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Abstract: The aim of this work was to investigate the microstructure and mechanical properties of
samples produced by direct metal laser sintering (DMLS) with varied laser beam speed before and
after heat treatment. Optical analysis of as-built samples revealed microstructure built of martensite
needles and columnar grains, growing epitaxially towards the built direction. External and internal
pores, un-melted or semi-melted powder particles and inclusions in the examined samples were
also observed. The strength and Young’s modulus of the DMLS samples before heat treatment was
higher than for cast and forged samples; however, the elongation at break for vertical and horizontal
orientation was lower than required for biomedical implants. After heat treatment, the hardness of
the samples decreased, which is associated with the disappearance of boundary effect and martensite
decomposition to lamellar mixture of α and β, and the anisotropic behaviour of the material also
disappears. Ultimate tensile strength (UTS) and yield strength(YS) also decreased, while elongation
increased. Tensile properties were sensitive to the build orientation, which indicates that DMLS
generates anisotropy of material as a result of layered production and elongated β prior grains.
It was noticed that inappropriate selection of parameters did not allow properties corresponding to
the standards to be obtained due to the high porosity and defects of the microstructure caused by
insufficient energy density.

Keywords: selective laser melting; direct metal laser sintering; porous biomaterials; titanium alloys;
mechanical properties

1. Introduction

Modern implants must meet rigorous requirements for materials, machining technology and
functionality. Implants, which replace the tissues of the human body, should have biomechanical
properties comparable to those that are replaced and must not cause any side effects. The essential
requirement for all medical implants includes corrosion resistance, biocompatibility, bio-adhesion,
biofunctionality, machinability and availability [1–5]. To fulfill these requirements, materials being used
for implants are tested for genotoxicity, carcinogenicity, reproductive toxicity, cytotoxicity, irritation,
sensitivity and residues of sterilization [6,7]. Modern medical implants are regulated and classified
in order to ensure the safety and effectiveness to the patient. Titanium and titanium-based alloys
have been widely applied to medical materials, orthopedic implants and dental implants over the last
few decades [8]. Among the different types of titanium alloys, Ti-6Al-4V remains the most widely
used, as a material with a range of appropriate properties, such as higher strength, lower modulus
of elasticity, better corrosion resistance and superior biocompatibility compared to other metallic
biomaterials [9–11]. High corrosion resistance is primarily due to the spontaneous formation of the
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protective passive TiO2 film on titanium surfaces [12,13]. However, the durability of metallic implants
in the body is limited. In the case of metal implants, a solid construction is associated with their high
stiffness compared to bone tissue [14,15]. Disturbances in stress and strain distribution in the bone
structure surrounding the implant lead to bone resorption around the implant and may lead to aseptic
loosening of the implant. A good and lasting connection of the implant with the bone tissue is possible
when there are sufficient conditions for the bone to grow into the pores of the material, therefore the
use of a porous implant may be helpful in solving this problem [16–18].

Popularization of reconstruction procedures brings with it a number of new surgical challenges.
Growing public awareness on the one hand, and the development of bioengineering sciences on the
other, combine to create a significant increase in the demand and the availability of reconstructive
procedures [19]. In response to the growing demand for custom-made implants, manufacturers are
seeking to improve manufacturing processes by using advanced methods of preoperative planning.
Modern design requires creating a physical, three-dimensional model of the designed element [20].
Conventional methods of preparing prototypes and models (e.g., casting, forging) are often extremely
expensive and time consuming. New rapid manufacturing (RM) technologies, including direct metal
laser sintering (DMLS) based on computer-assisted design, are applied to assist in this process [21].
Because of its ability to produce accurately and precisely objects, with different sizes, distribution
of pores and complex geometry, this technology in the field of biomedical engineering is used
increasingly [22]. An advantage of this process is the possibility to obtaining an arbitrarily shaped
model by using laser beam. The laser sintering process is performed in the working chamber of
a machine equipped with a computer that controls the production process [23]. Special software
controls and regulates the pressure and atmosphere inside the chamber, depending on the material
used. This process takes place by means of infrared radiation from a CO2 laser (10.6 µm) or Nd: YAG
laser (1.06 µm) [24–26]. Laser scanning speed is defined as the speed at which the laser moves across
the powder bed. The use of galvanic mirrors to reinforce the laser beam enables high scanning speeds
by deflecting the beam [27]. Modern DMLS machines offer laser scanning speeds in the range of
0.1–10 m/s; however, in most studies on DMLS technology, speeds up to 0.1–1.5 m/s have been used
up to now [24]. High-speed scanning conducive to building a faster and better process efficiency,
but are associated with certain disadvantages [21].

