Fermentation of Cucumber Extract with Hydromagnesite as a Neutralizing Agent to Produce an Ingredient for Dermal Magnesium Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cucumber Extract and Pasteurization
2.2. Hydromagnesite
2.3. Lactic Acid Bacteria
2.4. Fermentation Experiment
2.5. Analytical Techniques
3. Results and Discussion
3.1. Organics Content in Cucumber Extract and Pasteurization.
3.2. Fermentation of Original Cucumber Extract by Lactic Acid Bacteria
3.3. Fermentation of Cucumber Extract Neutralized by NaOH
3.4. Fermentation of Cucumber Extract Neutralized by HMC
3.5. Characterization of Final Products
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Balboa, E.M.; Soto, M.L.; Nogueira, D.R.; González-López, N.; Conde, E.; Moure, A.; Vinardell, M.P.; Mitjans, M.; Domínguez, H. Potential of antioxidant extracts produced by aqueous processing of renewable resources for the formulation of cosmetics. Ind. Crops Prod. 2014, 58, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, N.; Mehmood, A.; Khan, B.A.; Mahmood, T.; Muhammad, H. Exploring cucumber extract for skin rejuvenation. Plants 2011, 10, 1206–1216. [Google Scholar]
- Murad, H. Evaluating the potential benefits of cucumbers for improved health and skin care. J. Aging Res. Clin. Pract. 2012, 5, 10–12. [Google Scholar]
- Lopes, L.B.; Speretta, F.F.F.; Bentley, M.V.L.B. Enhancement of skin penetration of vitamin K using monoolein-based liquid crystalline systems. Eur. J. Pharm. Sci. 2007, 32, 209–215. [Google Scholar] [CrossRef]
- Lu, Z.; Fleming, H.P.; Mcfeeters, R.F. Differential Glucose and Fructose Utilization During Cucumber Juice Fermentation. J. Food Sci. 2001, 66, 162–166. [Google Scholar] [CrossRef]
- Passos, F.V.; Fleming, H.P.; Ollis, D.F.; Hassan, H.M.; Felder, R.M. Modeling the specific growth rate of Lactobacillus plantarum in cucumber extract. Appl. Microbiol. Biotechnol. 1993, 40, 143–150. [Google Scholar] [CrossRef]
- Stiller, M.J.; Bartolone, J.; Stern, R.; Smith, S.; Kollias, N.; Gillies, R.; Drake, L.A. Topical 8% Glycolic Acid and 8% L-Lactic Acid Creams for the Treatment of Photodamaged Skin. Arch. Dermatol. 1996, 132, 631. [Google Scholar] [CrossRef]
- Coudray, C.; Rambeau, M.; Feillet-Coudray, C.; Gueux, E.; Tressol, J.C.; Mazur, A.; Rayssiguier, Y. Study of magnesium bioavailability from ten organic and inorganic Mg salts in Mg-depleted rats using a stable isotope approach. Magnes. Res. 2005, 18, 215–223. [Google Scholar] [PubMed]
- Kappeler, D.; Heimbeck, I.; Herpich, C.; Naue, N.; Höfler, J.; Timmer, W.; Michalke, B. Higher bioavailability of magnesium citrate as compared to magnesium oxide shown by evaluation of urinary excretion and serum levels after single-dose administration in a randomized cross-over study. BMC Nutr. 2017, 3, 7. [Google Scholar] [CrossRef]
- Johnson, S. The multifaceted and widespread pathology of magnesium deficiency. Med. Hypotheses 2001, 56, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.-Y.; Xun, P.; He, K.; Qin, L.-Q. Magnesium intake and risk of type 2 diabetes: Meta-analysis of prospective cohort studies. Diabetes Care 2011, 34, 2116–2122. [Google Scholar] [CrossRef] [PubMed]
