Effect of Long-Time Annealing at 1000 °C on Phase Constituent and Microhardness of the 20Co-Cr-Fe-Ni Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Alloys With Single FCC Phase
3.2. The Other Alloys Without Single FCC Phase
3.3. Micro-Hardness
4. Conclusions
- (1)
- When the Cr content is less than 30 at.%, a uniform stable single FCC phase can be obtained in as-cast 20Co-Cr-Fe-Ni (<60 at.%Fe) alloys. Annealing at 1000 °C has no effect on their phase composition and microhardness.
- (2)
- The σ phase forms when the Cr content is above 40 at.% in the 20Co-Cr-Fe-Ni alloys. Its volume fraction increased with the Cr content and leads to an increase of the microhardness.
- (3)
- Annealing at 1000 °C for 30 days can decrease the volume fraction of the σ phase and coarsen the crystal grain.
- (4)
- Except for the Fe-rich alloy A1 (20Co10Cr60Fe10Ni), the microhardness of the other alloys increases with the Cr content when the Co and Ni or the Co and Fe contents were fixed.
- (5)
- Thermodynamic calculation based on the TCFE database can well predict the phase stability of the FCC phase and the 1000 °C isothermal section. However, it fails to predict the phase stability near the liquidus.
Author Contributions
Funding
Conflicts of Interest
References
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 1, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 5, 299–303. [Google Scholar] [CrossRef]
- Yong, Z.; Zuo, T.T.; Zhi, T.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Zhao, P.L. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 8, 1–93. [Google Scholar] [CrossRef]
- Butler, T.M.; Weaver, M.L. Investigation of the phase stabilities in AlNiCoCrFe high entropy alloys. J. Alloy. Compd. 2017, 691, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Christofidou, K.A.; Pickering, E.J.; Orsatti, P.; Mignanelli, P.M.; Slater, T.J.A.; Stone, H.J.; Jones, N.G. On the influence of Mn on the phase stability of the CrMnxFeCoNi high entropy alloys. Intermetallics 2018, 92, 84–92. [Google Scholar] [CrossRef]
- He, F.; Wang, Z.; Wu, Q.; Li, J.; Wang, J.; Liu, C.T. Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures. Scripta Mater. 2017, 126, 15–19. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Zhang, Y.; Wang, F.J.; Chen, G.L. Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNiCuxAl1−x solid-solution alloys. Appl. Phys. Lett. 2008, 24, 299. [Google Scholar] [CrossRef]
- Stepanov, N.D.; Shaysultanov, D.G.; Salishchev, G.A.; Tikhonovsky, M.A.; Oleynik, E.E.; Tortika, A.S.; Senkov, O.N. Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys. J. Alloys Compd. 2015, 628, 170–185. [Google Scholar] [CrossRef]
- Liu, W.H.; He, J.Y.; Huang, H.L.; Wang, H.; Lu, Z.P.; Liu, C.T. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics 2015, 60, 1–8. [Google Scholar] [CrossRef]
- Ang, A.S.M.; Berndt, C.C.; Sesso, M.L.; Anupam, A.S.; Praveen, R.S.; Kottada, B.S. Murty, Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi. Metall. Mater. Trans. A 2015, 2, 791–800. [Google Scholar] [CrossRef]
- Li, Z.; Körmann, F.; Grabowski, B.; Neugebauer, J.; Raabe, D. Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity. Acta Mater. 2017, 136, 262–270. [Google Scholar] [CrossRef]
- Hou, J.L.; Li, Q.; Wu, C.B.; Zheng, L.M. Atomic Simulations of Grain Structures and Deformation Behaviors in Nanocrystalline CoCrFeNiMn High-Entropy Alloy. Materials 2019, 7, 1010. [Google Scholar] [CrossRef]
- Wang, W.R.; Qi, W.; Xie, L.; Yang, X.; Li, J.T.; Zhang, Y. Microstructure and Corrosion Behavior of (CoCrFeNi)95Nb5 High-Entropy Alloy Coating Fabricated by Plasma Spraying. Materials 2019, 5, 694. [Google Scholar] [CrossRef] [PubMed]
- Löbel, M.; Lindner, T.; Lampke, T. Enhanced Wear Behaviour of Spark Plasma Sintered AlCoCrFeNiTi High-Entropy Alloy Composites. Materials 2018, 11, 2225. [Google Scholar] [CrossRef]
- Bernd, G.; Anton, H.; Dhiraj, C.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 6201, 1153. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhao, M.; Li, J.C.; Jiang, Q. B2 structure of high-entropy alloys with addition of Al. J. Appl. Phys. 2008, 11, 89. [Google Scholar] [CrossRef]
