Fabrication and Characterization of Low Methoxyl Pectin/Gelatin/Carboxymethyl Cellulose Absorbent Hydrogel Film for Wound Dressing Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents Used
2.2. Preparation of Hydrogel Films
2.3. Hydrogel Film Characterizations
2.3.1. Morphological Analysis Using Scanning Electron Microscopy
2.3.2. Film Thickness
2.3.3. Tensile Strength
2.3.4. Fluid Uptake Ability
2.3.5. Water Retention Capacity
2.3.6. Water Vapor Transmission Rate
2.3.7. Integrity Value
2.4. Test of Antibiotic-Containing Hydrogel Films’ Ability to Confer an Antimicrobial Property
2.5. Statistical Analysis
3. Results and Discussion
3.1. Preparation and Morphology of Hydrogel Films
3.2. Mechanical Properties of Hydrogel Films
3.3. Fluid Uptake Ability, Water Retention Capacity, Water Vapor Transmission Rate, and Integrity Value of Hydrogel Films
3.4. Anti-Bacterial Activity of Hydrogel Film Loaded with Povidone Iodine
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kane, J.B.; Tomkins, R.G.; Yarmush, M.L.; Burke, J.F. Burn dressings. In An Introduction to Materials in Medicine; Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E., Eds.; Academic Press: San Diego, CA, USA, 1996; pp. 360–370. [Google Scholar]
- Choi, Y.S.; Hong, S.R.; Lee, Y.M.; Song, K.W.; Park, M.H.; Nam, Y.S. Studies on gelatin-containing artificial skiN: II. Preparation and characterization of crosslinked gelatin-hyaluronate sponge. J. Biomed. Mater. Res. (Appl. Biomater.) 1999, 48, 631–639. [Google Scholar] [CrossRef]
- Azad, A.K.; Sermsintham, N.; Chandrkrachang, S.; Stevens, W.F. Chitosan membrane as a wound-healing dressing: Characterization and clinical application. J. Biomed. Mater. Res. Part B 2004, 69, 216–222. [Google Scholar] [CrossRef]
- Atiyeh, B.S.; Hayek, S.N.; Gunn, S.W. New technologies for burn wound closure and healing: Review of the literature. Burns 2005, 31, 944–956. [Google Scholar] [CrossRef] [PubMed]
- Singer, A.J.; Dagum, A.B. Current management of acute cutaneous wounds. N. Engl. J. Med. 2008, 359, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, T.; Newton, H. Wound dressings: Principles and practice. Surgery 2011, 29, 491–495. [Google Scholar] [CrossRef]
- Kannon, G.A.; Garrett, A.B. Moist wound healing with occlusive dressings: A clinical review. Dermatol. Surg. 1995, 21, 583–590. [Google Scholar] [CrossRef]
- Lanel, B.; Barthès-Biesel, D.; Regnier, C.; Chauvé, T. Swelling of hydrocolloid dressings. Biorheology 1997, 34, 139–153. [Google Scholar] [CrossRef]
- Lloyd, L.L.; Kennedy, J.F.; Methacanon, P.; Paterson, M.; Knill, C.J. Carbohydrate polymers as wound management aids. Carbohyd. Polym. 1998, 37, 315–322. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abramo, F.; Argiolas, S.; Pisani, G.; Vannozzi, I.; Miragliotta, V. Effect of a hydrocolloid dressing on first intention healing surgical wounds in the dog: A pilot study. Aust. Vet. J. 2008, 86, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.J.; Kim, H.T.; Oh, E.J.; Choi, J.H.; Ghim, H.D.; Pyun, D.G.; Lee, S.B.; Chung, D.J.; Chung, H.Y. Effect of newly developed pectin/CMC dressing materials on three different types of wound model. Polymer (Korea) 2010, 34, 363–368. [Google Scholar] [CrossRef]
