C-S-H particles, while
in Figure 7b–d, they are seen and marked by a circle. The other representative figures of different
mixtures are shown in Figure 8. The hexagonal plate of Ca(OH)2 (CH, portlandite) can be seen inside
the concrete pores and matrix (Figures 7a and 8a) when no POFA is used. This is due to the hydration of
tricalcium silicate (C3S) and dicalcium silicate (C2S) [54], which create CH after reacting with water.
There is not enough SiO2 inside M0 (Figures 7a and 8a) mixture that can consume CH to produce
additional C-S-H.Materials 2018, 11, x FOR PEER REVIEW  13 of 20 
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Figure 7. Microstructure of M0 (a), M10N3 (b), M30N1 (c), M30N3 (d) and M10N1 (e) after 28 days
of curing.



Materials 2019, 12, 130 13 of 19

POFA has been used with OPC in M10N1, M10N3, M30N1, and M30N3 concrete mixtures
whose SEM images are shown in Figure 7b–e. These figures show that the aforementioned concrete
mixtures had more C-S-H gel due to a higher amount of CaO and SiO2. The floc and fibrous C-S-H
phases filled the pores of the concrete when a greater amount of POFA was incorporated, as obvious
from Figures 7 and 8. This concludes that POFA improves the concrete’s microstructure. Moreover,
the comparison of Figure 7c (M30N1) and Figure 7d (M30N3) reveals that the microstructure of
concrete including a higher amount of nPOFA had pores with smaller average size [36]. Furthermore,
Rajak et al. [29] have stated that nPOFA has higher specific surface area (145.35 m2/g) compared
with mPOFA; hence, the hypothesis given in this study correlates with their work and suggests that
increased surface area induces the precipitation of hydration products [29].
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Figure 8. Microstructure of M0 (a) M10N3 (b) M30N1 (c) and M30N3 (d) after 28 days of curing.

In concrete mixtures, both mPOFA and nPOFA acted as nucleation sites and accelerated the
precipitation of hydration products such as C-S-H gel in the cementitious matrix [16]. OPC has a
high amount of calcium ions, while POFA has a high amount of silicon ions (Table 4). To balance the
amount of calcium and silicon ions to develop early and late strength of concrete, it is required to use
both OPC and POFA. Therefore, it is not suitable to use only OPC or a very high amount POFA with
OPC, as there will not be high formation of C-S-H gel. Incorporating both OPC and POFA together at
optimum proportions can produce high amount of C-S-H gel in nano sizes [18]. Higher formation of
C-S-H gel can create highly compact and dense cementitious matrix. The mPOFA is small enough to
fill the pores created by OPC and nPOFA can fill the pores created by mPOFA. M10N1 concrete mixture
(Figure 7e) shows the highest densification in microstructure compared with other concretes. Thus,
it might have the highest carbonation resistance and the lowest water sorption. Further explanations
are given in Sections 3.4 and 3.5.
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The sizes of different crystals present in various concrete mixtures were calculated from Figure 7
and the results are shown in Table 6. From this table, M0 exhibits only CH crystals with 560 nm size
while M30N3 does not contain CH crystals but it has C-S-H crystals with 144 nm size resulting from
pozzolanic reaction. Moreover, Table 6 shows that the size of CH crystal decreases when POFA is
incorporated in the concrete mixture. M30N1 and M10N1 contains 600 nm and 216 nm size CH crystals
and 192 nm and 167 nm size C-S-H crystals, respectively. M10N3 contains three types of crystals such
as CH, C-S-H and ettringite with 249.6 nm, 128 nm, and 219.2 nm size, respectively. The C-S-H is
found to be in all 28 days old POFA concretes which fills the pores in the matrix and thus improves the
quality of concrete by greater micro-filling ability.

Table 6. Average size (nm) of crystals present in different mixtures.

Mixture
Crystal Size (nm)

CH C-S-H Ettringite

M0 560 - -
M10N3 249.6 128 219.2
M30N1 600 192 -
M30N3 - 144 -
M10N1 216 167 -

3.4. Carbonation Depth

Concrete specimens were removed from the carbonation chamber and placed onto the wet cutting
machine. The concrete specimens were sliced 50 mm thick after each exposure period. Phenolphthalein
solution was then sprayed onto the sliced surface to identify the carbonated and uncarbonated areas.
The Vernier caliper was used to measure the depth of the carbonated area.

Figure 9 shows the result of carbonation depth with error bars for different mixtures in accelerated
carbonation processes for 56, 63, and 70 days of exposure. The carbonation depth measurement
before 56 d was not carried out because these values are too small to be seen for 5 mixtures as shown
in Figure 9. However, the difference in carbonation depth can be observed after 56 d of exposure
owing to the microstructural modification and chemical reaction of concrete in accelerated condition.
The maximum error is found to be 5–10%. The carbonation resistance is heavily dependent on the
compactness and densification of concrete, which might be influenced by the type of POFA used.
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The incorporation of POFA into the concretes can influence the carbonation properties. Higher
compactness and densification of concrete will lead to difficulty in penetration of CO2 into the concrete,
thus, higher carbonation resistance can be found. However, not all mixtures have positive influence
on carbonation resistance. M10N1 has the most positive effect on carbonation resistance among all
concrete mixtures. Moreover, the carbonation effect tends to increase with exposure periods [27].
Therefore, the largest carbonation depth for most concretes was observed at the age of 70 days.

