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Abstract: Contactless minority carrier lifetime (lifetime) measurements by means of microwave
detected photoconductivity are employed for oxidation process characterization and furnace profiling.
Characterization is performed on oxidized float zone substrates with high resistivity and outstanding
bulk quality, suggesting that the measured effective lifetime is strongly dominated by interface
recombination and therefore reflects the oxide quality. The applied approach requires neither test
structures nor time consuming measurements and is therefore of particular interest if high throughput
is required. The method is used to investigate the impact of oxidation furnace leakage as well
as to analyze the oxidation homogeneity across a horizontal oxidation furnace. For comparison,
capacitance-voltage measurements are conducted to characterize the oxide properties. It is found
that any type of furnace leakage, which induces fixed oxide charges as well as interface states, has a
heavy impact on the measured effective lifetime, especially on the shape of generation rate dependent
lifetime curves. Furthermore, a distinct lifetime decrease towards the tube door of the oxidation
furnace could be observed. The latter is even detectable in an ideal oxidation process, generating
high quality oxides. Besides plain equipment characterization, the presented approach is suitable
to optimize the oxidation process itself regarding different parameters like temperature, gas flow,
pressure, or process time.
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1. Introduction

Thermally grown silicon dioxide (SiO2) plays an essential role in today’s semiconductor device
technology. Easy fabrication, high dielectric strength, and an outstanding degree of chemical
passivation makes SiO2 the dielectric of choice for many silicon (Si) based devices. However, the actual
oxide quality, which is achieved across the oxidation furnace, strongly depends on the correct choice
of process parameters as well as on the equipment status. To monitor the oxidation process regarding
important electrical oxide properties, a variety of characterization techniques is available.

Probably the most common approach to gain information about the electrical oxide quality
are capacitance-voltage measurements, which are performed on metal oxide semiconductor (MOS)
capacitors [1]. In this method, a voltage is applied to the MOS structure in order to drive the
near-surface condition from inversion to accumulation or vice versa. The resulting capacitance-voltage
curves can be used to extract a variety of parameters, whereby the fixed oxide charge Qox as
well as the Si/SiO2 interface state density Dit are typically of particular interest. However, both
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capacitance-voltage measurements and the fabrication of MOS capacitors are very time-consuming,
which is a severe drawback, especially if high throughput is required. In addition, the fabrication of
MOS structures often requires high temperature process steps like post-implantation or forming gas
annealing, which may alter the oxide properties drastically, i.e., information about the plain oxidation
process is not easy to obtain.

A different technique to characterize the oxide quality are minority carrier lifetime (lifetime)
measurements, which are performed in dependence of the near-surface condition. While sweeping
the latter from accumulation to inversion, a distinct lifetime dip can be observed, which is directly
correlated to Qox and Dit [2]. Measurements may be performed by means of test structures like
gate-controlled point-junction diodes [2] and metal insulator systems with transparent gate [3]
or completely contactless using the corona-charged surface (CCS) approach [4]. While the first
two techniques suffer from the same disadvantages as capacitance-voltage measurements, i.e., the
fabrication of test structures, the CCS approach is predestined to characterize the plain oxidation
process. However, corona charging is still time-consuming and therefore unsuited if high throughput
is required. Especially if only qualitative information, i.e., the process uniformity across the furnace,
rather than quantitative values like Qox and Dit, are of interest.

Lifetime measurements may also be performed on oxidized substrates without any external
modulation of the near-surface condition. From such measurements typically effective lifetimes are
obtained, which depend on both bulk and interface recombination [5]. However, with the correct
substrate choice, the measured effective lifetime is heavily dominated by interface recombination and
therefore reflects the oxide quality [6]. In the present work, this approach is applied to investigate
the oxidation homogeneity across single wafers as well as the entire oxidation furnace. Lifetime
measurements are performed on oxidized float zone (FZ) substrates with high resistivity, which are
known for extremely high bulk lifetimes. Due to this fact, the measured effective lifetime is clearly
dominated by surface recombination, even if thermally grown oxides with very low interface densities
are used for surface passivation [6]. The applied approach does not require the fabrication of test
structures and is therefore ideally suited to characterize every single wafer of a batch process, especially
if only qualitative information about the process homogeneity is of interest. In addition, the quality
of the plain oxidation process is obtained since no additional high temperature process steps are
performed between oxidation and the actual measurements.

