Preparation and Luminescence Properties of Ba5Si8O21 Long Persistent Phosphors Doped with Rare-Earth Elements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Characterisation
3. Results
3.1. Effect of the Precursors
- to reduce reagents number: using BaCl2 instead of NH4Cl and BaCO3. The mineralogical results indicate that even at high temperature (1200 °C) and for a long time (12 h), the final product showed the presence of some residual reagents. The reaction was not complete in terms of the formation of Ba5Si8O21 and displayed a weak afterglow luminescence with respect to the reference (Figure S1, Supplementary Materials).
- to use a low expensive reagent: using SiO2 instead of Na2SiO3, and H3BO3 as a flux agent instead of NaCl. The afterglow was good, but the reaction required a high temperature (1250 °C) and a long synthesis time (10 h) (Figure 1, sample 2).
3.2. Effect of Crucible and Ba/Si Molar Ratio
3.3. Effect of Flux Agents and of Eu/Si, Dy/Si Molar Ratios
3.4. Effect of Heat Treatment
4. Discussion
5. Conclusions
- -
- quartz crucible that is cheaper and more easily available than the platinum one.
- -
- use of purified coal instead of N2/H2 as a source of reducing atmosphere, which permits much more disposable and cheaper facilities.
- -
- precursors such as BaCO3, Na2SiO3, NH4Cl and an economic flux agent such as NaCl (directly obtained during the synthesis).
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Blasse, G.; Grabmaier, B.C. Luminescent Materials; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Lenard, P.E.A.; Schmidt, F.; Tomaschek, R. Phosphoreszenz und fluoreszenz, in: Handbuch der Experimentalphysik, 23; Akademie Verlagsgesellschaft: Leipzig, Germany, 1928. [Google Scholar]
- Lehmann, W. Activators and co-activators in calcium sulfide phosphors. J. Lumin. 1972, 5, 87–107. [Google Scholar] [CrossRef]
- Garlick, G.F.J.; Mason, D.E. Electron Traps and Infrared Stimulation of Phosphors. J. Electrochem. Soc. 1949, 96, 90–103. [Google Scholar] [CrossRef]
- Yen, W.M.; Shionoya, S.; Yamamoto, H. Phosphor Handbook, 2nd ed.; CRC Press: New York, NY, USA, 1998. [Google Scholar]
- Sonoda, M.; Takano, M.; Miyahara, J.; Kato, H. Computed radiography utilizing scanning laser stimulated luminescence. Radiology 1983, 148, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Mckeever, S.W.S. Theory of Thermoluminescence and Related Phenomena; World Scientific: Singapore, 1997. [Google Scholar]
- Katsumata, T.; Sasajima, K.; Nabae, T. Characteristics of Strontium Aluminate Crystals Used for Long-Duration Phosphors. J. Am. Chem. Soc. 1998, 81, 413–416. [Google Scholar] [CrossRef]
- Yamamoto, H.; Matsuzawa, T. Mechanism of long phosphorescence of SrAl2O4: Eu2+, Dy3+ and CaAl2O4: Eu2+, Nd3+. J. Lumin. 1997, 72, 287–289. [Google Scholar] [CrossRef]
- Matsuzawa, T.; Aoki, Y.; Takeuchi, N.; Murayama, Y.J. A New Long Phosphorescent Phosphor with High Brightness, SrAl2O4: Eu2+, Dy3+. Electrochem. Soc. 1996, 143, 2670–2673. [Google Scholar] [CrossRef]
- Lin, Y.; Tang, Z.; Zhang, Z.; Nan, C.W. Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors. Appl. Phys. Lett. 2002, 81, 996–998. [Google Scholar] [CrossRef]
- Guo, C.; Luan, L.; Huang, D.; Su, Q.; Lv, Y. Study on the stability of phosphor SrAl2O4: Eu2+, Dy3+ in water and method to improve its moisture resistance. Mater. Chem. Phys. 2007, 106, 268–272. [Google Scholar] [CrossRef]
- Luitel, H.N.; Watari, T.; Torikai, T.; Yada, M.; Chand, R.; Xu, C.N.; Nanoka, K. Highly water resistant surface coating by fluoride on long persistent Sr4Al14O25: Eu2+/Dy3+ phosphor. Appl. Surf. Sci. 2010, 256, 2347–2352. [Google Scholar] [CrossRef]
- Lü, X. Silica encapsulation study on SrAl2O4:Eu2+, Dy3+ phosphors. Mater. Chem. Phys. 2005, 93, 526–530. [Google Scholar] [CrossRef]