- Kuijpers, A.J.; Engbers, G.H.M.; Krijgsveld, J.; Zaat, S.A.; Dankert, J.; Feijen, J. Crosslinking and characterisation of gelatin matrices for biomedical applications. J. Biomater. Sci. Polym. Ed. 2000, 11, 225–243. [Google Scholar] [CrossRef] [PubMed]
- Kuijpers, A.J.; van Wachum, P.B.; van Luyn, M.J.A.; Engbers, G.H.M.; Krijsveld, J.; Zaat, S.A.J.; Dankert, J.; Feijen, J. In vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: A model system for the delivery of antibacterial proteins from prosthetic heart valves. J. Control Release 2000, 67, 323–336. [Google Scholar] [CrossRef]
- Behrens, A.M.; Sikorski, M.J.; Kofinas, P. Hemostatic strategies for traumatic and surgical bleeding. J. Biomed. Mater. Res. A 2014, 102, 4182–4194. [Google Scholar] [CrossRef]
- Ludwig, A. The use of mucoadhesive polymers in ocular drug delivery. Adv. Drug Deliv. Rev. 2005, 57, 1595–1639. [Google Scholar] [CrossRef]
- Liu, L.; Liu, D.; Wang, M.; Du, G.; Chen, J. Preparation and characterization of sponge-like composites by cross-linking hyaluronic acid and carboxymethylcellulose sodium with adipic dihydrazide. Eur. Polym. J. 2007, 43, 2672–2681. [Google Scholar] [CrossRef]
- Kocaaga, B.; Kurkcuoglu, O.; Tatlier, M.; Batirel, S.; Guner, F.S. Low-methoxyl pectin-zeolite hydrogels controlling drug release promote in vitro wound healing. Appl. Polym. Sci. 2019, 136, 47640. [Google Scholar] [CrossRef]
- Rascón-Chu, A.; Díaz-Baca, J.A.; Carvajal-Millán, E.; López-Franco, Y.; Lizardi-Mendoza, J. New use for an “old” polysaccharide: Pectin-based composite materials. In Handbook of Sustainable Polymers: Structure and Chemistry; Thakur, V.K., Thakur, M.K., Eds.; Jenny Stanford Publishing Pte. Ltd.: New York, NY, USA, 2016; pp. 72–107. [Google Scholar]
- Yoshimura, T.; Keiko, S.; Fujioka, R. Pectin-based surperabsorbent hydrogels crosslinked by some chemicals: Synthesis and characterization. Polym. Bull. 2005, 55, 123–129. [Google Scholar] [CrossRef]
- Wong, T.W.; Colombo, G.; Sonvico, F. Pectin matrix as oral drug delivery vehicle for colon cancer treatment. AAPS PharmSciTech. 2011, 12, 201–214. [Google Scholar] [CrossRef]
- Junmahasathien, T.; Panraksa, P.; Protiarn, P.; Hormdee, D.; Noisombut, R.; Kantrong, N.; Jantrawut, P. Preparation and evaluation of metronidazole-loaded pectin films for potentially targeting a microbial infection associated with periodontal disease. Polymers 2018, 10, 1021. [Google Scholar] [CrossRef]
- Jantrawut, P.; Chaiwarit, T.; Jantanasakulwong, K.; Brachais, H.C.; Chambin, O. Effect of plasticizer type on tensile property and in vitro indomethacin release of thin films based on low-methoxyl pectin. Polymers 2017, 9, 289. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, B.; Mohanty, M.; Umashankar, P.R.; Jayakrishnan, A. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 2005, 26, 6335–6342. [Google Scholar] [CrossRef] [PubMed]