- Rao, J.C.; Diao, H.Y.; Ocelík, V.; Vainchtein, D.; Zhang, C.; Kuo, C.; Tang, Z.; Guo, W.; Poplawsky, J.D.; Zhou, Y. Secondary phases in AlxCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal. Acta Mater. 2017, 131, 206–220. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, X.F.; Chen, G.L.; Qiao, Y. Effect of Ti on the microstructure and properties of CoCrCuFeNiTix high-entropy alloys. Ann. De Chim.-Sci. Des. Mater. 2007, 1, 103–104. [Google Scholar] [CrossRef]
- Jiang, L.; Lu, Y.; Dong, Y.; Wang, T.; Cao, Z.; Li, T. Annealing effects on the microstructure and properties of bulk high-entropy CoCrFeNiTi0.5 alloy casting ingot. Intermetallics 2014, 1, 37–43. [Google Scholar] [CrossRef]
- Ren, M.-X.; Li, B.-S. Phase Analysis of CrFeCoNiCu High Entropy Alloy. J. Mater. Eng. 2012, 1, 9–12, 24. [Google Scholar] [CrossRef]
- Park, N.; Watanabe, I.; Terada, D.; Yokoyama, Y.; Liaw, P.K.; Tsuji, N. Erratum to: Recrystallization Behavior of CoCrCuFeNi High-Entropy Alloy. Metall. Mater. Trans. A 2015, 7, 3308. [Google Scholar] [CrossRef]
- Li, J.; Jia, W.; Wang, J.; Kou, H.; Zhang, D.; Beaugnon, E. Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method. Mater. Des. 2016, 95, 183–187. [Google Scholar] [CrossRef]
- Mane, R.B.; Panigrahi, B.B. Comparative study on sintering kinetics of as-milled and annealed CoCrFeNi high entropy alloy powders. Mater. Chem. Phys. 2018, 210, 49–56. [Google Scholar] [CrossRef]
- Ganji, R.S.; Karthik, P.S.; Rao, K.B.S.; Rajulapati, K.V. Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods. Acta Mater. 2017, 125, 58–68. [Google Scholar] [CrossRef]
- Praveen, S.; Basu, J.; Kashyap, S.; Kottada, R.S. Exceptional resistance to grain growth in a nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures. J. Alloy. Compd. 2015, 662, 361–367. [Google Scholar] [CrossRef]
- He, F.; Wang, Z.; Wu, Q.; Niu, S.; Li, J.; Wang, J.; Liu, C.T. Solid solution island of the Co-Cr-Fe-Ni high entropy alloy system. Scripta Mater. 2017, 131, 42–46. [Google Scholar] [CrossRef]
- Fang, W.; Chang, R.; Zhang, X.; Ji, P.; Wang, X.; Liu, B.; Li, J.; He, X.; Qu, X.; Yin, F. Effects of Cobalt on the structure and mechanical behavior of non-equal molar CoxFe50-xCr25Ni25 high entropy alloys. Mater. Sci. Eng. A 2018, 723, 221–228. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Li, J.; Huang, Y.; Lu, Y.; Sun, X. Deformation mechanism during high-temperature tensile test in an eutectic high-entropy alloy AlCoCrFeNi2.1. Mater. Sci. Eng. A 2018, 724, 148–155. [Google Scholar] [CrossRef]
- Zhang, K.B.; Fu, Z.Y.; Zhang, J.Y.; Wang, W.M.; Lee, S.W.; Niihara, K. Annealing effects on structure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys. Mater. Sci. Eng. Conf. Ser. 2011, 7, 12009–12015. [Google Scholar] [CrossRef]
- Niu, S.; Kou, H.; Guo, T.; Zhang, Y.; Wang, J.; Li, J. Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy. Mater. Sci. Eng. A 2016, 671, 82–86. [Google Scholar] [CrossRef]
- Zeng, J.; Wu, C.; Peng, H.; Liu, Y.; Wang, J.; Su, X. Microstructure and microhardness of as-cast and 800 °C annealed AlxCr0.2Fe0.2Ni0.6-x and Al0.2Cr0.2FeyNi0.6-y alloys. Vacuum 2018, 152, 214–221. [Google Scholar] [CrossRef]
- Munitz, A.; Meshi, L.; Kaufman, M.J. Heat treatments’ effects on the microstructure and mechanical properties of an equiatomic Al-Cr-Fe-Mn-Ni high entropy alloy. Mater. Sci. Eng. A 2017, 689, 384–394. [Google Scholar] [CrossRef]
- Schuh, B.; Völker, B.; Todt, J.; Kormout, K.S.; Schell, N.; Hohenwarter, A. Influence of Annealing on Microstructure and Mechanical Properties of a Nanocrystalline CrCoNi Medium-Entropy Alloy. Materials 2018, 5, 662. [Google Scholar] [CrossRef] [PubMed]
- Ng, C. Phase Stability Study of High Entropy Alloys (HEAs). Doctor Thesis, Hong Kong Polytechnic University, Hong Kong, July 2013. Available online: http://ira.lib.polyu.edu.hk/handle/10397/6867 (accessed on 24 May 2019).