Successful integration of an implant is generally accepted to rely on its surface characteristics
such as chemical composition, morphology and energy [28]. Surface morphology is an important
factor determining long-term implant stability, especially if bone quality is poor. A porous surface
improves mechanical interlocking between the implant biomaterial and the surrounding natural tissue,
providing greater mechanical stability at this critical interface [29–32]; however, DMLS allows only for
control the macroscale porosity of produced parts, while micro- and nanoscales are not possible to
control. Also, the DMLS method can induce non-metallurgical defects such as, e.g., pores of cracks.
Surface roughness, pores—internal and external, uncontrolled residual stress and microstructure are
drawbacks [33–35]. Accordingly, the associated mechanical properties and implementation of the
produced element for a particular application may be inadequate. This paper defines the relationship
between selected laser parameters, structure and mechanical properties of implant elements made
from titanium alloy (Ti-6Al-4V, EOS GmbH, Munich, Germany).

2. Materials and Methods

Commercially available Ti-6Al-4V powder for sintering test samples, as the most widely titanium
grade (Grade 5), was used. It is a two-phase α + β titanium alloy, with aluminum as the alpha stabilizer
and vanadium as the beta stabilizer was used. β phase provides good mechanical properties, such as
high strength and good ductility. α phase alloys have poor plasticity, but also have less tendency to
absorb gases. The powder was produced by gas atomization. Spherical morphology and smooth
surface indicated a good flowability and homogeneous layer distribution. The chemical composition
of the powder, verified by Thermo ARL Quantris Spectrometer (Thermo Fisher Scientific, Waltham,



Materials 2019, 12, 176 3 of 17

MA, USA), diameter of particles, analyzed by ANALYSETTE 22 (FRITSCH, Idar-Oberstein, Germany)
particle size analyzer and essential properties of the material, corresponding to ASTM F2924-14 and
valid for powder material processed with EOSINT M 280/400 W (EOS Electro Optical System, Munich,
Germany) are given in Table 1.

Table 1. Chemical composition and material characteristics of used powder.

Element Al V O N H Fe C Ti

Composition (wt %) 5.97 4.04 0.195 0.036 0.010 0.24 0.061 Bal.
ASTM F136 5.5–6.75 3.5–4.5 <0.2 <0.05 <0.015 <0.3 <0.08 Bal.

Density 4.41 kg/dm3

Melting Point 1670 ◦C
Diameter of Particles 10–400 µm

Powder Layer
Thickness 30 µm

Hatch Distance 100 µm

Dogbone tensile test samples were produced on the EOSINTM280 machine (EOS Electro Optical
Systems, Munich, Germany), equipped with an Ytterbium fibre laser, using DMLS technology.
For experimental work, six groups of test samples were performed. Each series was sintered with the
same, constant laser power at 170 W, but with varying powder surface scanning speed. A scan speed
between 300 and 1300 mm/s was chosen. 90◦ rotate scanning patterns with hatch distance of 0.1 mm
for samples manufacturing was applied. The process parameters used in the present study have been
illustrated in Table 2. The energy density (E) was calculated based on laser power (P), the distance
between the laser scan line (h), scanning speed (v) and layer thickness (t) by means of equation [36].

E =
P

vht
(1)

Samples were sintered in a high vacuum environment, with the presence of argon and with
oxygen content limited to 0.1%, which restricted the surface reactivity of the titanium compound. All
samples were treated at 825 ◦C for 4 h in a vertical tube furnace, with a heating rate of approximately
10 ◦C/min, in an oxidation prevented argon atmosphere under furnace cooling.

Table 2. Processing parameters.