- ASTM Standard E96-00. Standard test methods for water vapour transmission of materials. Annual book of American Society for Testing Materials (ASTM) standards, vol. 4.06. Philadelphia, PA, USA, 2000. [Google Scholar]
- Lee, O.J.; Kim, J.K.; Moon, B.M.; Chao, J.R.; Yoon, J.; Ju, H.W.; Lee, J.M.; Park, H.J.; Kim, D.W.; Kim, S.J.; Park, H.S.; Park, C.H. Fabrication and characterization of hydrocolloid dressing with silk fibroin nanoparticles for wound healing. Tissue Eng. Regen. Med. 2016, 13, 218–226. [Google Scholar] [CrossRef]
- Mohanty, B.; Bohidar, H.B. Microscopic structure of gelatin coacervates. Int. J. Biol. Macromol. 2005, 36, 39–46. [Google Scholar] [CrossRef]
- Martínez-Díaz, G.J.; Nelson, D.; Crone, W.C.; Kao, W.J. Mechanical and chemical analysis of gelatin-based hydrogel degradation. Macromol. Chem. Phys. 2003, 204, 1898–1908. [Google Scholar] [CrossRef]
- Kuijpers, A.J.; Engbers, G.H.M.; Feijen, J. Characterization of the network structure of carbodiimide cross-linked gelatin gels. Macromolecules 1999, 32, 3325–3333. [Google Scholar] [CrossRef]
- Buhus, G.; Popa, M.; Desbrieres, J. Hydrogels based on carboxymethylcellulose and gelatin for inclusion and release of chloramphenicol. J. Bioact. Compat. Pol. 2009, 24, 525–545. [Google Scholar] [CrossRef]
- Voragen, A.G.J.; Pilnik, W.; Thibault, J.F.; Axelos, M.A.V.; Renard, C.M.G.C. Food Polysaccharides and Their Applications; Marcel Dekker: New York, NY, USA, 1995. [Google Scholar]
- Tanveer, A.K.; Kok, K.P.; Hung, S.C. Mechanical, bioadhesive strength and biological evaluations of chitosen membranes for wound dressing. J. Pharm. Sci. 2000, 3, 303–311. [Google Scholar]
- Boateng, J.S.; Matthews, K.H.; Stevens, H.N.E.; Eccleston, G.M. Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci. 2008, 97, 2892–2923. [Google Scholar] [CrossRef] [PubMed]
- Rivero, A.; Garcia, M.A.; Pinotti, A. Composite and bi-layer films based on gelatin and chitosan. J. Food Eng. 2009, 90, 531–539. [Google Scholar] [CrossRef]
- Intan, D.H.; Aizan, A. Tensile and water absorption properties of biodegradable composites derived from cassava skin/polyvinyl alcohol with glycerol as plasticizer. Sains Malays. 2011, 40, 713–718. [Google Scholar]
- Jurgens, C.; Porte, T.; Wolter, D.; Schmidt, H.G.; Kricheldorf, H.R.; Kreiser-Saunders, I. Development and characterisation of an absorbable temporary wound dressing. Unfallchirurg 1995, 98, 233–240. [Google Scholar] [PubMed]
- Bajpai, S.K.; Bajpai, M.; Sharma, L. Investigation of water uptake behavior and mechanical properties of superporous hydrogels. J. Macrocol. Sci. A 2006, 43, 507–524. [Google Scholar] [CrossRef]
- Queen, D.; Gaylor, J.D.; Evans, J.; Courtney, J.; Reid, W. The preclinical evaluation of the water vapour transmission rate through burn wound dressings. Biomaterials 1987, 8, 367–371. [Google Scholar] [CrossRef]
- Xu, R.; Xia, H.; He, W.; Li, Z.; Zhao, J.; Liu, B.; Wang, Y.; Lei, Q.; Kong, Y.; Bai, Y.; et al. Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Sci. Rep. 2016, 6, 24596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowler, P.G.; Duerden, B.I.; Armstrong, D.G. Wound microbiology and associated approaches to wound management. Clin. Microbiol. Rev. 2001, 14, 244–269. [Google Scholar] [CrossRef] [PubMed]