- Sabatier, M.; Arnaud, M.J.; Kastenmayer, P.; Rytz, A.; Barclay, D.V. Meal effect on magnesium bioavailability from mineral water in healthy women. Am. J. Clin. Nutr. 2002, 75, 65–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halevy, S.; Giryes, H.; Friger, M.; Sukenik, S. Dead sea bath salt for the treatment of psoriasis vulgaris: A double-blind controlled study. J. Eur. Acad. Dermatol. Venereol. 1997, 9, 237–242. [Google Scholar] [CrossRef]
- Chandrasekaran, N.; Sanchez, W.Y.; Mohammed, Y.H.; Grice, J.E.; Roberts, M.S.; Barnard, R.T. Permeation of topically applied Magnesium ions through human skin is facilitated by hair follicles. Magnes. Res. 2016, 29, 35–42. [Google Scholar] [Green Version]
- Rylander, R. Bioavailability of magnesium salts—A review. J. Pharm. Nutr. Sci. 2014, 4, 57–59. [Google Scholar] [CrossRef]
- Walker, A.F.; Marakis, G.; Christie, S.; Byng, M. Mg citrate found more bioavailable than other Mg preparations in a randomised, double-blind study. Walker. Magnes. Res. 2003, 16, 183–191. [Google Scholar]
- Tran, K.T.; Han, K.S.; Kim, S.J.; Kim, M.J.; Tran, T. Recovery of magnesium from Uyuni salar brine as hydrated magnesium carbonate. Hydrometallurgy 2016, 160, 106–114. [Google Scholar] [CrossRef]
- USFDA. Pharmaceutical Microbiology Manual. Available online: https://www.fda.gov/files/about%20fda/published/Pharmaceutical-Microbiology-Manual.pdf (accessed on 10 April 2019).
- Jorgensen, J.H.; Lee, J.C.; Alexander, G.A.; Wolf, H.W. Comparison of Limulus Assay, Standard Plate Count, and Total Coliform Count for Microbiological Assessment of Renovated Wastewater. Appl. Environ. Microbiol. 1979, 37, 928–931. [Google Scholar] [PubMed]
- Cort, W.M. Antioxidant Properties of Ascorbic Acid in Foods. In Ascorbic Acid: Chemistry, Metabolism, and Uses; ACS Publication: Washington, DC, USA, 1982; pp. 533–550. [Google Scholar]
- Shimazu, Y.; Uehara, M.; Watanabe, M. Transformation of Citric Acid to Acetic Acid, Acetoin and Diacetyl by Wine Making Lactic Acid Bacteria. Agric. Biol. Chem. 1985, 49, 2147–2157. [Google Scholar]
- Lu, Z.; Fleming, H.P.; Mcfeeters, R.F.; Yoon, S.A. Effects of Anions and Cations on Sugar Utilization in Cucumber Juice Fermentation. J. Food Sci. 2002, 67, 1155–1161. [Google Scholar] [CrossRef]
- Kornhauser, A.; Coelho, S.G.; Hearing, V.J. Applications of hydroxy acids: Classification, mechanisms, and photoactivity. Clin. Cosmet. Investig. Dermatol. 2010, 3, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tashiro, Y.; Sonomoto, K. Fermentative production of lactic acid from renewable materials: Recent achievements, prospects, and limits. J. Biosci. Bioeng. 2015, 119, 10–18. [Google Scholar] [CrossRef] [PubMed]
- John, R.P.; Anisha, G.S.; Nampoothiri, K.M.; Pandey, A. Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnol. Adv. 2008, 27, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.; Altaf, M.; Naveena, B.J.; Venkateshwar, M.; Kumar, E.V. Amylolytic bacterial lactic acid fermentation—A review. Biotechnol. Adv. 2008, 26, 22–34. [Google Scholar] [CrossRef]