2. Materials and Methods

In order to prove that the lifetime measurements refer to the characteristics of the oxidation
furnace and not to different substrate properties, a set of high-resistivity FZ substrates served as
starting material for the present work. The wafers have similar resistivity ranges as well as identical
surface orientation, but were produced out of three different ingots. Such material is typically used
for detector or power applications and therefore expected to have an outstanding crystal quality.
In addition, slightly doped substrates are advantageous for contactless lifetime measurement, since
extremely high signal to noise ratios are obtained. Detailed material information can be found in
Table 1.

Table 1. Detailed information about the investigated material.

Batch Dopant Resistivity [kΩ cm] Orientation Thickness [µm] Diameter [mm]

A Phosphorus >1.0 <100> 450 150
B Phosphorus >1.0 <100> 450 150
C Phosphorus >1.0 <100> 450 100

A thermal dry oxide of approximately 200 nm was grown on every wafer using a horizontal
oxidation furnace. After the oxidation, in situ post oxidation annealing under nitrogen atmosphere
was performed for 15 min in order to reduce fixed oxide charges as well as Si/SiO2 interface states.
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Both oxidation and post oxidation annealing were carried out at T = 1030 ◦C at atmospheric pressure.
Ramp up and cool down were performed under oxygen and nitrogen atmosphere, respectively. Before
every oxidation, a pre-oxidation clean was conducted in the furnace. All wafers were oxidized as
delivered by the manufacturer, i.e., neither surface preparation nor cleaning was performed.

The oxidation process was split into five different runs, whereby every run contained only wafers
from one single batch. In order to investigate the impact of furnace leakages on the oxide properties,
two runs (α and β) were performed using a defective tube door sealing, i.e., leakage at the tube door
was intentionally provoked. The other oxidation runs (γ, δ and ε) were conducted using a proper
tube door sealing. Apart from the intentionally provoked leakage, all process parameters were kept
constant for every oxidation run. A detailed description and loading plan of each oxidation can be
found in Table 2. To avoid any systematic effect, which may be caused by material deviations across
the ingot, the wafers were placed randomly with respect to the wafer number, i.e., ingot position, in
the quartz boat. The latter has 50 slots, whereby slot 1 is the innermost quartz boat position and slot 50
is located next to the tube door. During the oxidation all slots were occupied, either by dummy wafers
or FZ substrates.

Table 2. Detailed information about the furnace loading.

Oxidation Run Batch Comments

α B Leaky tube door
β C Leaky tube door
γ B
δ C
ε A

Following the oxidation, a detailed lifetime analysis by means of the microwave detected
photoconductivity (MDP) technique [7] was conducted on every FZ wafer. In MDP, optical generation
of excess carriers is performed until a steady state photoconductivity is reached (see Figure 1).
After the optical excitation is switched off, excess carriers decay, and cause a decrease of the measured
photoconductivity. The lifetime is calculated from the observed exponential decay, whereby linear
regression is performed between 75% and 25% of the signal height (see Figure 1) [8]. Rise and decay of
the photoconductivity are measured by microwave absorption, therefore, the wafer to be measured
is part of a resonant microwave cavity. Excitation is typically performed by means of different laser
diodes. The schematic arrangement of an MDP measurement setup is depicted in Figure 2. A detailed
description of the MDP measurement principle can be found in Reference [9].
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The measured lifetime is typically an effective lifetime τeff, which can be expressed by

1
τeff

=
1
τb

+
1
τs

(1)

where τb is the bulk and τs the surface or interface lifetime [5]. In oxidized FZ material with
outstanding crystal quality, the bulk lifetime τb is expected to be significantly higher than the interface
lifetime τs [6]. Thus, the measured effective lifetime τeff is limited by surface recombination, which
depends on the Si/SiO2 interface state density Dit, the fixed oxide charge Qox, the capture cross section
for electrons σn, and holes σp as well as the charge carrier concentration of electrons ns and holes ps at
the surface [2].

The diffusion length L is closely related to the effective lifetime and may be calculated according
to the equation [10]

L =
√

D τeff (2)

Depending on the injection level, D is either the minority carrier or the ambipolar diffusion
coefficient [5].

