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Abstract: Calcium carbonate scale is formed during oil and gas production. Tube-blocking tests
(TBTs) are used to define the minimum inhibitory concentration (MIC) in order to prevent scale
adhesion in the petroleum production system equipment. However, non-adhered crystals may favor
heterogeneous nucleation to other deposits such as calcium naphthenates, causing a more severe scale
problem, increasing production losses and treatment costs. The objective of the present work was to
develop a new dynamic test methodology to determine the MIC for CaCO3 using a sintered metal
filter. Organophosphorus inhibitors were selected for comparison with the conventional dynamic
tube-blocking system. The results demonstrated that the use of the filter allowed an MIC of the
inhibitors to be obtained considering the precipitation prevention. The inhibitor concentration in
the conventional tube-blocking system does not prevent precipitation, acting only on adhesion and
crystal growth on the capillary wall. Tests to evaluate the potential of calcium naphthenates formation
in a naphthenate flow rig dynamic system demonstrated the influence of heterogeneous nucleation
from non-adhered carbonate crystals, potentially aggravating deposition problems in oil and gas
production systems.
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1. Introduction

Calcium carbonate scale is one of the main flow assurance problems encountered during oilfield
operations. This salt can agglomerate at different points in the production system, resulting in a
partial or even total loss of production and additional operational costs for cleaning [1,2]. The general
equilibrium involved in calcium carbonate precipitation [3,4] is defined as:

Ca2+(aq) + HCO−3 (aq) + H2O (l) 
 CaCO3 (s) + H3O+(aq) (1)

Scale formation is a complex phenomenon involving thermodynamic supersaturation, kinetics,
and hydrodynamic effects (surface shear stress and turbulence) [5]. Supersaturation is the boundary to
trigger precipitation or crystallization processes. The saturation ratio (SR) of a solution is defined as:

SR2 = aCa2+ CO3
2−/kpsCaCO3 (2)

where a represents activity of the ions in solution (Ca2+ and CO3
2−) [4,6]. When SR > 1, the solution is

supersaturated, and the precipitation process is spontaneous. The Multiscale®software can be used
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to calculate SR as well as mass balance for Ca2+ and CO2 in the aqueous phase to each temperature,
pressure, and water composition.

The application of chemical inhibitors is an alternative technology to prevent or minimize
scale formation in many industrial processes [7,8]. The scale inhibitors work by preventing either
precipitation and/or adherence of the scale at threshold (sub-stoichiometric) concentrations [9].

Inhibitor performance, in terms of MIC or the threshold concentration required to prevent scale
(calcium carbonate) is the most important aspect for scale control additives [9]. The laboratory tests
used in the industry are based upon performance tests for inhibition of both static bottle and dynamic
tube-blocking types. Both test procedures are commonly adopted to that described in the NACE
standard TM 0374-2016 [10] and NACE standard TM 31105-2005 [11], respectively. The static bottle
test evaluates the effectiveness of scale inhibitors in the prevention of bulk homogeneous precipitation.
The bottle tests suffer a number of significant limitations when examining calcium carbonate formation
and its chemical treatment. The determination of the MIC depends on the quantification of the ions in
solution using techniques such as inductively coupled plasma optical emission spectrometry (ICP-OES)
or atomic absorption spectrometry [12]. These techniques require a higher quantity of consumables,
calibrations, and specialized technical knowledge. The bottle tests do not have the ability to overcome
the natural buffering capacity of the carbonic acid/bicarbonate/CO2 equilibrium (which tends to
increase the in situ pH) due to non-renewal of fluids [13]. When carried out in a stove, bottle tests have
limitations of ambient pressure and temperature below 100 ◦C, which may impact on the results applied
in the field. Therefore, the bottle tests can only be used as a pre-screening tool. However, for calcium
carbonate scale, the impact of pressure, temperature (including dissolution at lower temperatures), and
pH control makes such routine bottle testing significantly less appropriate, mainly under HPHT (high
pressure and high temperature) conditions. In such cases, pressurized systems are more suitable for
examining carbonate scale in order to ensure in situ pH. It will be possible to control the temperature
and pressure in the flow conditions representative of the oil field. Other studies [13–16] described the
impact of pressure and pH on the carbonate scale condition.