Laser Power (W) 170

Scanning Velocity (mm/s)

300
500
700
900

1100
1300

Energy Density (J/mm3)

189
113
81
63
52
44

Layer Thickness (mm) 0.03

Spot Size (mm) 0.1

Hatch Distance (mm) 0.1
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Six series of tensile strength testing samples, of a size and shape conforming to standard PN-EN
ISO 6892-1 (Figure 1) were performed. Each series were divided into two groups of samples—built
in longitudinal (vertical) and in transversal (horizontal) configuration. The BrukerSkyScan 1172
(Bruker, Fitchburg, MA, USA) scanner was used for microtomographic studies of porosity with set
parameters: number of rows—2664, number of columns—4000, Au + CU filter, sample rotation—0.2500,
pixel size—4.28 µm. Scanned images of samples were reconstructed using programs dedicated to
microCT image analysis—NRecon (1.2, Bruker, Fitchburg, MA, USA), Data Viewer (1.5.0.0, Ottawa,
ON, Canada), CTvox (3.3, Bruker, Fitchburg, MA, USA) and CTAn (1.8, Bruker, Fitchburg, MA, USA).
To remove all loose grains from the surface of the samples, they were rinsed in ethyl alcohol in an
ultrasonic cleaner for 15 min. Tensile properties were studied using a Hegewald&Peschke INSPEKT
(Meß- und Prüftechnik GmbH, Nossen, Germany) test machine with a maximum breaking strength of
5 kN. Displacements were measured by using an extensometer with a 25 mm gauge length. Yield stress
and Young’s modulus were determined according to ASTM E 111.
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Figure 1. Samples: for tensile test (a); dimensions in mm (b) of tensile samples.

The preparation of samples for metallographic observations required grinding with abrasive paper
with different grit gradation—from 200 to 2000 with two speeds—250 and 500 rpm, then polishing
with 0.5 µm colloidal silica suspension and etching with freshly prepared Kroll’s reagent, consist
of 5 mL of HNO3, 10 mL of HF and 85 mL H2O by immersion in the solution for 10 s, washing
with distilled water and drying. Observations of the microstructure of the etched samples were
carried out by using a Hitachi S-3000N (Hitachi, Tokyo, Japan) scanning electron microscope with an
adapter for testing biological preparations. Vickers micro hardness measurements of the as-build and
heat-treated, polished, unetched samples were performed, using Vickers hardness tester INNOVA
analog stationary hardness tester (InnovaTest, Maastricht, The Netherlands). Hardness measurement
was performed according to standard ISO 6507-1. For each sample five indentations were carried
out at room temperature (20 ± 5 ◦C), under a load of 5 kgf (HV 5), in cross section longitudinal and
transversal to the building layers were taken. Surface texture and roughness were investigated using
an LEXT OLS4000 (Olympus, Tokyo, Japan) 3D measuring laser microscope. This equipment offers
non-contact laser stylus tracing method. Surface topography scans were made on top (T) and lateral
(S) surface of samples.

3. Results and Discussion

The top and lateral surfaces of the sample produced in the DMLS process are shown in Figure 2a,b,
respectively. The frontal surface revealed the one-way pattern scanning. Measured distance between
two adjacent, overlapping paths on which the laser beam moved was approx. 100 µm and corresponds
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to the sintering process assumptions and the proposed distances between the paths of the laser
beam. These photographs also reveal the presence of pores and the loosely bound powder particles.
The images depicting the side surfaces represent a completely different characteristic—strongly
developed and almost entirely covered, only partially fused, grains of the powder, forming an
approximately 100 µm thickness layer (Figure 2d). Non-melted or partially molten powder grains,
loosely bound to a lower solidified layer (Figure 2b), make the surface of the sample very rough,
which may be considered a porous structure. Non-melted grains have different diameters and their
dimensional heterogeneity. The presence of so many unmelted or improper melted powder particles
was caused by the fact that the powder used to produce the sample was not homogeneous. The surface
roughness of the samples depends on the characteristics of the powder used—the morphology and
size of the particles, but also on the power and speed parameters. Smaller powder particles are easier
to melt (i.e., the laser power needed to melt them is smaller) compared to larger particles, due to the
smaller surface area of the former. Different surface qualities were observed as a result of variable
speed of the laser beam. For samples sintered at 300 mm/s (Figure 2c) and 500 mm/s (Figure 2d),
the surface is smoother and free from defects visible on the surface of sintered samples at speeds of
1100 mm/s (Figure 2e) and 1300 mm/s (Figure 2f).
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Figure 2. Top surface of a vertically built direction (a), lateral surface (b) and top surface of sample
sintered with laser beam speed 300 mm/s (c), 500 mm/s (d), 1100 mm/s (e), 1300 mm/s (f).