All lifetime measurements were performed on a commercially available MDPmap setup (Freiberg
Instruments), which enables fast lifetime mappings on wafer scale. Optical excitation was performed
by means of IR laser diodes (977 nm) with 0.5 mm spot diameter, which cover an optical generation
rate ranging from 1.2 × 1018 cm−3 s−1 to 5.6 × 1021 cm−3 s−1. The optical generation rate Gopt is
calculated according to

Gopt =
1
d

∫ d

0
α Φ(x) dx (3)

where d is the wafer thickness, α the absorption coefficient and Φ(x) the optical flux [11].
The effective lifetime across every wafer was mapped with 2 mm raster resolution, whereby an

edge exclusion of 5 mm was used. Depending on the wafer diameter, this results in approximately
1590 and 3850 measuring points, respectively. To ensure comparability, all mappings were performed
with an optical generation rate of 5.6 × 1021 cm−3 s−1. After the wafer mapping, the median value
as well as the 25–75% quantile, also known as interquartile range, were stored and used for further
evaluation. In this context, the 25–75% quantile is defined as the difference between the third quartile
and the first quartile, i.e., Q0.75–Q0.25.

Additionally, generation rate dependent lifetime measurements were performed at the center of
each wafer, i.e., transients are recorded for different optical generation rates and the effective lifetime
is subsequently extracted from each transient as shown in Figure 1.

A typical measurement sequence, i.e., wafer mapping as well as generation rate dependent
lifetime analysis, takes approximately 5 min.
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For capacitance-voltage measurements, circular MOS capacitors with 1 mm2 Aluminum/Silicon
(Al/Si) gate area were fabricated on several oxidized FZ wafers. Fabrication of MOS structures required
the implantation of phosphorus in order to create ohmic contacts to the substrate as well as annealing
in nitrogen and forming gas atmosphere. Capacitance-voltage analysis was performed across all test
wafers using a B1500A Semiconductor Device Analyzer (Agilent). Measurements were carried out for
gate voltages between −4 V and 4 V, either as plain quasi static measurement or by superimposing
an alternating current (AC) signal with 5 kHz frequency and 75 mV effective amplitude to the direct
current (DC) voltage. Before data evaluation, all capacitance-voltage data were corrected for parasitic
effects such as series resistance and offset cable capacitance.

Depending on the applied voltage, different capacitance-voltage characteristics may be obtained.
If a plain DC voltage is applied to the MOS capacitor, a so-called quasi static or low frequency behavior
is observed. Si/SiO2 interface states contribute to the measured low frequency capacitance Clf and
identical capacitances are observed under inversion and accumulation conditions, which are equal
to the oxide capacitance Cox. If a small high frequency signal is superimposed to the DC bias, the
inversion capacitance may be determined by a modulated space charge region and interface traps may
not contribute to the measured high frequency capacitance. However, the actual frequency at which
high frequency behavior is observed strongly depends on the material properties. High frequency
capacitance-voltage characteristics can be used to estimate the semiconductor doping density as well
as the flatband voltage Vfb. The latter is related to the fixed oxide charge Qox by the equation

Qox = (ϕms − Vfb)Cox (4)

where ϕms is the metal-semiconductor work function difference [5].
The Si/SiO2 interface state density Dit may be calculated from the expression

Dit =
1
q2

(
Clf Cox

Cox − Clf
− Cs

)
(5)

where q is the elementary charge and CS is the semiconductor capacitance that is not known a priori.
The determination of CS requires the knowledge of the relation between the gate voltage VG and the
surface potential Φs, which is obtained by integration of the low frequency capacitance-voltage curve:

Φs =
∫ VG2

VG1

(
1 − Clf

Cox

)
dVG + ∆ (6)

If integration is started at the flatband condition, i.e., VG1 = Vfb, the integration constant ∆
becomes 0 [5].

3. Results

3.1. Oxidation Process Characterization

The impact of furnace leakage on the effective lifetime across a single wafer is illustrated in
Figure 3. Oxidized FZ substrates from the runs α and β, i.e., with a defective tube door, show a
significantly reduced effective lifetime compared to those wafers, which were oxidized during the
runs γ and δ. From Figure 3 it is clearly visible that for every oxidation run a lifetime decrease appears
to occur in direction to the tube door. The latter effect will be studied in detail in Section 3.2.

The influence of leakage on the measured effective lifetime is further investigated by means of
injection dependent lifetime analysis. Due to observed high lifetimes (see Figure 3), the diffusion
lengths, estimated according to Equation (2), strongly exceed the laser spot diameter and it is not
possible to calculate the actual injection level [8]. Therefore, throughout this work the effective lifetime
is plotted as a function of the optical generation rate instead of the injection level.
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Figure 3. For oxidation runs α, β, γ and δ, respectively, the effective lifetime (median value,
25–75% quantile) is shown as a function of the quartz boat position and wafer number. While oxidation
runs α and γ only contained 150 mm wafers from batch B, oxidation runs β and δ only contained
100 mm wafers from batch C. Quartz boat positions 21 and 26, respectively, are located in direction of
the tube door.