- Smerdely, P.; Lim, A.; Boyages, S.C.; Waite, K.; Wu, D.; Roberts, V.; Leslie, G.; Arnold, J.; John, E.; Eastman, C.J. Topical iodine-containing antiseptics and neonatal hypothyroidism in very-low-birthweight infants. Lancet 1989, 16, 661–664. [Google Scholar] [CrossRef]
- Nobukuni, K.; Hayakawa, N.; Namba, R.; Ihara, Y.; Sato, K.; Takada, H.; Hayabara, T.; Kawahara, S. The influence of long-term treatment with povidone-iodine on thyroid function. Dermatology 1997, 195, 69–72. [Google Scholar] [CrossRef]
Sample Code | LMP (%) | Gelatin (%) | CMC (%) | Glycerin (%) | Povidone Iodine | Crosslinking Agent | |
---|---|---|---|---|---|---|---|
Glu | CaCl2 | ||||||
F-Glu | 1 | 1 | 1 | - | - | + | - |
F-Glu-Ca | 1 | 1 | 1 | - | - | + | + |
F-Glu-Ca-G10 | 1 | 1 | 1 | 10 | - | + | + |
F-Glu-Ca-G20 | 1 | 1 | 1 | 20 | - | + | + |
F-Glu-Ca-G30 | 1 | 1 | 1 | 30 | - | + | + |
F-Glu-Ca-G40 | 1 | 1 | 1 | 40 | - | + | + |
F-Glu-Ca-G30-PI | 1 | 1 | 1 | 30 | 10 | + | + |
Hydrogel Film | Thickness (mm) | Tensile Strength (MPa) | Elongation at Break (%) | Young’s Modulus (N/cm2) |
---|---|---|---|---|
F-Glu | 0.30 ± 0.07 a | 715.73 ± 33.99 a | 9.43 ± 0.26 a | 8814.52 ± 163.07 a |
F-Glu-Ca | 0.35 ± 0.05 a | 853.06 ± 52.49 b | 3.22 ± 0.24 b | 56,781.02 ± 813.06 b |
F-Glu-Ca-G10 | 0.33 ± 0.04 a | 730.01 ± 98.11 a | 23.82 ± 2.91 c | 6494.36 ± 366.63 c |
F-Glu-Ca-G20 | 0.34 ± 0.03 a | 718.39 ± 41.97 a | 27.07 ± 1.96 c | 5707.38 ± 220.05 c |
F-Glu-Ca-G30 | 0.37 ± 0.06 a | 547.64 ± 77.53 c | 32.80 ± 1.14 d | 2926.71 ± 146.18 d |
F-Glu-Ca-G40 | 0.37 ± 0.09 a | 597.16 ± 31.13 c | 36.25 ± 4.47 d | 2835.37 ± 203.49 d |
Test Sample | Diameter of Inhibition Zone (mm) |
---|---|
10% Iodine solution F-Glu-Ca-G30-PI F-Glu-Ca-G30 | 99.23 ± 0.71 a 22.06 ± 3.44 b ND c |
DMSO | ND c |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jantrawut, P.; Bunrueangtha, J.; Suerthong, J.; Kantrong, N. Fabrication and Characterization of Low Methoxyl Pectin/Gelatin/Carboxymethyl Cellulose Absorbent Hydrogel Film for Wound Dressing Applications. Materials 2019, 12, 1628. https://doi.org/10.3390/ma12101628
Jantrawut P, Bunrueangtha J, Suerthong J, Kantrong N. Fabrication and Characterization of Low Methoxyl Pectin/Gelatin/Carboxymethyl Cellulose Absorbent Hydrogel Film for Wound Dressing Applications. Materials. 2019; 12(10):1628. https://doi.org/10.3390/ma12101628
Chicago/Turabian StyleJantrawut, Pensak, Juthamart Bunrueangtha, Juthamart Suerthong, and Nutthapong Kantrong. 2019. "Fabrication and Characterization of Low Methoxyl Pectin/Gelatin/Carboxymethyl Cellulose Absorbent Hydrogel Film for Wound Dressing Applications" Materials 12, no. 10: 1628. https://doi.org/10.3390/ma12101628
APA StyleJantrawut, P., Bunrueangtha, J., Suerthong, J., & Kantrong, N. (2019). Fabrication and Characterization of Low Methoxyl Pectin/Gelatin/Carboxymethyl Cellulose Absorbent Hydrogel Film for Wound Dressing Applications. Materials, 12(10), 1628. https://doi.org/10.3390/ma12101628