- Yu, S.; Pi, P.; Wen, X.; Cheng, J.; Yang, Z. Preparation and Luminescence of SrAl2O4: Eu2+,Dy3+ Phosphors Coated with Maleic Anhydride, Can. J. Chem. Eng. 2008, 86, 30–34. [Google Scholar] [CrossRef]
- Joung, K.P.; Mi, A.L.; Kyoung, J.C.; Chang, H.K. Luminescence characteristics of yellow emitting Ba3SiO5:Eu2+ phosphor. J. Mater. Sci. 2005, 40, 2069–2071. [Google Scholar]
- Gong, Y.; Wang, Y.; Li, Y.; Xu, X.; Zeng, W. Fluorescence and phosphorescence properties of new long-lasting phosphor Ba4(Si3O8)2:Eu2+, Dy3+. Opt. Express 2011, 19, 4310–4315. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Xu, X.; Zhou, D.; Yu, X.; Qiu, J. Sunlight Activated Long-Lasting Luminescence from Ba5Si8O21: Eu2+,Dy3+ Phosphor. Inorg. Chem. 2015, 54, 1690–1697. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Zhang, Y.; Molokeev, M.S.; Atuchin, V.V.; Luo, Y. Linear structural evolution induced tunable photoluminescence in clinopyroxene solid-solution phosphors. Sci. Rep. 2013, 3, 3310. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Che, L.C.; Zewei, Q.; Maxim, M.; Atuchin, S.; Victor, V.; Ting-Shan, C.; Yujun, L.; Jun, L.; Guogang, L. Structural evolution induced preferential occupancy of designated cation sites by Eu2+ in M5(Si3O9)2 (M = Sr, Ba, Y, Mn) phosphors. RSC Adv. 2016, 6, 57261–57265. [Google Scholar]
- Eagleman, Y.; Bourret-Courchesne, E.; Derenzo, S.E. Fellow, Investigation of Eu2+ Doped Barium Silicates as Scintillators. IEEE Trans. Nuclear Sci. 2012, 59, 479–486. [Google Scholar] [CrossRef]
- Yamaga, M.; Masui, Y.; Sakuta, S.; Kodama, N.; Kaminaga, K. Radiative and nonradiative decay processes responsible for long-lasting phosphorescence of Eu2+- doped barium silicates. Phys. Rev. B 2005, 71, 205102/1–205102/7. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, X.; Zhang, J.; Gong, M. An efficient and stable green phosphor SrBaSiO4:Eu2+ for light-emitting diodes. J. Lumin. 2010, 130, 2288. [Google Scholar] [CrossRef]
- Nazarov, M. Luminescent materials and applications. Mater. Sci. Chem. 2016, 6, 41–74. [Google Scholar]
- Li, Y.; Geceviciusa, M.; Qiu, J. Long persistent phosphors—from fundamentals to applications. Chem. Soc. Rev. 2016, 45, 2090. [Google Scholar] [CrossRef] [PubMed]
- Jian, X.; Setsuhisa, T. Persistent luminescence instead of phosphorescence: History, mechanism, and perspective. J. Lumin. 2019, 205, 581–620. [Google Scholar] [CrossRef]
- Kamei, S.; Kojima, Y.; Nishimiya, N. Preparation and fluorescence properties of novel red-emitting Eu3+-activated amorphous alkaline earth silicate phosphors. J. Lumin. 2010, 130, 2288–2292. [Google Scholar] [CrossRef]
- Mishra, L.; Sharma, A.; Vishwakarma, A.K.; Jha, K.; Jayasimhadri, M.; Ratnam, B.V.; Jang, K.; Rao, A.S.; Sinha, R.K. White light emission and color tunability of dysprosium doped barium silicate glasses. J. Lumin. 2016, 169, 121–127. [Google Scholar] [CrossRef]
- Lusvardi, G.; Malavasi, G.; Menabue, L.; Smargiassi, M. Systematic investigation of the parameters that influence the luminescence properties of photoluminescent pigments. J. Lumin. 2016, 175, 141–148. [Google Scholar] [CrossRef]
- El-Khalik, M.A.; Hanafi, S.; Selim, S.A. Effect of various atmospheres and of autoclaving on the surface texture of thermally treated strontium oxalate. Surf. Technol. 1985, 25, 349–362. [Google Scholar] [CrossRef]
- Rietveld, H.M. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 1967, 22, 151–152. [Google Scholar] [CrossRef] [Green Version]
- Toby, B.H.; Von Dreele, R.B. “GSAS-II: the genesis of a modern open-source all purpose crystallography software package”. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef]
- Inorganic Crystal Structure Database (ICSD), Version 4.0.0. Available online: http://www2.fiz-karlsruhe.de/icsd_home.html (accessed on 13 December 2018).
