Modeling the Physical Properties of Gamma Alumina Catalyst Carrier Based on an Artificial Neural Network
Abstract
:1. Introduction
- A group of inputs: (x1, x2, x3…Xn), each of which has a weighting related to it;
- A summation function to determine the summation of the weighted input and bias;
- An activation function.
2. Materials and Methods
3. Physical Properties
3.1. Apparent Porosity
3.2. Bulk Density
3.3. Sintering Shrinkage
4. Artificial Neural Network (ANN) Model
5. Validation of an Artificial Neural Network (ANN) Model
6. Results and Discussion
6.1. The Effect of Sintering Temperature
6.2. The Effect of the Yeast Concentration
6.3. The Effect of Soaking Time
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dirksen, A.; Dirksen, S.; Hackeng, T.M.; Dawson, P.E. Nucleophilic catalysis of hydrazone formation and transamination: Implications for dynamic covalent chemistry. J. Am. Chem. Soc. 2006, 128, 15602–15603. [Google Scholar] [CrossRef]
- Nettleship, I. Applications of porous ceramics. Key Eng. Mater. 1996, 122, 305–324. [Google Scholar] [CrossRef]
- Colombo, P. Ceramic foams: Fabrication, properties, and applications. Key Eng. Mater. 2002, 206, 1913–1918. [Google Scholar] [CrossRef]
- Kamyshnaya, K.S.; Khabas, T.A. Developing porous ceramics on the base of zirconia oxide with thin and permeable pores by crystallization of organic additive method. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2016; p. 012039. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Fu, Y.M.; Zeng, X.M. Compressive properties of open-cell ceramic foams. Trans. Nonferrous Met. Soc. China 2006, 16, s453–s456. [Google Scholar] [CrossRef]
- Chen, X.M. Study of Al2O3 matrix ceramic foam. China Ceram 2001, 37, 21–23. [Google Scholar]
- Ncanana, Z.S.; Pullabhotla, V.S.R. Ozone Initiated Oxidation of Cresol Isomers Using γ-Al2O3 and SiO2 as Adsorbents. Catal. Lett. 2018, 1–12. [Google Scholar] [CrossRef]
- Amador, C.; de Juan, L.M. Strategies for Structured Particulate Systems Design. Comput. Aided Chem. Eng. 2016, 39, 509–579. [Google Scholar] [CrossRef]
- Papalexopoulos, A.D.; Hao, S.; Peng, T.M. An implementation of a neural network based load forecasting model for the EMS. IEEE Trans. Power Syst. 1994, 9, 1956–1962. [Google Scholar] [CrossRef]
- Khan, J.; Wei, J.S.; Ringner, M.; Saal, L.H.; Ladanyi, M.; Westermann, F.; Berthold, F.; Schwab, M.; Antonescu, C.R.; Peterson, C.; et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 2001, 7, 673. [Google Scholar] [CrossRef] [PubMed]
- Dieterle, F.J. Multianalyte Quantification by Means of Integration of Artificial Neural Networks. Genetic Algorithms and Chemometrics for Time-Resolved Analytical Data. Ph.D. Thesis, Eberhard-Karls-Universitat Tubingen, Tubingen, Germany, 2003. [Google Scholar]
- Roohi, F. Artificial neural network approach to clustering. Int. J. Eng. Sci. (IJES) 2013, 2, 33–38. [Google Scholar]
- Aswad, A.P.D.M.A.; Saud, A.N. Preparation of Macro-Porous Alumina via Organic Additive and Characterizations Physical Properties by Using a Genetic Algorithm Method. In Proceedings of the 2017 IEEE 1st International Conference on Recent Trends of Engineering Science and Sustainability, Baghdad, Iraq, 17–19 May 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Peptu, C.; Savin, A.; Atanase, L.I.; Souidi, K.; Mackenzie, G.; Martin, P.; Riess, G.; Popa, M. Microencapsulation of Baker’s yeast in gellan gum beads used in repeated cycles of glucose fermentation. Int. J. Polym. Sci. 2017, 2017, 7610420. [Google Scholar] [CrossRef]
- Amir, N.; Aswad, M.A.; Al-dujaili, M.A.A. Synthesis of Gamma Alumina for Catalyst Support Using Yeast Cell as Pore Forming Agent using Regression Model. J. Eng. Appl. Sci. 2018, 13, 9558–9563. [Google Scholar] [CrossRef]
- Dzemyda, G.; Kurasova, O.; Žilinskas, J. Strategies for multidimensional data visualization. In Multidimensional Data Visualization; Springer: New York, NY, USA, 2013; pp. 5–40. [Google Scholar] [CrossRef]
- Darcovich, K.; Toll, F.N.; Meurk, A. Sintering effects on the porous characteristics of functionally gradient ceramic membrane structures. J. Porous Mater. 2001, 8, 201–210. [Google Scholar] [CrossRef]