That characteristic surface certainly will affect the fatigue and corrosion resistance of the
components. The roughness of a surface is considered to be a detriment to the fatigue properties of
the component because it can serve as stress concentration and fatigue crack initiation site [37–39].
However, a rough surface may be beneficial for biomedical applications, such as facilitating the
formation of bone structure of the surface [40]. The geometrically complex surface is a specific anchor
for proteins and promotes cell adhesion, as well as regulates osteoblast differentiation and matrix
production, thus accelerating the osteogenetic process. At the same time, it should be emphasized that
in the case of DMLS technology, the porous structure of the surface is the result of the geometry of
partially molten powder grains which, under the influence of interfaces between the surface of the
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implant and the tissue, can detach, resulting in acute and chronic effects. Moreover, such a high surface
roughness will certainly affect the fatigue strength and corrosion resistance of sintered components,
because surface irregularities will cause local concentration of stresses, which in consequence will
initiate material cracking. Therefore, it is necessary to further modify the surface for homogenization.

Measured surfaces roughness described with Ra (surface average roughness), Rp (maximum peak
height) and Rv (maximum valley depth) values are shown in Table 3. The roughness of the lateral
and upper surfaces was compared with the energy density to analyze the relationship between them.
The summary shows that the increase in energy density in the range from 88 to 113 J/mm3 reduces the
roughness of both surfaces, while the energy density in the range from 63 to 44 J/mm3 influences its
increase. The increase in surface roughness of samples at the highest energy densities results from the
intensification of particle agglomeration processes on the surfaces of the analyzed samples, which is
confirmed by the photographs taken using a scanning microscope (Figure 2).

Scanning speed in the range of 500–900 mm/s leads to the generation of stable integration paths.
The shape of individual paths is quite clear, their surface is even, and the width is constant. The surface
of the samples is smooth, and the number of pores resulting from the local overheating and evaporation
of the material is smaller. An increase in the scanning speed to 1100 mm/s reduces the energy density
(52 J/mm3). Under these conditions, it is difficult to achieve a melting point that allows the powder
particles to melt completely, while the amount of liquid phase is insufficient to form a continuous,
stable layer. The sample surfaces are clearly rough with visible discontinuities. The unmelted particles
on the surface are additionally deformed by a moving reversible blade, and some of them are ripped
out and transferred, which results in an increase in porosity. For samples sintered at 1300 mm/s,
the effect of balling is visible, induced by scanning speeds that are too high, and a short time of
interaction of the laser beam with the powder. With such a high speed it is impossible to maintain the
path continuity. The effect of spinning is caused by the lack of wetting of the molten pool with the
previous layer, which affects cohesion adversely, thus making the subsequent layers more difficult
to bond.

Table 3. Roughness parameters.

Scanning Speed
[mm/s]

Ra [µm]
(Surface Average Roughness)

Rp [µm]
(Maximum Peak Height)

Rv [µm]
(Maximum Valley Depth)

AB HT AB HT AB HT

T S T S T S T S T S T S

300 5.31 11.78 5.01 10.94 12.86 26.08 12.35 25.61 11.32 16.96 11.25 16.77
500 3.76 9.19 3.48 8.32 10.23 20.72 10.02 20.44 10.11 18.01 10.08 17.90
700 4.06 10.35 3.92 9.45 10.56 21.31 10.17 20.88 10.07 20.68 9.92 19.82
900 5.49 17.25 5.05 16.15 13.17 27.01 12.89 26.58 12.81 26.21 12.41 26.11
1100 6.55 20.06 6.23 19.15 15.32 29.70 15.15 29.33 13.36 31.41 31.27 31.26
1300 10.22 21.06 9.91 20.62 19.21 38.01 19.03 36.29 15.41 35.51 15.30 35.33

AB as built, HT heat treated, T top surface, S lateral (side) surface.