- Tsai, C.Y.; Lin, J.W.; Huang, Y.P.; Huang, Y.C. Modeling and Assessment of Long Afterglow Decay Curves. Sci. World J. 2014, 104, 1–8. [Google Scholar] [CrossRef]
- Centre for Diffraction Data, A Windows Retrieval/display Program for Accessing the ICDD PDF-2 Database, PCPDFWIN version 2.3. Available online: http://www.icdd.com/International (accessed on 13 December 2018).
- Huntelaar, M.E.; Cordfunke, E.H.P. The ternary system BaSiO3-SrSiO3-SiO2. J. Nucl. Mater. 1993, 201, 250–253. [Google Scholar] [CrossRef]
- Wang, P.; Xu, X.; Qiu, J.; Yu, X.; Wang, Q. Effects of Er3+ doping on the long-persistent luminescence properties of Ba4(Si3O8)2:Eu2+ phosphor. Opt. Mater. 2014, 36, 1826–1829. [Google Scholar] [CrossRef]
Sample | Ba/Si | Eu/Si | Dy/Si | Er/Si | Flux Agent | Temperature (°C) | Time (h) |
---|---|---|---|---|---|---|---|
1 | 0.625 | 2.5 × 10−3 | 11.25 × 10−3 | / | H3BO3 | 1250 | 10 |
2 | 0.625 | 2.5 × 10−3 | 11.25 × 10−3 | / | H3BO3 | 1250 | 10 |
A | 0.700 | 2.5 × 10−3 | 11.25 × 10−3 | / | H3BO3 | 1100 | 6 |
B | 0.700 | 2.5 × 10−3 | 11.25 × 10−3 | / | NaCl | 1100 | 6 |
C | 0.700 | 2.8 × 10−3 | 3.6 × 10−3 | / | NaCl | 1100 | 6 |
D | 0.700 | 2.8 × 10−3 | 3.6 × 10−3 | / | H3BO3 | 1100 | 6 |
E | 0.700 | 2.8 × 10−3 | / | 3.6 × 10−3 | NaCl | 1100 | 6 |
F | 0.700 | 2.8 × 10−3 | 3.6 × 10−3 | / | NaCl | 1100 | 12 |
G | 0.700 | 2.8 × 10−3 | 3.6 × 10−3 | / | NaCl | 1100 | 4 |
H | 0.700 | 2.8 × 10−3 | 3.6 × 10−3 | / | NaCl | 1100 | 3 |
Sample | A1 (mcd/m2) | t1 (s) | A1 × t1 (%) | A2 (mcd/m2) | t2 (s) | A2 × t2 (%) | tm (s) |
---|---|---|---|---|---|---|---|
1 | 133 | 85 | 8 | 35 | 3759 | 92 | 1922 |
2 | 94 | 233 | 14 | 20 | 7056 | 86 | 3645 |
A | 94 | 206 | 13 | 13 | 9602 | 87 | 4904 |
B | 109 | 223 | 19 | 23 | 4431 | 81 | 2327 |
C | 180 | 134 | 16 | 20 | 6358 | 84 | 3248 |
D | 18 | 176 | 19 | 3 | 4393 | 81 | 2285 |
E | 213 | 45 | 66 | 10 | 494 | 34 | 269 |
F | 40 | 225 | 12 | 14 | 4847 | 88 | 2536 |
G | 57 | 186 | 16 | 19 | 3004 | 84 | 1595 |
H | 57 | 151 | 21 | 17 | 1895 | 79 | 1023 |
Phase | A | B | C | D | E | F | G | H |
---|---|---|---|---|---|---|---|---|
Ba5Si8O21 | 20 | 45 | 59 | 76 | 58 | 57 | 66 | 56 |
