Demineralization, Collagen Modification and Remineralization Degree of Human Dentin after EDTA and Citric Acid Treatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dentine Preparation and Treatment
2.2. ESEM/EDX Analysis
2.3. FT-IR Analysis
2.4. Statistical Analysis
3. Results
3.1. 1% EDTA
3.2. 10% EDTA
3.3. 17% EDTA
3.4. Citric Acid Solution
3.5. Control
4. Discussion
5. Conclusions
- Iapatite/Iamide II and Ca/N and P/N ratios were reduced after 10 min of treatment with chelating agents, suggesting a demineralization of dentine (higher demineralization in 10% citric acid and lower in 17% EDTA).
- No significant changes in I1410(carbonate)/I554(phosphate) ratio were observed after 10 min; chelating agents removed only apatite and not carbonate in the demineralized samples.
- Shift in collagen IR Amide II and III bands after treatment with 10% EDTA, 17% EDTA, and 10% citric acid; the collagen network performed a rearrangement.
- Iapatite/Iamide II ratio increased after 24 h in SBF; a remineralization occurred in each sample; those treated with 1% EDTA had a similar ratio to the control group.
- I1410(carbonate)/I554(phosphate) ratio decreased in 1% EDTA treated samples after 24 h; there was a reduction in carbonate content.
- Iapatite/Iamide II ratio increased after two months from the treatment with 1% and 10% EDTA; Ca/N and P/N ratios, in addition to increasing in previously mentioned treatments, also increased after treatment with 17% EDTA. Results indicate dentine remineralization in all cases.
- Both ESEM/EDX and IR spectroscopy techniques revealed that treatment with 1% EDTA yielded the highest remineralization, while treatment with 10% citric acid yielded the lowest.
Author Contributions
Funding
Conflicts of Interest
References
- Prati, C.; Selighini, M.; Ferrieri, P.; Mongiorgi, R. Scanning electron microscopic evaluation of different endodontic procedures on dentin morphology of human teeth. J. Endod. 1994, 20, 174–179. [Google Scholar] [CrossRef]
- Foschi, F.; Nucci, C.; Montebugnoli, L.; Marchionni, S.; Breschi, L.; Malagnino, V.A.; Prati, C. SEM evaluation of canal wall dentine following use of Mtwo and ProTaper NiTi rotary instruments. Int. Endod. J. 2004, 37, 832–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirani, C.; Pelliccioni, G.A.; Marchionni, S.; Montebugnoli, L.; Piana, G.; Prati, C. Effectiveness of three different retreatment techniques in canals filled with compacted gutta-percha or thermafil: A scanning electron microscope study. J. Endod. 2009, 35, 1433–1440. [Google Scholar] [CrossRef] [PubMed]
- Pirani, C.; Feletti, G.; Cretti, R.; Acquaviva, G.L.; Marchionni, S.; Prati, C. SEM evaluation of root canal dentin morphology after Ni-Ti instrumentation. J. Appl. Biomater. Biomech. 2009, 7, 116–122. [Google Scholar] [PubMed]
- Mader, C.L.; Baumgartner, J.G.; Peters, D.D. Scanning electron microscopic investigation of the smeared layer on root canal walls. J. Endod. 1984, 10, 477–483. [Google Scholar] [CrossRef]
- Wu, L.; Mu, Y.; Deng, X.; Zhang, S.; Zhou, D. Comparison of the effect of four decalcifying agents combined with 60 °C 3% sodium hypochlorite on smear layer removal. J. Endod. 2012, 38, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Hulsmann, M.; Heckendorff, M.; Lennon, A. Chelating agents in root canal treatment: Mode of action and indications for their use. Int. Endod. J. 2003, 36, 810–830. [Google Scholar] [CrossRef]
- Haapasalo, M.; Endal, U.; Zandi, H.; Coil, J.M. Eradication of endodontic infection by instrumentation and irrigation solutions. Endod. Top. 2005, 10, 77–102. [Google Scholar] [CrossRef]
- Ulusoy, Ö.İ.; Görgül, G. Effects of different irrigation solutions on root dentin microhardness, smear layer removal and erosion. Aust. Endod. J. 2013, 39, 66–72. [Google Scholar] [CrossRef]