Exemplary generation rate dependent lifetime curves, which were recorded in the center of each
wafer, are depicted in Figure 4. In the case of the nearly ideal oxidation runs γ and δ, the highest
effective lifetimes are observed for the maximum optical generation rate of 5.6 × 1021 cm−3 s−1.
The normalized lifetime is initially decreasing, passes a minimum, and finally increases with declining
optical generation rates. For runs α and β with a leaky tube door, an exact opposite behavior is
observed. Throughout the generation rate range, the normalized lifetime increases with declining
optical generation rate and the highest lifetimes are observed for the minimum optical generation rate
of 1.2 × 1019 cm−3 s−1. It is to mention that the strong impact of furnace leakage on the measured
lifetime occurs independent of batch and wafer diameter, i.e., this effect can clearly be attributed to
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Capacitance-voltage measurements, which were performed on MOS structure across one wafer
from oxidation run β, revealed an average fixed oxide charge density of 1.3 × 1011 cm−2 in addition to
an average Si/SiO2 interface state density of about 2 × 1010 cm−2 eV−1 at midgap. It is to mention
that annealing in nitrogen and forming gas atmosphere was performed during the fabrication of
MOS structures, which may have reduced the fixed oxide charge and Si/SiO2 interface state density,
respectively [1]. As clearly visible on the exemplary capacitance-voltage curves from Figure 5, the
fixed oxide charge as well as the Si/SiO2 interface state density at midgap are reduced for oxidation
run δ. Both values are below the detection limit of the applied characterization methods, suggesting
that Qox < 1 × 1010 cm−2 and Dit < 1.0 × 1010 cm−2 eV−1 [5].
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3.2. Furnace Profiling

Detailed results of oxidation γ, which was performed on 150 mm substrates from batch B, are
shown in Figure 6. In general, an inhomogeneous lifetime profile is clearly visible. Next to the lifetime
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A similar picture was observed for oxidation δ (see Figure 7). The latter contained 100 mm wafers
from batch C, which were intentionally placed up to quartz boat position 26. Starting form quartz boat
position 8, the measured effective lifetime is continuously decreasing with the quartz boat positions,
whereby slight lifetime oscillations are visible. Except for the wafers, which were placed in quartz boat
positions 20 and 22, the observed lifetimes are comparable to those obtained from oxidation γ.
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The lifetime decrease towards the tube door appeared even more pronounced in the case
of generation rate dependent lifetime measurements, which were performed in the center of all
investigated wafers. Exemplary results for each oxidation are depicted in Figures 9–11. For all optical
generation rates, a significant lifetime decrease is observed at the outmost measured quartz boat slot.
However, the shape of the generation rate dependent lifetime curve appears almost unchanged for
all oxidations and quartz boat position. The measured effective lifetime is initially decreasing with
declining optical generation rate, followed by a slight increase for low optical generation rates, which
may be attributed to trapping effects [12].

Exemplary results of the quasi static capacitance-voltage measurements, which were performed
on MOS structures of one test wafer from the oxidation runs γ to ε, are illustrated in Figure 12.
Almost no differences are observed between the quasi static capacitance-voltage curves, suggesting
that all oxides are of high and similar quality.
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4. Discussion

4.1. Oxidation Process Characterization

Fixed oxide charges as well as Si/SiO2 interface states are structural oxidation induced defects,
which arise in every oxidation and are therefore unavoidable. However, their magnitude is significantly
reduced during the post oxidation anneal under pure nitrogen atmosphere [1]. In the case of oxidation
run β, capacitance-voltage measurements revealed high fixed oxide charge as well as enhanced Si/SiO2

interface densities (see Figure 5). Due to the intentionally provoked furnace leakage, ambient air
entered the furnace during the entire oxidation process. In particular, post oxidation annealing was
not performed under pure nitrogen atmosphere and it is assumed that oxidation induced defects
were not properly annealed. In addition, ambient air and therefore oxygen was present during the
cool down phase, which may have even increased the fixed oxide charge density [13]. Compared to
an ideal oxidation, i.e., without intentionally provoked leakage, the measured effective lifetime was
heavily affected, independent of batch and wafer diameter. Across the characterized wafers, decreased
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lifetimes were observed for the highest possible optical generation rate, which may be explained by
higher Si/SiO2 interface states (see Figure 3).