Ba4Si6O16 | 44 | 15 | 8 | / | 7 | 12 | 4 | 10 |
BaSi2O5 | 15 | 10 | 13 | 7 | 11 | 11 | 11 | 7 |
Amorphous | 21 | 30 | 20 | 17 | 24 | 20 | 19 | 27 |
Sample | Ba/Si (theo) | Ba/Si (exp) | Eu/Si (theo) | Eu/Si (exp) | Dy/Si (theo) | Dy/Si (exp) | Er/Si (theo) | Er/Si (exp) |
---|---|---|---|---|---|---|---|---|
1 | 0.625 | 0.60 | 2.5 × 10−3 | 2.3 × 10−3 | 11.25 × 10−3 | 10.75 × 10−3 | / | / |
2 | 0.625 | 0.59 | 2.5 × 10−3 | 2.4 × 10−3 | 11.25 × 10−3 | 10.75 × 10−3 | / | / |
A | 0.700 | 0.62 | 2.5 × 10−3 | 2.6 × 10−3 | 11.25 × 10−3 | 10.45 × 10−3 | / | / |
B | 0.700 | 0.64 | 2.8 × 10−3 | 2.6 × 10−3 | 11.25 × 10−3 | 11.05 × 10−3 | / | / |
C | 0.700 | 0.63 | 2.8 × 10−3 | 2.7 × 10−3 | 3.6 × 10−3 | 3.7 × 10−3 | / | / |
D | 0.700 | 0.65 | 2.8 × 10−3 | 2.7 × 10−3 | 3.6 × 10−3 | 3.5 × 10−3 | / | / |
E | 0.700 | 0.65 | 2.8 × 10−3 | 2.5 × 10−3 | / | / | 3.6 × 10−3 | 3.4 × 10−3 |
F | 0.700 | 0.66 | 2.8 × 10−3 | 2.9 × 10−3 | 3.6 × 10−3 | 3.8 × 10−3 | / | / |
G | 0.700 | 0.65 | 2.8 × 10−3 | 2.7 × 10−3 | 3.6 × 10−3 | 3.5 × 10−3 | / | / |
H | 0.700 | 0.63 | 2.8 × 10−3 | 2.6 × 10−3 | 3.6 × 10−3 | 3.7 × 10−3 | / | / |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvestri, A.; Ligabue, M.L.; Malavasi, G.; Lusvardi, G. Preparation and Luminescence Properties of Ba5Si8O21 Long Persistent Phosphors Doped with Rare-Earth Elements. Materials 2019, 12, 183. https://doi.org/10.3390/ma12010183
Silvestri A, Ligabue ML, Malavasi G, Lusvardi G. Preparation and Luminescence Properties of Ba5Si8O21 Long Persistent Phosphors Doped with Rare-Earth Elements. Materials. 2019; 12(1):183. https://doi.org/10.3390/ma12010183
Chicago/Turabian StyleSilvestri, Andrea, Maria Laura Ligabue, Gianluca Malavasi, and Gigliola Lusvardi. 2019. "Preparation and Luminescence Properties of Ba5Si8O21 Long Persistent Phosphors Doped with Rare-Earth Elements" Materials 12, no. 1: 183. https://doi.org/10.3390/ma12010183
APA StyleSilvestri, A., Ligabue, M. L., Malavasi, G., & Lusvardi, G. (2019). Preparation and Luminescence Properties of Ba5Si8O21 Long Persistent Phosphors Doped with Rare-Earth Elements. Materials, 12(1), 183. https://doi.org/10.3390/ma12010183