The dynamic conventional TBTs evaluate the effectiveness of scale inhibitors on preventing the
heterogeneous nucleation and growth at metal surfaces (scale adhesion) in a capillary tube under
dynamic flow conditions [9,17–19]. This ability gives dynamic TBTs an advantage over static jar tests
in that scale growth and inhibitor performance can be measured readily at temperatures higher than
100 ◦C (maximum up to 200 ◦C) and also at elevated pressures (typically up to 5000 psi). The system
back pressure presence also reduces the potential for CO2 released from the aqueous solution and the
consequential impact this would have on system pH and carbonate scaling potential. The dynamic
tests, therefore, allow scale formation and inhibition to be examined under conditions more closely
resembling those encountered in oilfield production [13]. However, the flow in a laminar system does
not reproduce the turbulent conditions of the oilfield pipelines and lines. References [20–24] using
electrochemical, quartz crystal microbalance and/or rotating cylinder electrode (RCE) techniques have
also been reported in the literature to evaluate inhibitors on growth and change of CaCO3 crystal
morphology as well as the influence of coating of the metallic surface. These techniques estimate the
scale deposition directly on a metallic surface, but they have a limited range of temperature (60 ◦C)
and atmospheric pressure [12]. Previous literature presents the sintered metal filter blocking system
to evaluate the efficiency of inhibitors and parameters that influence the formation of barium sulfate
and calcium naphthenates. Schalge and Dormish [25] evaluated the inhibitor’s ability to prevent
the formation of barium sulfate in a dynamic flow system consisting of a scaling coil and in-line
filter. However, the blocking system uses the filter only to collect the solid although the pressure
transducers continuously monitor the differential pressure in the scaling coil and filter. The authors
observed crystals accumulated in the scaling coil outlet without any increase in pressure recorded.
Therefore, the use of an in-line scaling coil and filter may be problematic for the efficiency of the
scale inhibitors’ evaluation. This system allows growth and adhesion of crystals in the capillary, and
non-adhered crystals are retained in the filter. However, if the fouling potential is high, the capillary
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may be blocked before any crystals are retained in the filter. The inhibitor will only evaluate adhesion
efficiency, not precipitation. For dynamic systems where only the filter is used, the inhibitor may act
to inhibit precipitation and prevent the formation of fouling crystals. Nichols et al. [26] and other
works [1,27] demonstrated the development of dynamic flow equipment termed a naphthenate flow rig,
using a sintered metal filter to evaluate the parameters (i.e., temperature, pH, calcium concentration,
bicarbonate and CO2) favoring the formation of calcium naphthenate and its stable emulsions as
well as the performance of different commercial inhibitors of calcium naphthenates. These studies
used conventional dynamic tube blocking equipment, under the same parameters employed in the
naphthenate flow platform, to determine a suitable dose of carbonate inhibitor. However, the results
showed that the carbonate crystals were still observed inside the walls of the mixing cell and potentiated
the naphthenates formation. Because conditions promoting calcium naphthenate formation (pressure
drop causing CO2 loss by increasing pH) are similar to those that cause calcium carbonate scale, mixed
deposits often occur [26]. Therefore, it is recognized that test protocols with a prediction of mixed
deposits require an accurate evaluation of the inhibition of carbonate precipitation.

This work describes the use of a novel methodology, using a sintered metal filter to conduct
carbonate precipitation experiments under pH, temperature, and pressure conditions more similar
to field conditions. The advantages of these proposed methods in relation to the conventional tube
blocking (laminar flow) are in the regime of turbulent flow generated by the passage of fluids through
the filter pores, and the prediction of the onset potential of carbonate precipitation, mainly in scenarios
where suspended particles may remain in the bulk fluid and be transported to surface facilities, causing
co-precipitation with calcium naphthenates. Although the pore size of a sintered metal filter has been
specified, the results obtained and reported in this paper are relatively generic, and therefore, can be
applied to other pore size filters for even more severe scaling environments.

2. Materials and Methods

2.1. Materials

The sintered metal filter and the scaling coil (loop) used in the dynamics systems were 316L
stainless steel provided by the company Swagelok. Chemical performance tests were undertaken
using commercial scale inhibitors organophosphorus. The inhibitors were diethylene triamine penta
methylene phosphonic acid (DETPMP), alkyl amino phosphonic acid (AAPA), (((2-hydroxyethyl) imino)
bis(methylene)) bisphosphonic acid (HMPA), and amino-tris(methylenephosphonate) (ATMP). Barium
chloride dihydrate, calcium chloride dihydrate, sodium bicarbonate, sodium chloride, strontium
chloride hexahydrate, hydrochloric acid (37%), sodium hydroxide microbeads, and n-heptane P.A.
were all analytical grade supplied by Vetec Química Fina Ltda, Duque de Caxias, Brazil. Naphthenic
acids extract was prepared from calcium naphthenates deposit field samples, hydrochloric acid, and
n-heptane. Figure 1 presents a description of the generic inhibitors tested in this work.