The presence of POFA significantly influenced the carbonation resistance of concrete. In general,
the lowest and highest resistance to carbonation was observed for M30N3 (contained 30% mPOFA
with 1.5% nPOFA) and M10N1 (contained 10% mPOFA with 0.5% nPOFA), respectively (Figure 9).
M10N1 has higher carbonation resistance than M0 (contained 100% OPC). At 70 days of exposure,
M10N1 has 1 mm of carbonation depth while M0 has 2 mm of carbonation depth. This indicates
that replacing OPC with POFA increases the carbonation resistance. On the other hand, replacing
too much OPC by POFA decreases the carbonation resistance. M30N3 has 14 mm of carbonation
depth at the age of 70 days, which shows that it has weak carbonation resistance. POFA has a slower
activity reaction compared with OPC. Hence, when a very high amount of POFA is incorporated in
concrete, it requires a longer time to develop a better resistance [46]. Also, a lower amount of primary
C-S-H, which contributes to pore filling, results from cement hydration when the amount of OPC is
significantly reduced. It is therefore suggested that a higher amount of POFA to replace OPC is not
good for carbonation resistance. The optimum amount of POFA found in this study is 10% mPOFA
with 0.5% nPOFA for better carbonation resistance.

The negative impact of a relatively high amount of mPOFA on the carbonation resistance of
concrete can be compensated by using nPOFA. The comparison of M10N1 with M30N1 and M10N3
shows that a higher amount of mPOFA produces lower carbonation resistance compared with higher
nPOFA. When the amount of mPOFA was increased from 10% to 30%, the carbonation depth extended
from 1 mm to 11 mm while increasing nPOFA from 0.5% to 1.5% increased the carbonation depth from
1 mm to only 3 mm. These results suggested that nano-sized POFA has a better ability to resist the
penetration of CO2 into concrete than micro-sized POFA. Nano-sized POFA has a better micro-filling
ability to reduce porosity causing difficulties to penetrate CO2 into concrete. Therefore, using nPOFA
provided higher carbonation resistance than mPOFA.

In summary, the higher amount of POFA incorporated in concrete increases the number of
pores with greater porosity, resulting in a higher carbonation depth (lower carbonation resistance).
This is because POFA had a slower pozzolanic reaction [36] and the production of C-S-H is reduced.
Therefore, there was higher chance of increasing the carbonation resistance by increasing the duration of
curing days.

3.5. Water Sorption

The results of sorptivity test with error bars for different 28 days old concrete mixtures with
various proportions of OPC and POFA are shown in Figure 10. This figure shows that M30N3
(contained 30% mPOFA and 1.5% nPOFA) had the largest water sorption while M10N1 (contained
10% mPOFA and 0.5% nPOFA) had the smallest water sorption. The highest water sorption of M30N3
is attributed to the largest porosity present in the concrete which correlates with the SEM images
(Figures 7 and 8) and carbonation depth measurement (Figure 9). However, M10N1 had the lowest
water sorption, which suggests that it had the highest penetration resistance and therefore it provided
the lowest carbonation depth.

The water sorptivity values increased with time for all concretes due to the suction mechanism of
capillary water molecules. The incorporation of a certain amount of POFA (10%) into concrete showed a
greater decrease in sorptivity, which means that it provided a higher resistance to moisture absorption
by capillary suction. This indicates that more binding product (C-S-H) formed to refine the pore
structure in the concrete matrix, thus producing a denser microstructure in the concrete.
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The lowest levels of water sorptivity were observed for M10N1 and M10N2, both of which
contained 10% mPOFA but 0.5% and 1% nPOFA, respectively. The time for suction of the water
molecules through the pores of concrete was lower for M10N1 compared with other concrete mixtures,
thus less water sorptivity was observed. Interestingly, although M10N2 had relatively high carbonation
depth, it provided significantly low water sorption value, as compared to other concretes except
M10N1. This perhaps occurred because the water sorptivity depends not only on the microstructure
and compactness of concrete but also on the different processes of experiment. The sorptivity
experiment was performed after 28 days of water curing and then 1 min–60 min alternation in
wetting time. There is a possibility that after curing in water, when the sorptivity experiment was
performed, the water absorption was less due to the reduced degree of dryness in concrete. In contrast,
the carbonation measurement was carried out for up to 70 days where the likelihood for dryness was
greater, which caused the formation of greater large-size pores in the concrete. Therefore, it showed
less carbonation resistance.
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Figure 10. Water sorption of different concretes with and without POFA.

4. Conclusions

Based on the experimental results obtained in the present study and associated discussion,
the following conclusions can be drawn:

(a) XRF results show that POFA has higher SiO2 as well as SiO2 + Al2O3 + Fe2O3 compared with OPC.
(b) The LOI value of treated POFA is greatly reduced compared with raw POFA. After the treatment

of raw POFA, the LOI value is reduced by 28.75% and 33.33% for mPOFA and nPOFA, respectively.
(c) XRD results reveal that mPOFA and nPOFA contain two major phases, namely Quartz and

Cristobalite, along with amorphous silica, which participated in pozzolanic reaction.
(d) SEM results show that mPOFA had crushed or irregular-shaped particles and found to be bigger

in size compared with nPOFA.
(e) Inclusion of nPOFA can reduce the size of pores in the concrete matrix due to its better micro-filling

ability than mPOFA.
(f) The concrete mixture with 10% mPOFA and 0.5% nPOFA, designated as M10N1, can have higher

carbonation resistance and lesser sorptivity compared with OPC and other mixtures. However,
a higher amount of micro- and nano-POFA has detrimental and negative effects on carbonation
resistance and water sorptivity results.
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