- Goldman, L.B.; Goldman, M.; Kronman, J.H.; Lin, P.S. The efficacy of several irrigating solutions for endodontics: A scanning electron microscopic study. Oral Surg. Oral Med. Oral Pathol. 1981, 52, 197–204. [Google Scholar] [CrossRef]
- Baumgartner, J.; Mader, C. A scanning electron microscopic evaluation of four root canal irrigation regimens. J. Endod. 1987, 13, 147–157. [Google Scholar] [CrossRef]
- Wayman, B.E.; Kopp, W.M.; Pinero, G.J.; Lazzari, E.P. Citric and lactic acids as root canal irrigants in vitro. J. Endod. 1979, 5, 258–265. [Google Scholar] [CrossRef]
- Scelza, M.F.; Antoniazzi, J.H.; Scelza, P. Efficacy of final irrigation: A scanning electron microscopic evaluation. J. Endod. 2000, 26, 355–358. [Google Scholar] [PubMed]
- Machado-Silveiro, L.F.; Gonzalez-Lopez, S.; Gonzalez-Rodriguez, M.P. Decalcification of root canal dentin by citric acid, EDTA and sodium citrate. Int. Endod. J. 2004, 37, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Heredia, M.; Ferrer-Luque, C.M.; González-Rodríguez, M.P.; Martín-Peinado, F.J.; González-López, S. Decalcifying effect of 15% EDTA, 15% citric acid, 5% phosphoric acid and 2.5% sodium hypochlorite on root canal dentin. Int. Endod. J. 2008, 4, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.A.; Bowen, R.L.; Eick, J.D.; Henderson, D.A. Smear layer removal and bonding consideration. Oper. Dent. 1984, 3, 30–34. [Google Scholar]
- Cooke, H.G.; Grower, M.F.; Del Rio, C. Effects of instrumentation with a chelating agent on the periapical seal of obturated root canals. J. Endod. 1976, 2, 312–314. [Google Scholar]
- Biesterfeld, R.C.; Taintor, J.F. A comparison of periapical seals of root canals with RC-Prep or Salvizol. Oral Surg. Oral Med. Oral Pathol. 1980, 49, 532–537. [Google Scholar] [CrossRef]
- Mountouris, G.; Silikas, N.; Eliades, G. Effect of sodium hypochlorite treatment on the molecular composition and morphology of human coronal dentin. J. Adhes. Dent. 2004, 6, 175–182. [Google Scholar]
- Eliades, G.; Mantzourani, M.; Labella, R.; Mutti, B.; Sharma, D. Interactions of dentin desensitisers with human dentin: Morphology and composition. J. Dent. 2013, 41, 28–39. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, X.; Liu, Y.; Wang, Y. A fourier transform infrared spectroscopy analysis of carious dentin from transparent zone to normal zone. Caries Res. 2014, 48, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, M.G.; Taddei, P.; Siboni, F.; Modena, E.; De Stefano, E.D.; Prati, C. Biomimetic remineralization of human dentin using promising innovative calcium-silicate hybrid "smart” materials. Dent. Mater. 2011, 27, 1055–1069. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, M.G.; Iezzi, G.; Piattelli, A.; Prati, C.; Scarano, A. Osteoinductive potential and bone-bonding ability of ProRoot MTA, MTA Plus and Biodentine in rabbit intramedullary model: Microchemical characterization and histological analysis. Dent. Mater. 2017, 3, 221–238. [Google Scholar] [CrossRef] [PubMed]
- Taddei, P.; Prati, C.; Gandolfi, M.G. A poly (2-hydroxyethyl methacrylate)-based resin improves the dentin remineralizing ability of calcium silicates. Mater. Sci. Eng. C 2017, 77, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Neoh, K.G.; Lin, C.C.; Kishen, A. Remineralization of partially demineralized dentin substrate based on a biomimetic strategy. J. Mater. Sci. Mater. Med. 2012, 23, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Belbachir, K.; Noreen, R.; Gouspillou, G.; Petibois, C. Collagen types analysis and differentiation by FTIR spectroscopy. Anal. Bioanal. Chem. 2009, 395, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Muscariello, L.; Rosso, F.; Marino, G.; Giordano, A.; Barbarisi, M.; Cafiero, G.; Barbarisi, A. A critical overview of ESEM applications in the biological field. J. Cell Physiol. 2005, 205, 328–334. [Google Scholar] [CrossRef] [Green Version]