The occurrence of the spinning effect causes deterioration of the surface resulting from a
combination of thermal stresses and poor inter-layer bonding between the powder particles and
subsequent layers [41]. Despite the combination of particles, the mechanical strength of components
from this group is very low, because the samples produced using the proposed technological
parameters have many disadvantages, and they are characterized by high porosity and low fracture
toughness, which was confirmed later in the work.

Due to the shear forces present at high scanning speeds, high surface tension may occur within the
pool. Melted surfaces, to reduce surface tension, are subject to the process of balling. This phenomenon
occurs when the molten material does not wet the underlying substrate because of its surface tension,
which tends to spheroidize the liquid [39]. This means that the density of energy does not always
increase the relative density of the sample and there is a limit above which the results deteriorate.
On the other hand, energy density values that are too low are not suitable for ensuring adhesion
between successive layers, because the depth of penetration is not sufficient [40]. Largegrains, unmelted
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but entrapped in the solidifying material, which protrude above the sample surface, increase the surface
roughness. An important issue at high scanning speeds is also that high shear forces can eject pieces of
molten metal from the melt pool, thereby causing the formation of internal pores and a reduction in
the final density of the product [41–43].

For samples sintered with 170 W laser power at low scanning speeds from 300 to 700 mm/s,
the porosity of the material changes from 2.59% down to 1.39%. Above 900 mm/s an increase in
porosity is observed from 9.29% at the speed of 900 mm/s to 12.41% at the speed of 1300 mm/s.
Sintered samples with a power of 170 W achieved a density of over 95% for three speeds (500, 700,
900 mm/s). The highest density—99.23%—was obtained in samples scanned with a 170 W laser at
500 mm/s (Figure 3).The research shows that the increase in porosity is accompanied by a decrease
in energy density. Differentiated porosity morphology, conditioned by variable parameters—laser
power and time of exposure of the powder material to the laser beam—was revealed in optical studies.
Detailed analysis of porosity is shown in Figure 4, where the relationship between energy density
(J/mm3) and porosity (%) was indicated. At low energy density of the laser (44 J/mm3–63 J/mm3),
the porosity ranges from 12.49% to 9.29% The pores are unevenly distributed, irregular in shape
and interconnected. Porosity is characterized by large voids filled with loose particles of unmelted
grains—lack of fusion. A possible explanation for this is that with such a low energy density of the
laser and due to the smaller depth of laser penetration, the size of the melt pool is too small and the
powder particles are not sufficiently fluidized to provide sufficient bond between the layers. Increased
laser energy density in the range from 81 J/mm3 to 113 J/mm3 reduces porosity, which varies from
1.39% to 0.77%. Increasing the energy density of the laser generates a relatively high temperature,
which facilitates the flow of liquids and filling the pores (voids). This is due to the relatively low
viscosity of the alloy, and thus the density of the material increases after solidification. At higher energy
densities, the pores are small and mostly spherical, and their presence is the result of solidification
shrinkage and gas bubbles trapped by the molten powder. An increase in laser energy density above
188 J/mm3 increases the porosity to 2.59% and changes its morphology. High energy density of the
laser can cause the evaporation of small grains with low surface energy, leaving them empty, as pores,
within the built layer or between layers. Any impurities such as oxides present on the surface of the
powder particles are also a source of gas porosity and local delamination [36,40,43].
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Figure 3. The influence of scanning speed and energy density on the porosity.

Li et al. [44] confirmed the relationship between roughness and energy density. Complete sintering
of the particles may be achieved with a lower speed laser that induces higher local temperature, lower
viscosity and contact angle, higher Marangoni flow and capillary forces. This, however, effects on full
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densification and lower surface roughness. Higher scanning speeds, on the other hand, generate lower
energy density and only partial melting of the powder. The viscosity of the molten material is quite
high, which leads to the balling effect and higher roughness.

The porous structure described was also discussed by [39]. They analyzed various variants and
parameters of the sintering process of stainless steel. In the course of the research, they found that
properly selected laser power and scanning speed ensure continuity of scanning paths and permanent
inter-layer bonds, which results in obtaining full density structures. The continuation of their research
proved that scanning speeds that are too high considered at constant laser power cause discontinuities
in the scanning paths and the effect of balling. Lower sintering powers at higher scanning speeds
generated a porous structure with an open morphology, with a significant amount of the pores being
formed on the surface of the samples.