- Erdman, J.W.; Klein, B.P. Harvesting, Processing, and Cooking Influences on Vitamin C in Foods. In Ascorbic Acid: Chemistry, Metabolism, and Uses; ACS Publication: Washington, DC, USA, 1982; pp. 499–532. [Google Scholar]
Conditions | Sugars | Organic Acid |
---|---|---|
Column | YMC-Pack Polyamine II (250 × 4.6 mm) | YMC-Triart C18 (3 µm, 12 nm), 150 × 3.0 mm |
Eluent | Acetonitrile/water (75/25, v/v) | 20 mM H3PO4 |
Oven temp. | 26 °C | 37 °C |
Flow rate | 1.0 mL/min | 1.0 mL/min |
Detector | RI (Shodex RI-101, Tokyo, Japan) | UV at 220 nm |
Inj. Volume | 20 µL | 20 µL |
Treatment Condition | Colony Forming Unit Per mL (CFU/mL), Mean ± S.D, n = 3 | |
---|---|---|
Temperature (°C) | Time (min) | |
Non-treated CAF | (162.50 ± 1.41) × 105 | |
63 | 30 | 121.50 ± 4.95 |
72 | 1 | 119.50 ± 12.02 |
75 | 1 | 110.50 ± 3.5 |
75 | 5 | 88.00 ± 14.14 |
80 | 1 | 70.00 ± 7.07 |
80 | 5 | 12.00 ± 1.14 |
85 | 1 | 46.00 ± 7.07 |
85 | 5 | 4.00 ± 1.14 |
90 | 1 | 37.50 ± 4.94 |
90 | 5 | 0 |
95 | 1 | 35.50 ± 6.36 |
95 | 5 | 0 |
95 | 10 | 0 |
95 | 15 | 0 |
95 | 20 | 0 |
100 | 5 | 0 |
100 | 10 | 0 |
100 | 15 | 0 |
100 | 20 | 0 |
121 | 15 | 0 |
Cucumber Extract Types Title | Fructose (g/L) | Glucose (g/L) | Citric Acid (g/L) | Glutamic Acid (g/L) | Tartaric Acid (mg/L) | Malic Acid (mg/L) | Ascorbic Acid (mg/L) |
---|---|---|---|---|---|---|---|
Before | 7.75 | 4.75 | 11.24 | 1.34 | 239.56 | 343.17 | 34.31 |
After | 7.81 | 4.71 | 10.98 | 1.24 | 234.57 | 345.71 | 29.47 |
Compounds | Chemical Content | ||||||
---|---|---|---|---|---|---|---|
Organics | Citric acid (mg/L) | Lactic acid (mg/L) | Acetic acid (mg/L) | Glutamic acid (mg/L) | Tartaric acid (mg/L) | Malic acid (mg/L) | Ascorbic acid (mg/L) |
8154.1 | 13,921.3 | 1170.1 | 1281.2 | 415.00 | 745.12 | 1.93 | |
Inorganics | Mg (mg/L) | Ca (mg/L) | Na (mg/L) | K (mg/L) | - | - | - |
3124.2 | 133.9 | 88.3 | 2163.6 | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.K.; Tran, T.; Crimmins, T.; Luong, V.-T.; Kang, H.Y. Fermentation of Cucumber Extract with Hydromagnesite as a Neutralizing Agent to Produce an Ingredient for Dermal Magnesium Products. Materials 2019, 12, 1701. https://doi.org/10.3390/ma12101701
Nguyen VK, Tran T, Crimmins T, Luong V-T, Kang HY. Fermentation of Cucumber Extract with Hydromagnesite as a Neutralizing Agent to Produce an Ingredient for Dermal Magnesium Products. Materials. 2019; 12(10):1701. https://doi.org/10.3390/ma12101701
Chicago/Turabian StyleNguyen, Van Khanh, Tam Tran, Tony Crimmins, Van-Tri Luong, and Ho Young Kang. 2019. "Fermentation of Cucumber Extract with Hydromagnesite as a Neutralizing Agent to Produce an Ingredient for Dermal Magnesium Products" Materials 12, no. 10: 1701. https://doi.org/10.3390/ma12101701
APA StyleNguyen, V. K., Tran, T., Crimmins, T., Luong, V. -T., & Kang, H. Y. (2019). Fermentation of Cucumber Extract with Hydromagnesite as a Neutralizing Agent to Produce an Ingredient for Dermal Magnesium Products. Materials, 12(10), 1701. https://doi.org/10.3390/ma12101701