- Doreswamy, V.; Chanabasayya, M. Performance analysis of neural network models for oxazolines and oxazoles derivatives descriptor dataset. Int. J. Inf. Sci. Tech. (IJIST) 2013, 3, 1–15. [Google Scholar] [CrossRef]
- Jia, C.; Liu, J.; Ding, R.; Teng, D.; Feng, L. Effects of the Sintering Temperature on the Structure and Properties of the Alumina Foamed Ceramics. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2016; Volume 67, p. 04011. [Google Scholar]
- Qin, W.; Peng, C.; Lv, M.; Wu, J. Preparation and properties of high-purity porous alumina support at low sintering temperature. Ceram. Int. 2014, 40, 13741–13746. [Google Scholar] [CrossRef]
- Xu, G.; Li, J.; Cui, H.; He, Q.; Zhang, Z.; Zhan, X. Biotemplated fabrication of porous alumina ceramics with controllable pore size using bioactive yeast as pore-forming agent. Ceram. Int. 2015, 41, 7042–7047. [Google Scholar] [CrossRef]
ANN Parameter | Values |
---|---|
Network type | Feed Forward Back Propagation (FFBP) |
Training function | TRAINGDX |
The number of layers | Two layers |
The number of the nodes in each layer | input: 3, hidden: 10, output: 1 |
Activation functions | Log sigmoid |
The initial weights and biases | A random value between −1 and +1 |
The Concentration of Yeast wt.% | Sintering Temperature (°C) | Socking Time (h) | Porosity % | Density (g/cm³) | Shrinkage (%) | Surface Area (m²/g) |
---|---|---|---|---|---|---|
2 | 500 | 1.5 | 31.2 | 2.5 | 8.5 | 32.6 |
2 | 500 | 3.0 | 28.1 | 2.4 | 8.8 | 23.6 |
2 | 700 | 1.5 | 29.2 | 2.3 | 8.5 | 22.5 |
2 | 700 | 2.0 | 27.6 | 2.4 | 9.2 | 18.8 |
2 | 700 | 3.0 | 24.9 | 2.5 | 8.9 | 11.2 |
2 | 900 | 1.5 | 26.1 | 2.2 | 8.8 | 10.4 |
2 | 900 | 2.0 | 22.2 | 2.7 | 10.0 | 4.7 |
10 | 500 | 1.5 | 57.2 | 1.3 | 3.9 | 63.2 |
10 | 500 | 2.0 | 55.8 | 1.4 | 5.2 | 59.3 |
10 | 500 | 3.0 | 51.4 | 2.0 | 8.2 | 52.9 |
10 | 700 | 1.5 | 56.4 | 1.3 | 5.0 | 59.3 |
10 | 700 | 3.0 | 45.8 | 2.4 | 7.8 | 38.5 |
10 | 900 | 1.5 | 51.1 | 1.8 | 6.3 | 41.0 |
10 | 900 | 2.0 | 43.2 | 2.5 | 8.0 | 49.4 |
10 | 900 | 3.0 | 37.8 | 2.7 | 9.6 | 42.7 |
20 | 500 | 1.5 | 75.9 | 1.0 | 1.7 | 116.3 |
20 | 500 | 2.0 | 69.4 | 1.1 | 1.4 | 101.9 |
20 | 500 | 3.0 | 69.3 | 1.1 | 1.5 | 98.2 |
20 | 700 | 1.5 | 72.7 | 1.0 | 1.0 | 103.3 |
20 | 700 | 2.0 | 68.3 | 1.2 | 1.7 | 75.5 |
20 | 900 | 1.5 | 63.6 | 1.1 | 1.4 | 64.3 |
20 | 900 | 2.0 | 59.1 | 1.2 | 3.2 | 57.5 |
20 | 900 | 3.0 | 55.2 | 1.4 | 5.1 | 44.3 |
0 | 500 | 1.5 | 18.5 | 2.9 | 10.0 | 2.9 |
0 | 700 | 1.5 | 13.9 | 3.4 | 14.5 | 1.8 |
0 | 900 | 1.5 | 12.1 | 3.8 | 16.7 | 1.3 |
Porosity (%) | Density (g/cm3) | Shrinkage (%) | Surface Area (m²/g) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pre. | Exp. | Relative Error | Pre. | Exp. | Relative Error | Pre. | Exp. | Relative Error | Pre. | Exp. | Relative Error |
23.3 | 25.1 | −0.07 | 1.7 | 2.2 | −0.29 | 9.3 | 8.7 | 0.06 | 28.1 | 29.4 | −0.04 |
49.2 | 49.3 | −0.002 | 1.9 | 2.3 | −0.21 | 6.4 | 5.7 | 0.10 | 43.2 | 38.7 | 0.10 |
63.9 | 61.7 | 0.03 | 1.2 | 1.1 | 0.08 | 1.7 | 2.0 | −0.17 | 59.3 | 62.1 | −0.04 |
16.0 | 15.1 | 0.05 | 3.5 | 3.9 | −0.11 | 14.9 | 16.7 | −0.12 | 7.5 | 6.3 | 0.16 |
22.3 | 19.8 | 0.10 | 3.6 | 2.9 | 0.19 | 11.8 | 9.9 | 0.16 | 3.4 | 3.2 | 0.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majdi, H.S.; Saud, A.N.; Saud, S.N. Modeling the Physical Properties of Gamma Alumina Catalyst Carrier Based on an Artificial Neural Network. Materials 2019, 12, 1752. https://doi.org/10.3390/ma12111752
Majdi HS, Saud AN, Saud SN. Modeling the Physical Properties of Gamma Alumina Catalyst Carrier Based on an Artificial Neural Network. Materials. 2019; 12(11):1752. https://doi.org/10.3390/ma12111752
Chicago/Turabian StyleMajdi, Hasan Sh., Amir N. Saud, and Safaa N. Saud. 2019. "Modeling the Physical Properties of Gamma Alumina Catalyst Carrier Based on an Artificial Neural Network" Materials 12, no. 11: 1752. https://doi.org/10.3390/ma12111752
APA StyleMajdi, H. S., Saud, A. N., & Saud, S. N. (2019). Modeling the Physical Properties of Gamma Alumina Catalyst Carrier Based on an Artificial Neural Network. Materials, 12(11), 1752. https://doi.org/10.3390/ma12111752