2.2. Synthetic Water Preparation

The synthetic brines represent produced water from a field with a similar ionic composition,
salinity, and pH. These synthetic brines are prepared in the laboratory by dissolving the appropriate
inorganic salts in deionized water. The composition of the synthetic formation brine used in this study
represents a field brine composition from a Brazilian petroleum reservoir presenting calcium carbonate
precipitation potential [26]. The brine composition is given in Table 1. This synthetic brine was divided
into two solutions, defined as cation brine and anion brine. These solutions were prepared separately
by weighing the appropriate quantity of salts and mixing with deionized water, and then mixed at a
ratio of 1:1 during experiment runs. Cation and anion brines were filtered through 0.45-µm membrane
filter paper. The appropriate quantity of concentrated aqueous NaOH and HCl solution was added
immediately prior to each test in order to produce a pH of 6.4.
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Figure 1. Generic structures of scale inhibitor organophosphorus used in dynamic systems.

Table 1. Brine composition.

Ion Concentration/(mg/L)

Sodium 69,529
Calcium 18,000
Barium 300

Strontium 1700
Chloride 140,000

Bicarbonate 1000

2.3. Determination of Scale Inhibitor MIC for Calcium Carbonate by Dynamic System in Filter or Scaling Coil

The dynamic systems presented in this paper were developed by Scaled Solutions Ltd. (Livingston,
UK). The schemes are shown in Figure 2. The dynamic tests for calcium carbonate precipitation in a
7 µm filter (Scheme A) and conventional dynamic tests in scaling coil (Scheme B) with a 500 µm inner
diameter (referred to as a TBT) were performed.
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In this test, the brine is separated into two aqueous fluids, one was termed cation brine (containing
the cationic ions: sodium, calcium, barium, and strontium as chloride) and the other anion brine
(containing the anionic ions: sodium chloride and sodium bicarbonate). The cations and anions brines
were injected by pumps 1 and 2, respectively, and percolated in separate capillaries, conditioned at
80 ◦C and 44 psi. These two brines were pumped at flow rates (5.0 mL/min each) that define the mixing
ratio between them (in this case, 50:50). Scale inhibitors were injected in the anions’ brine for MIC
determination. The fluids were mixed, and the differential pressure increases in the 7-µm pore filter
(Scheme A) or scaling coil with 1 m length and 0.5 mm inner diameter (Scheme B) were determined.
A summary of dynamic test conditions is presented in Table 2. The increased differential pressure
indicates that blockage was occurring, which, in turn, was indicative of calcium carbonate scale.
The filter was replaced with each test, and the system was cleaned with an acid solution, containing
5.0% acetic acid and 7.0% formic acid and with deionized water. A schematic of the turbulent flow in
the dynamic system using a filter is shown in Figure 3.

Table 2. Summary of dynamic tests conditions.

SCHEME A SCHEME B

Sintered Metal Filter Scaling Coil
(Conventional Tube Blocking Test—TBT)

Flow Turbulent Flow Laminar

Filter dimensions
(diameter × height) 7.67 mm × 12.65 mm Scaling coil length 1 m (1000 mm)

Filter nominal pore size
Filter pore size range

7 µm
5–10 µm Scaling coil ID 0.5 mm (500 µm)

Filter metallurgy 316 stainless steel Scaling coil metallurgy 316 stainless steel

Combined flow rate 10 mL/min Combined flow rate 10 mL/min

Run test duration 1 h Run test duration 1 h

Failure criteria Increase in ∆P ≥ 1 psi Failure criteria Increase in ∆P ≥ 1 psi

Temperature 80 ◦C Temperature 80 ◦C

Pressure 44 psi Pressure 44 psi
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2.4. Deposition of Calcium Naphthenate by Dynamic Filter System