- Bergmans, L.; Moisiadis, P.; Van Meebeek, B.; Quirynen, M.; Lambrechts, P. Microscopic observation of bacteria: Review highlighting the use of environmental SEM. Int. Endod. J. 2004, 38, 775–788. [Google Scholar] [CrossRef]
- Gandolfi, M.G.; Farascioni, S.; Pashley, D.H.; Gasparotto, G.; Carlo, P. Calcium silicate coating derived from Portland cement as treatment for hypersensitive dentine. J. Dent. 2008, 36, 565–578. [Google Scholar] [CrossRef]
- Sauro, S.; Gandolfi, M.G.; Prati, C.; Mongiorgi, R. Oxalate-containing phytocomplexes as dentine desensitisers: An in vitro study. Arch. Oral. Biol. 2006, 51, 655–664. [Google Scholar] [CrossRef]
- Nelson, D.G.A.; Featherstone, J.D. Preparation, analysis, and characterization of carbonated apatites. Calcif. Tissue Int. 1982, 34, S69–S81. [Google Scholar] [PubMed]
- Featherstone, J.D.; Pearson, S.; LeGeros, R.Z. An infrared method for quantification of carbonate in carbonated apatites. Caries Res. 1984, 18, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Krajewski, A.; Ravaglioli, A.; Tinti, A.; Taddei, P.; Mazzocchi, M.; Martinetti, R.; Fagnano, C.; Fini, M. Comparison between the in vitro surface transformations of AP40 and RKKP bioactive glasses. J. Mater. Sci. Mater. Med. 2005, 16, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Yamada, R.S.; Armas, A.; Goldman, M.; Lin, P.S. A scanning electron microscopic comparison of a high volume final flush with several irrigating solutions: Part 3. Int. Endod. J. 1983, 9, 137–142. [Google Scholar] [CrossRef]
- Harashima, T.; Kimura, Y.; Matsumoto, K.; Takeda, F.H. A comparative study of the removal of smear layer by three endodontic irrigants and two types of laser. Int. Endod. J. 1999, 32, 32–39. [Google Scholar]
- Khedmat, S.; Shokouhinejad, N. Comparison of the efficacy of three chelating agents in smear layer removal. J. Endod. 2008, 34, 599–602. [Google Scholar] [CrossRef] [PubMed]
- Prado, M.; Gusman, H.; Gomes, B.P.; Simão, R.A. Scanning electron microscopic investigation of the effectiveness of phosphoric acid in smear layer removal when compared with EDTA and citric acid. J. Endod. 2011, 37, 255–258. [Google Scholar] [CrossRef]
- Tuncer, A.; Tuncer, S. Effect of different final irrigation solutions on dentinal tubule penetration depth and percentage of root canal sealer. J. Endod. 2012, 38, 860–863. [Google Scholar] [CrossRef]
- Ramírez-Bommer, C.; Gulabivala, K.; Ng, Y.L.; Young, A. Estimated depth of apatite and collagen degradation in human dentine by sequential exposure to sodium hypochlorite and EDTA: A quantitative FTIR study. Int. Endod. J. 2018, 51, 469–478. [Google Scholar] [CrossRef]
- Tartari, T.; Bachmann, L.; Zancan, R.F.; Vivan, R.R.; Duarte, M.A.H.; Bramante, C.M. Analysis of the effects of several decalcifying agents alone and in combination with sodium hypochlorite on the chemical composition of dentin. Int. Endod. J. 2017, 51, 42–54. [Google Scholar] [CrossRef]
- Sionkowska, A.; Kozłowska, J. Characterization of collagen/hydroxyapatite composite sponges as a potential bone substitute. Int. J. Biol. Macromol. 2010, 47, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Prati, C.; Pirani, C.; Zamparini, F.; Gatto, M.R.; Gandolfi, M.G. A 20-year historical prospective cohort study of root canal treatments. A Multilevel analysis. Int. Endod. J. 2018, 51, 955–968. [Google Scholar] [CrossRef] [PubMed]
Treatments | Manufacturing | Components |
---|---|---|
1% EDTA | Experimental solution obtained by dilution of Tubuliclean 10% with distilled water | 1% ethylenediaminetetraacetic acid in deionized water, pH 7.4 |
10% EDTA (Tubuliclean 10%) | OGNA (Muggiò, MI, Italy) | 10% ethylenediaminetetraacetic acid (EDTA) buffered at neutral pH, pH 6.8 |