The DMLS process binds the material in layers, so if the output energy is not adjusted to the
properties of the powder and other relevant process parameters the pool width is too small for the
scanning paths to overlap. This is the main reason for the non-melted powder particles remaining in
the sample. This phenomenon is called lack-of-fusion. Usually, its occurrence is located between the
two scan tracks and the deposited layers. The presence of cumulative inter-layer defects and stress
resulting from the sintering process may result in the spread of defects, thus affecting the deterioration
of the final properties of the product.
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Figure 4. The influence of energy density on the porosity and their morphology: 44 J/mm3 (a),
52 J/mm3 (b), 63 J/mm3 (c), 81 J/mm3 (d), 113 J/mm3 (e), 188 J/mm3 (f), mag. 100×.

The microstructure of titanium alloy samples manufactured by using DMLS technology differs
from the microstructure of wrought alloy due to different cooling rates. Ti-6Al-4V obtained by DMLS
technology has a fine-grained martensitic structure (α’). This may be attributable to high-temperature



Materials 2019, 12, 176 9 of 17

heating and cooling, which are inherent in the DMLS process. Repeated heating and cooling cycles
result in an increase in diverse morphologies, leading to visible band structure (Figure 5c, indicated
by white arrows) [45]. A characteristic feature of laser sintered materials are columnar prior grains
β, disclosed on the XZ plane across several deposited layers, arranged parallel to the construction
direction (Figure 5a,b). These columnar grains arise from the epitaxial growth of the prior β grains
in previous layers due to the high-temperature gradient and solidification rate in the molten pool.
The presence of prior β columnar grain boundaries is due to the fact that Ti-6Al-4V solidifies in the β

phase field and heat is mainly conducted away vertically. The average width of the prior β grains was
101 ± 14 µm, which corresponds to the optimised hatch spacing (100 µm). Optical microscopy analysis
reveals that the α′ grains did not vary in size along the build and scanning directions. After heat
treatment these grains, although less clearly, were still visible.

The microstructure parallel with deposited layers before and after annealing was equiaxed
polyhedric with visible porosity (Figure 5c,d). Also, the chessboard pattern was identified on the XY
plane, which is the effect of the scanning strategy (Figure 2d). Many studies have shown that the
α‘ microstructure causes low ductility, determined with high tensile strength [13,27,28]. After heat
treatment the fine metastable martensitic structure has been transformed into a mixture of a fully
lamellar α and β and leads to structure pattern dissolving.
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Figure 5. Cross-sections perpendicular (a,b) and parallel with deposited layers (c,d) before (a,c) and
after (b,d) heat treatment, revealing microstructure of the as built (a,c) and annealed sample (b,d); mag.
100×.