For oxidation runs α and β, the effective lifetime is significantly increasing with declining optical
generation rate; a behavior, which is not observed for the ideal oxidation (see Figure 4). This effect
can only be explained qualitatively, since, as mentioned above, the true injection levels are not known.
However, it can be assumed that the injection level decreases for declining optical generation rates.
In general, the recombination at the Si/SiO2 interface is most effective when the ratio of the hole
to electron capture cross section equals the ratio of the electron to hole carrier concentration at the
interface, i.e., [14]

σp

σn
=

ns

ps
≈ 1

100
(7)

For lower injection levels, band bending at the Si/SiO2 interface is entirely dominated by the
high positive oxide charge. The Si/SiO2 interface is strongly accumulated by electrons and holes
are effectively repelled. Since almost no holes are present at the Si/SiO2 interface, the condition
stated in Equation (7) is violated, no effective recombination takes place, and high lifetimes are
observed. For higher injection levels, the bands are flattened and the ratio of the surface excess carrier
concentration becomes equal the ratio of the capture cross sections. Therefore, effective recombination
can take place and lower lifetimes are observed.

In the case of the almost ideal oxidation runs δ and γ, the measured lifetime is decreasing with
declining optical generation rate. Due to the moderate positive oxide charge only small band bending
occurs at the Si/SiO2 interface. For lower injection levels, the ratio of the excess carrier concentration
is assumed to be equal the ratio of the capture cross sections, which results in a high recombination
activity and therefore low lifetimes. For increasing injection levels, the ratio of the surface excess
carrier concentration approaches unity, thus violating the condition, which is stated in Equation (7).
The result is a reduced recombination activity and hence higher lifetimes. Similar relations between
injection dependent surface recombination and fixed oxide charge were predicted in the theoretical
work by Otaredian [15] as well as discussed by Aberle et al. [16].

4.2. Furnace Profiling

For all oxidations, a distinct lifetime decrease towards the tube door of the oxidation furnace
was observed (see Figures 6–8). Since measurements were performed on FZ substrates from different
ingots and wafers were placed randomly in the oxidation furnace, this effect is clearly attributed to
an increased interface recombination, i.e., decreasing interface lifetime. In contrast, the relatively low
lifetimes, which were observed across oxidation run ε as well as for quartz boat positions 20 and 22 of
oxidation run δ, are assumed to originate from a reduced bulk quality. Exemplary C–V measurements
suggest that no strong leakage occurred and the obtained thermal oxides are of high and almost equal
quality (see Figure 12).

Despite the fact that oxidation runs γ to ε were performed by means of proper tube door sealing,
small residual leakage may have still occurred and caused lower lifetimes at outer quartz boat positions.
Additionally, inhomogeneous temperature profiles as well as back diffusion from the exhaust system
may be an explanation. The shape of the generation rate dependent lifetime curves appears almost
unchanged for all oxidations and quartz boat positions, and there is no indication for an increased
fixed oxide charge concentration towards the tube door (see Figures 9–11). Therefore, it is assumed
that the reduced lifetimes at outer quartz boat positions are caused by an enhanced Si/SiO2 interface
state density.

The results suggest that in this specific furnace configuration, homogenous profiles across the
furnace are only achievable at the innermost quartz boat positions.
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5. Conclusions

In the present work, contactless lifetime measurements were performed to analyze the oxidation
homogeneity across a horizontal oxidation furnace. Characterization was performed by means of
various FZ substrates with high bulk quality, suggesting that the measured effective lifetime is strongly
dominated by interface recombination and therefore reflects the oxide quality. The presented approach
was successfully used to identify strong leaks, which were intentionally provoked. In addition, it was
shown that even small inhomogeneities in an otherwise ideal oxidation process can be detected with a
fast and simple measurement.

The applied approach requires neither test structure nor time consuming measurements and is
therefore of particular interest if high throughput is required. Since wafers are not destroyed during
the characterization, the analyzed material can even be used for further device fabrication.

Characterization is not limited to the MDP technique or FZ substrates. In principle
other contactless lifetime measurement methods may be used in combination with high bulk
lifetime materials.

The presented technique allows a fast and accurate furnace profiling with respect to non-uniform
process parameters. Besides plain equipment characterization, the presented approach is suitable
to optimize the oxidation process itself regarding different parameters like temperature, gas flow,
pressure, or process time.
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