The dynamic calcium naphthenate evaluation was performed on a naphthenate flow rig.
A schematic of the dynamic system is available in Figure S1 in the Supplementary Materials. The organic
fluid was composed of a heptane extract containing naphthenic acids extracted from a field deposit
extract, and the brine containing scale inhibitor ATMP was then added. The procedure for extraction
of the naphthenic acids used here was adapted from Bertelli et al. [28]. The fluids were conditioned
at a temperature of 80 ◦C and pressure of 44 psi in the oven. The fluids were mixed in a static mixer
and a mixing valve to produce tight in situ emulsions similar to those which may occur during normal
production conditions. The fluids then pass through two in-line filters (coarse filter/baffle and a fine
7 µm filter) to a separator (sapphire cell). The differential pressure was monitored across a fine filter
throughout the test and it provided an indication of blockages occurring, which, in turn, was indicative
of calcium naphthenate solid formation. In addition, the separating cell was transparent, enabling the
emulsion formation in the separator to be observed.
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3. Results

3.1. Dynamic Tests

The conventional TBT used to evaluate the effectiveness of calcium carbonate inhibitor in the
dynamic system was performed using a scaling coil and is standardized using the NACE 31105
method [10]. The increase of the differential pressure at the inlet and outlet of the capillary indicates a
blockage occurrence due to the carbonate crystal adhesion to the wall of the capillary (also termed a
loop). An efficient inhibitor should have an MIC capable of preventing adhesion and growth of scaling in
the capillary. As shown in Figure 4, the MIC determined in the loop for the AAPA inhibitor, for example,
was 30 mg/L (gray curve—LOOP). As can be seen, there is no change in the differential pressure during
one hour of testing. However, this test only refers to the efficiency of the inhibitor on adhesion.
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Figure 4. Carbonate precipitation in the filter (FILTER) and scaling coil (LOOP) dynamic systems at
80 ◦C and 44 psi, Inhibitor AAPA (30 mg/L).

When the capillary was replaced by a porous filter, restricting the size of the crystals formed,
and not only adhered, it was observed (red line—FILTER) that carbonate precipitation occurred and
its crystals were retained in the filter, causing a differential elevation of pressure. As can be seen,
30 mg/L of inhibitor did not prevent carbonate precipitation. As crystals larger than the filter pores
form, they are retained in the filter and the differential pressure increases, indicating that precipitation
has occurred. A higher concentration of inhibitor is then required to prevent clogging of the filter
pores. Therefore, at a concentration of 30 mg/L, the AAPA inhibitor is able to prevent adhesion, but
cannot prevent carbonate precipitation.

The organophosphorus inhibitors were evaluated to determine the MIC for calcium carbonate
precipitation in the dynamic filter system. In Figure 5, the differential pressure measurement graph
is shown, as obtained for the dynamic efficiency experiment of calcium carbonate inhibition in a
filter with amino-tris(methylenephosphonate) (ATMP) inhibitor addition. As brine containing calcium
ions (cation brine) and brine containing bicarbonate ions (anion brine) come together in the filter, the
first calcium carbonate crystals are formed, and crystals larger than the pore diameter are retained,
causing an increase in differential pressure until complete filter saturation occurs. The black line
represents the experiment in the absence of a scale inhibitor (blank test). The filter saturation occurred
at around 10 min (blank test), demonstrating a high potential for calcium carbonate scale, a result
which was expected according to the saturation ratio (SR) of the calculated synthetic production