Decomposition of martensite resulted in changes in strength and plasticity. The size of α grains
was coarser (α lath width = 1.55 ± 0.223 µm) in this case as compared to the “as built” Ti-6Al-4V
(α’ lath width = 0.593 ± 0.261 µm). As a result of martensite decomposition, the alloying elements are
redistributed. The β phase is enriched with vanadium and phase α-aluminum.
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The elongation, tensile strength and Young’s modulus for as-built and heat treated alloy samples
are given respectively in Figures 6 and 7. Presented results show that the change in energy density
resulting from the change in laser speed had a significant impact on a final tensile strength, yield
strength or Young’s modulus. Those values are significantly higher than the required values for cast
and forged material due to martensitic microstructure, as well as Young’s modulus (according to
ASTM F1108-14 and ASTM F136-13). However, the elongation of as-built samples with an average
value of 2.1–5.5% is much lower than required. Poor ductility is a result of martensitic microstructure.
After heat treatment at 850 ◦C, the ultimate tensile strength (UTS) and the yield strength (YS) of the
alloy decreased(UTS from ~1158 MPa to ~924 MPa, YS form ~1122 MPa to ~805 MPa), but the ductility
is greatly increased form 4–5.5% to 12.6–16.0%. This is due to changes in the microstructure and
decomposition of brittle martensite, which is transformed at a temperature of more than 800 ◦C into a
more plastic α and lath size increase after a relatively slow cooling rate [46]. For both as-built and heat
treated samples, the highest strength among them is characterized by samples sintered with 500 mm/s,
which correlates with the lowest porosity. The lowest tensile strength was demonstrated by samples
with the highest porosity, sintered at 1300 mm/s. It should be noted, that after heat treatment UTS and
YS are similar to wrought and annealed Ti-6Al-4V (930 MPa UTS, 860 MPa YS) for samples built with
scanning speed 300 and 700 mm/s, also samples built with scanning speed 900 and 1100 mm/s meets
standards for casted material (860 MPa UTS, 760 MPa YS).
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Figure 6. Mechanical properties of Ti6Al4V samples vertically (XZ) and horizontally (XY) oriented to
the building direction before (a) and after (b) heat treatment.
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Both materials—as-built and heat-treated—are characterized by anisotropy; samples built in
Z (vertical) direction have higher UTS, YS and elongation at break compared to the X (horizontal)
direction (Figure 7). The correlation may be explained by the microstructure of the material and the
direction of growth of epitaxial β-grains. The columnar boundaries of these grains in the samples built
in the vertical direction are arranged parallel to the tensile direction, while in the samples built in the
XY plane these boundaries are perpendicular. This is also an explanation for the lower elongation
obtained in the horizontally built samples.
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Figure 7. Anisotropic properties of samples built with different orientation.

Anisotropy of elastic modulus as a result of crystal anisotropy was reported by References [26,47,48].
Also, the Young’s modulus did change with the building direction and orientation of the prior β-grains.
It should be emphasized that for the as-built samples, the Young’s modulus was higher in the Z
direction by approx. 15% in relation to the X direction, while after the heat treatment the difference
between the Young’s modulus values was insignificant. The same applies to both UTS and YS changes.
The decrease in the Young’s, UTS and YS modulus as well as the increase in elongation after heat
treatment indicate an increase in the plasticity of the material, which is also confirmed by changes in
the microstructure.

To assess the anisotropy of mechanical properties, the following equation [49] was used to
calculate the differences of properties between horizontally and vertically DMLS-built samples:

Dr =
|PV − PH |
|PV + PH |/2

× 100% (2)
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where Dr is a difference ratio of analyzed properties, PV and PH represent horizontal and vertical
property of material. Anisotropy of tensile strength, yield strength, elongation and elasticity modulus
is summarized in Table 4.

Table 4. Anisotropy of tensile strength, yield strength, elongation and elasticity modulus before and
after heat treatment.

Material Dr UTS % Dr YS % Dr EM % Dr El %

As-built 3.36% 0.22% 17.11% 29.55%
HT 0.5% 0.97% 0.08% 8.80%

Dr—difference ration of analyzed properties; UTS—Ultimate Tensile Strength; YS—Yield Strength; EM—Elastic
Modulus; El—Elongation.

Anisotropic properties in laser fused materials result from the presence of column structures whose
boundaries affect the tensile strength and elasticity of the material. Untreated samples are characterized by
a distinct anisotropy of the modulus of elasticity and elongation. As expected, heat treatments effectively
alleviate the anisotropy of mechanical properties as an effect of microstructural changes.

The study of the fractography of fracture surfaces of impact strength specimens showed some
imperfections of the DMLS process (Figure 8). Voids and un-melted powder (attributed to entrapped
gas in the melt pool and lack of melting during fabrication) can be seen along the fracture surface
of specimens in both as-built (Figure 8a,b) and heat-treated conditions (Figure 8c,d), as well as
horizontal and vertical samples. Fracture surface of non-treated samples showed a brittle character,
accompanied by very small plastic deformation and energy absorption. Untreated DMLS Ti-6Al-4V
samples indicate shallow dimples, cleavage facets, ledges and terraces that suggest cleavage most
probably along the brittle α’ needles characteristic for brittle fractures. Fracture surface of horizontal
samples indicate a large amount of defects and gas pores, which caused stress concentration for cracks
growth. Characteristics of the breakthrough after heat treatment shows a mixed mode brittle and
ductile character. Ductile cracking is the effect of martensite decomposition and appearance in the
microstructure ductile and plastic β phase. It can be seen that the morphology of the tensile fracture
resembles honeycombs with a number of small voids. There are no significant differences between the
fracture surfaces of differently oriented samples.
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Figure 8. Fracture surface of non-treated (a,b) and heat treated (c–f) vertically (a,c,e) and horizontally
(b,d,f) oriented samples; mag. 900× and 1500×.