- Stepanov, N.D.; Shaysultanov, D.G.; Salishchev, G.A.; Tikhonovsky, M.A.; Senkov, O.N. Effect of Annealing on Phase Composition and Microstructure of the CoCrFeNiMnVx (x = 0, 0.25, 0.5, 0.75, 1) High Entropy Alloys. In TMS 2015 144th Annual Meeting & Exhibition: Supplemental Proceedings; The Minerals, Metals & Materials Society, Ed.; Springer: Cham, Germany, 2015; pp. 1157–1164. [Google Scholar] [CrossRef]
- Munitz, A.; Salhov, S.; Hayun, S.; Frage, N. Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy. J. Alloy. Compd. 2016, 683, 221–230. [Google Scholar] [CrossRef]
- Wang, W.R.; Wang, W.L.; Yeh, J.W. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J. Alloy. Compd. 2014, 9, 143–152. [Google Scholar] [CrossRef]
- Guo, T.; Li, J.; Wang, J.; Wang, W.Y.; Liu, Y.; Luo, X.; Kou, H.; Beaugnon, E. Microstructure and properties of bulk Al0.5CoCrFeNi high-entropy alloy by cold rolling and subsequent annealing. Mater. Sci. Eng. A 2018, 729, 141–148. [Google Scholar] [CrossRef]
- TCFE2000: The Thermo-Calc Steels Database, Thermo-Calc Software AB. 2000. Available online: https://www.thermocalc.com/products-services/databases/thermodynamic/ (accessed on 24 May 2019).
Designed Composition | No. | Phases | Detected Composition (at.%) | |||
---|---|---|---|---|---|---|
Co | Cr | Fe | Ni | |||
20Co40Cr30Fe10Ni | A’4 | FCC | 20.1 | 39.3 | 30.9 | 9.7 |
BCC | 3.5 | 87.7 | 6.8 | 2.0 | ||
σ | 17.5 | 50.3 | 25.9 | 6.3 | ||
20Co50Cr10Fe20Ni | A’7 | FCC | 21.9 | 44.1 | 10.8 | 23.2 |
σ | 16.7 | 61.2 | 8.9 | 13.2 |
Designed Composition | No. | State | Phases | Detected Composition (at.%) | |||
---|---|---|---|---|---|---|---|
Co | Cr | Fe | Ni | ||||
20Co30Cr40Fe10Ni | A3 | as-cast | total | 22.5 | 29.9 | 38.9 | 8.7 |
FCC | 20.0 | 28.6 | 41.5 | 9.9 | |||
BCC | 14.7 | 42.0 | 38.1 | 5.2 | |||
A’3 | 1000 °C annealed | FCC | 20.2 | 29.4 | 39.7 | 10.7 | |
BCC | 4.3 | 81.6 | 11.6 | 2.5 | |||
20Co40Cr20Fe20Ni | A15 | as-cast | total | 20.1 | 40 | 19.7 | 20.2 |
FCC | 20.4 | 38.6 | 20.5 | 20.5 | |||
BCC | 15.5 | 55.0 | 18.2 | 11.3 | |||
A’15 | 1000 °C annealed | FCC | 20.6 | 36.0 | 20.8 | 22.6 | |
σ | 17.1 | 55.3 | 16.3 | 11.3 | |||
20Co60Cr10Fe10Ni | A6 | as-cast | total | 19.9 | 59.9 | 9.8 | 10.4 |
σ-1 | 23.1 | 54.3 | 10.4 | 12.2 | |||
σ-2 | 17.9 | 65.2 | 10.1 | 6.8 | |||
A’6 | 1000 °C annealed | σ | 20.0 | 59.7 | 9.8 | 10.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Sun, Y.; Liu, Y.; Tu, H. Effect of Long-Time Annealing at 1000 °C on Phase Constituent and Microhardness of the 20Co-Cr-Fe-Ni Alloys. Materials 2019, 12, 1700. https://doi.org/10.3390/ma12101700
Wu C, Sun Y, Liu Y, Tu H. Effect of Long-Time Annealing at 1000 °C on Phase Constituent and Microhardness of the 20Co-Cr-Fe-Ni Alloys. Materials. 2019; 12(10):1700. https://doi.org/10.3390/ma12101700
Chicago/Turabian StyleWu, Changjun, Ya Sun, Ya Liu, and Hao Tu. 2019. "Effect of Long-Time Annealing at 1000 °C on Phase Constituent and Microhardness of the 20Co-Cr-Fe-Ni Alloys" Materials 12, no. 10: 1700. https://doi.org/10.3390/ma12101700
APA StyleWu, C., Sun, Y., Liu, Y., & Tu, H. (2019). Effect of Long-Time Annealing at 1000 °C on Phase Constituent and Microhardness of the 20Co-Cr-Fe-Ni Alloys. Materials, 12(10), 1700. https://doi.org/10.3390/ma12101700