Materials 2019, 12, 1849 7 of 13

water. The composition of this synthetic formation water, similar to the formation water composition
associated with an oil field in Brazil, indicated an SR for carbonate precipitation equal to 88 in the
condition of pH 6.4, 80 ◦C, and 44 psi, representing a high risk of precipitation.
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In the graph, the differential pressure variation was corrected by the initial distilled water flow and
the load loss caused by the filter porosity. Therefore, all experiments presented here started with zero
differential pressure. Moreover, the differential pressure increase obtained by the fluid mixture and
solution salinity was not considered as the onset of scale, but determined the baseline after the signal
stabilization, as highlighted in Figure 5. Thus, only an increase of 1 psi in the differential pressure
from 0.2 psi (baseline value after mixing) was considered as the onset of scale. This baseline value may
change depending on the viscosity of the inhibitor added to the test. A maximum time of 1 h was
established for all tests in the presence of scale inhibitor. These parameters of time and differential
pressure are in agreement with other studies available in the literature [29,30]. When a certain inhibitor
concentration acts to prevent a differential pressure variation higher than 1 psi in 1 h of testing, crystals
larger than the filter pores are not formed, and so, that concentration is the MIC or efficiency. In Figure 6,
the results of dynamic tests for the ATMP inhibitor are presented, which showed efficiency to the
inhibition of the precipitation of calcium carbonate when used at the MIC of 200 mg/L. The differential
pressure measurements for the comparison between the concentrations of inhibitor evaluated present
random uncertainties inherent to the system of less than 1 psi; thus, they do not influence MIC
determination. Using the same methodology, others organophosphorus inhibitors (diethylene triamine
penta methylene phosphonic acid (DETPMP), alkyl amino phosphonic acid (AAPA), (((2-hydroxyethyl)
imino) bis(methylene)) bisphosphonic acid (HMPA), and amino-tris(methylenephosphonate) (ATMP))
were evaluated. The N/P ratio and MIC of inhibitors for calcium carbonate by using a conventional
TBT dynamic system and dynamic sintered metal filter system at 80 ◦C and 44 psi are shown in Table 3.

The calcium carbonate inhibition efficiency is provided by MIC determination, comparing different
inhibitors. It can be observed in Table 3 that the organophosphorus inhibitor AAPA demonstrated an
MIC of 30 mg/L, and DETPMP, HMPA, and ATMP inhibitors showed the same MIC (60 mg/L) in the
scaling coil. This result indicates that in the capillary from the presence of two phosphonic groups,
there was no difference in inhibitor concentration, and the same relation is reflected for N/P ratios
below 0.60. However, an increased MIC of these inhibitors was observed when the filter was used
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because of the need to prevent carbonate precipitation that blocks the filter pores. MICs of 90, 100, 100,
and 200 mg/L were obtained for AAPA, DETPMP, HMPA, and ATMP inhibitors, respectively, in the
filter system. The differential pressure measurement graph for DETPMP, AAPA, HMPA, and ATMP
inhibitors in the dynamic systems are available, respectively, in Figures S2–S5 in the Supplementary
Materials. In both systems, the AAPA inhibitor presented better inhibition efficiency compared to the
MIC values of the other inhibitors evaluated. The differential pressure showed a variation of less than
1 psi, initially indicating that even though some crystals had formed, there was no adhesion to the
scaling coil walls, and that no filter pore obstruction due to calcium carbonate precipitation in the
dynamic filter system occurred.
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Table 3. MIC for calcium carbonate using conventional TBT dynamic system and dynamic sintered
metal filter system at 80 ◦C and 44 psi.

Inhibitor N/P Ratio MIC (mg/L)
in TBT Dynamic System

MIC (mg/L)
in Dynamic Filter System

AAPA 1.0 30 90
DETPMP 0.60 60 100

HMPA 0.50 60 100
ATMP 0.33 60 200

3.2. Case Study

To exemplify this phenomenon of secondary nucleation of calcium naphthenates from the presence
of carbonate crystals, a test using the naphthenate flow rig system was performed to evaluate the
potential for deposition of calcium naphthenates. This system also used a porous filter to detect the
naphthenate deposition and formation of stable emulsions in Figure 6, the tests are shown, as performed
with naphthenic acid extract and brine containing 60 and 200 mg/L of ATMP inhibitor, respectively, for
red and lilac curves.

It can be seen in Figure 6 that initially only the aqueous fluid passes, followed by the mixture
with the organic fluid (extract). An increase in the filter differential pressure was observed only by
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mixing the fluids and the emulsion formation to approximately 4.0 psi and 2.5 psi, respectively, for
the curves with 60 and 200 mg/L of ATMP inhibitor. From this value, any elevation is considered
deposition by calcium naphthenates, which occurs shortly thereafter, before 10 min of testing for the
two curves. However, by removing the carrier containing a spring and the 7 µm filter (see Figure 6),
the presence of carbonate precipitate was observed, even with the addition of 60 mg/L of the inhibitor.
The highlighting of the spring and red filter in Figure 6 illustrates that the carbonate was confirmed by
the release of CO2 when adding a solution of hydrochloric acid in the tank collected in the filter. It is
worth remembering that the addition of acid to the calcium naphthenate deposit would only cause
protonation of the carboxylate to form naphthenic acids. On 200 mg/L inhibitor concentration was
observed that the differential pressure increase occurred only as a function of naphthenates deposition,
which was confirmed by the absence of bubbles (CO2 release) when hydrochloric acid was added to
the collected precipitate in the spring and purple filter, highlighted in Figure 6.