17% EDTA (Germ EDTA 17%) | GermDental (Kerr, Scafati, SA, Itay) | 17% ethylenediaminetetraacetic acid (EDTA), pH 9.9 |
10% Citric acid | Experimental solution obtained by the solubilization of 99% citric acid monohydrate (Sigma Aldrich, Saint Louis, MO, USA) in distilled water | 10% citric acid monohydrate in deionized water, pH 1.8 |
Treatments | Smear Layer | T0 | 24 Hours | 2 Months |
---|---|---|---|---|
1% EDTA | 0.84 ± 0.06 Aa | 0.59 ± 0.05 Aa | 0.67 ± 0.14 Aa | 2.34 ± 0.51 Ba |
10% EDTA | 0.85 ± 0.09 Aa | 0.40 ± 0.03 Ba | 0.31 ± 0.03 Bb | 0.91 ± 0.49 Ab |
17% EDTA | 0.72 ± 0.05 Ab | 0.70 ± 0.04 Ab | 0.66 ± 0.06 Aa | 1.56 ± 0.39 Bc |
10% Citric acid | 1.09 ± 0.06 Ac | 0.26 ± 0.02 Bc | 0.31 ± 0.03 Bb | 0.33 ± 0.01 Bd |
Control | 0.83 ± 0.08 Aa | 1.17 ± 0.04 Bd | 1.12 ± 0.08 Bc | 1.45 ± 0.19 Bc |
Treatments | Smear Layer | T0 | 24 Hours | 2 Months |
---|---|---|---|---|
1% EDTA | 0.62 ± 0.05 Aa | 0.41 ± 0.02 Aa | 0.48 ± 0.10 Aa | 1.80 ± 0.46 Ba |
10% EDTA | 0.61 ± 0.07 Aa | 0.29 ± 0.02 Ba | 0.23 ± 0.03 Ba | 0.65 ± 0.35 Ab |
17% EDTA | 0.53 ± 0.06 Aa | 0.48 ± 0.03 Aa | 0.47 ± 0.04 Aa | 1.11 ± 0.27 Bc |
10% Citric acid | 0.79 ± 0.03 Aa | 0.19 ± 0.01 Ba | 0.22 ± 0.02 Ba | 0.22 ± 0.01 Bd |
Control | 0.65 ± 0.06 Aa | 0.82 ± 0.03 Bb | 0.78 ± 0.06 Bb | 1.04± 0.14 Bc |
Treatments | Smear Layer | T0 | 24 Hours | 2 Months |
---|---|---|---|---|
1% EDTA | 1.35 ± 0.01 Aa | 1.43 ± 0.06 Ba | 1.41 ± 0.02 Ba | 1.31 ± 0.04 Aa |
10% EDTA | 1.38 ± 0.01 Aa | 1.41 ± 0.04 Aa | 1.36 ± 0.01 Bb | 1.41 ± 0.01 Ab |
17% EDTA | 1.32 ± 0.02 Ab | 1.47 ± 0.01 Bb | 1.40 ± 0.02 Ca | 1.40 ± 0.03 Cb |
10% Citric acid | 1.38 ± 0.03 Aa | 1.33 ± 0.01 Bc | 1.43 ± 0.02 Ca | 1.45 ± 0.02 Cc |
Control | 1.27 ± 0.01 Ac | 1.42 ± 0.00 Ba | 1.43 ± 0.01 Ba | 1.40 ± 0.01 Bb |
Treatments–Time | Collagen Amide II | Collagen COO− Stretching Band | Collagen Amide III | Apatite, ν3 PO43− Stretching |
---|---|---|---|---|
Smear layer | 1548 | 1338 | 1243 | 1006 |
1% EDTA–T0 | 1548 | 1338 | 1243 | 1000 |
24 hours | 1548 | 1338 | 1243 | 1005 |
2 months | not detected | not detected | not detected | 992 |
10% EDTA–T0 | 1554 | 1336 | 1241 | 1004 |
24 hours | 1554 | 1336 | 1241 | 1003 |
2 months | very weak | not detected | not detected | 993 |
17% EDTA–T0 | 1570–1548 | 1337 | 1242 | 1005 |
24 hours | 1548 | 1339 | 1241 | 1005 |
2 months | 1548 | 1340 | 1241 | 1011 |
10% citric acid–T0 | 1548 | 1339 | 1240 | 1006 |
24 hours | 1548 | 1339 | 1240 | 1003 |
2 months | 1548 | 1339 | 1240 | 1003 |
control–T0 | 1548 | 1338 | 1243 | 1006 |
24 hours | 1548 | 1338 | 1243 | 1006 |
2 months | 1548 | 1338 | 1243 | 1006 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gandolfi, M.G.; Taddei, P.; Pondrelli, A.; Zamparini, F.; Prati, C.; Spagnuolo, G. Demineralization, Collagen Modification and Remineralization Degree of Human Dentin after EDTA and Citric Acid Treatments. Materials 2019, 12, 25. https://doi.org/10.3390/ma12010025
Gandolfi MG, Taddei P, Pondrelli A, Zamparini F, Prati C, Spagnuolo G. Demineralization, Collagen Modification and Remineralization Degree of Human Dentin after EDTA and Citric Acid Treatments. Materials. 2019; 12(1):25. https://doi.org/10.3390/ma12010025
Chicago/Turabian StyleGandolfi, Maria Giovanna, Paola Taddei, Anna Pondrelli, Fausto Zamparini, Carlo Prati, and Gianrico Spagnuolo. 2019. "Demineralization, Collagen Modification and Remineralization Degree of Human Dentin after EDTA and Citric Acid Treatments" Materials 12, no. 1: 25. https://doi.org/10.3390/ma12010025
APA StyleGandolfi, M. G., Taddei, P., Pondrelli, A., Zamparini, F., Prati, C., & Spagnuolo, G. (2019). Demineralization, Collagen Modification and Remineralization Degree of Human Dentin after EDTA and Citric Acid Treatments. Materials, 12(1), 25. https://doi.org/10.3390/ma12010025