Hardness values for as-build and heat-treated Ti6Al4V samples are shown in the graph in
Figure 9. The hardness of sintered materials depending on the laser power measured in two
directions—longitudinal and transversal. The measured results showed that the decrease of laser
speed and energy density led to decrease in hardness of materials in both directions. The influence
of heat treatment on hardness is clearly visible. The as-built material is harder than the treated one.
This phenomenon was expected due to relationship between hardness and microstructure. As-built
material has a α’ martensitic microstructure—much harder than the laminar α + β microstructure
received after heat treatment.
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4. Conclusions

This work focuses attention on the influence of input process parameters on the mechanical
parameters of Ti-6Al-4V alloy powder, which is highly biocompatible. Samples were manufactured in
a controlled atmosphere with inert gas and therefore had no contact with any contaminants, as is the
case in traditional methods such as turning and milling, but even so—the DMLS component contains
flaws such as internal and external pores, unmelted or semi-melted powder particles, inclusions and
a surface finish with relatively high roughness. The surface area of the samples obtained during
the DMLS process is heterogeneous, rough and porous. This is due to imperfections in the process,
difficulties in choosing the right parameters, and the quality of the powder. Too low a speed of the
laser beam has led to an increase in the power density and evaporation of small powder particles,
which solidify falling on the molten layer of material, generating roughness. However, too high a
speed caused the energy density to be insufficient to properly melt the grains, which caused unstable
and discontinuous paths. The best surface quality, characterized by the smallest roughness of both
surfaces, were sintered samples with laser speeds of 500 and 700 mm /s. The lowest porosity was also
achieved for scanning speeds of 500 and 700 mm/s. The generated energy density was sufficient in this
respect to melt the material properly. The porosity obtained for these two speeds did not exceed 1%.
The energy density above 160 J/mm3 and below 75 J/mm3 affected a significant increase in porosity in
the material obtained, with the morphology of the resulting pores being clearly different.

There are distinct differences in the microstructures of samples manufactured by DMLS and
wrought material. The microstructure obtained as a result of rapid solidification after selective
laser sintering reveals a very fine morphology with α particles within β boundaries. The presence
of martensite or α’ is also evidence that the material has undergone rapid cooling during the laser
sintering process. The influence of high temperature and annealing time caused a change of martensitic
microstructure to two-phase α + β with different mechanical and plastic properties.

Both porosity and microstructure had an effect on mechanical properties. Because of the very
fine microstructure, the yield stress and ultimate tensile stress of the as-built samples were quite high.
The change of microstructure and decomposition of martensite under the influence of heat treatment
caused the strength properties to be reduced, while the plastic properties increased. The tensile
properties of the samples characterized by the lowest porosity content, after heat treatment, satisfied the
requirements of standard ISO 5832-3. The anisotropic properties of the material were more pronounced
for raw samples, while after heat treatment the properties were uniform. Higher tensile strength was
characterized by vertical samples. Theoretically, due to the layered structure, this orientation should
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weaken the strength; however, the presence of epitaxial grain boundaries caused an increase in the
tensile strength in the direction of the sample building.

The results of the hardness test of the samples also indicate the anisotropic properties of the
material. Furthermore, as the scanning speed decreases, hardness decreases in both directions.
After heat treatment—as a result of changes in the microstructure—a decrease in hardness is noticeable;
however, it is much larger for samples built in the vertical direction. The decrease in hardness is
insignificant for samples built horizontally.

Analysis of the results obtained allows for the conclusion that modifying the technological
parameters of the sintering process makes it possible to change the properties of the element obtained,
depending on the requirements of the product. Appropriate selection of settings for the laser
and atmosphere in the working chamber is the key factor in achievement of satisfactory results
in applications of DMLS technology. Future research should be focused on the mechanical properties
of DMLS samples and fatigue testing, porosity and defects, the effects of heat treatments, and
corrosion resistance.
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