The calcium carbonate presence enhanced naphthenate deposition, and the MIC determined
in the conventional dynamic system (60 mg/L) was not sufficient to prevent carbonate precipitation.
Therefore, in a real production system, this result would be devastating and would cause significant
operational and financial losses. On the other hand, the MIC (200 mg/L) carbonate determined in the
filter dynamic system allowed only the deposition of naphthenates to be evaluated in the naphthenate
flow rig system.

4. Discussion

4.1. Dynamic Tests

In conventional dynamic TBTs, the phenomena of supersaturation, precipitation, and adhesion
occur in the scaling coil also referred to as a loop, with a shorter contact time (around 10 s) in these laminar
flow systems. According to Goodwin et al. [5], in standard TBT dynamic tests, scale is formed under
laminar flow and shear conditions. However, these conditions are not representative of the turbulent
high shear fluxes that are frequently encountered during oil and gas production. The conventional TBT
reproduces only the adhesion on metallic surfaces occurring in the reservoir pipes, differently from the
porous filter dynamic system, which allows the detection of the inhibition efficiency of the carbonate
precipitation rather than just detecting the adhesion of the scale on metallic surfaces, a subsequent
process to carbonate precipitation. Therefore, the tendency is for smaller crystals to be formed at a
higher proportion and carried by the constant flow in the scaling coil, initially not causing variation in
differential pressure. However, the adhesion of these small nuclei to the scaling coil wall allows crystal
growth, and hence initiation of the inlay. Then, the MIC determined in the scaling coil represents only
the concentration on which the inhibitor acts in the deposition of calcium carbonate crystals on a field
pipe wall.

This filter type allows a surface filtration to occur. The carbonate crystals are retained on the
filter element surface, forming a surface of solids until the filter element is partially or totally closed,
reducing the efficiency of filtering or saturating. This saturation can be monitored by the differential
pressure at the inlet and outlet of the filter. Therefore, this porous filter has the capacity to retain
particles that are larger than its pores, which were 7 µm in this work.

Venâncio et al. [6] evaluated the impact of monoethyleneglycol (MEG) on calcium carbonate scale
by monitoring particle size distribution and found an increase in the fine particle count, corresponding
to a size smaller than 10 µm in the precipitation experiments of calcium carbonate without MEG.
A count between 50 and 150 µm was attributed to the evaluation of the carbonate crystals’ growth.
Cao et al. [31] studied the effects of nucleation on micro-calcium carbonate (1 µm–1 mm) in processes
of hydration. They observed that carbonate crystals with 0.7 or 3 µm size provide additional nucleation
sites for the formation and development of other solids. The sintered filter, selected for this work, was
composed of trapped fine particles in a dense matrix. The nominal pore size was 7 µm with a range in
pore size of 5–10 µm. The filter can remove 95% of particles larger than the nominal pore size [32]. This
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filter is commercially available and can be considered to evaluate the calcium carbonate precipitation.
This order of magnitude is approximately 70 times higher than the internal diameter of the scaling coil
(500 µm) used in conventional TBTs.

When inhibitor is present in the brine, it may act on the inhibition mechanism of the carbonate
nucleation and/or crystal growth depending on inhibitor concentration. The mechanism of the filters
towards the calcium carbonate inhibition, using the dynamic filter system, is based on crystal growth
inhibition and crystal size exclusion. The inhibitor concentration efficiency, determined by the MIC,
acts on the crystallization process to avoid crystals formation larger than the filter pores, which in this
work was 7 µm. Tighter protocols may use filters with pore sizes smaller than 7 µm to further restrict
the nuclei size formed; however, a higher inhibitor dosage will be required. In capillaries, the inhibitor
concentration required to retard capillary blockage is lower. The absence of a porous filter prevents the
crystals’ size from being restricted, rendering the particles more prone to growth in the aqueous phase
dispersion, resulting in adhesion on the capillary wall.

In the filter, the levels of shear stress and turbulence were increased as a function of the barrier
caused by the presence of the filter, where its pores cause a variation in the speed and direction of the
flow (see Figure 7), and consequently results in increased potential for scale formation. Qualitatively,
this system responds in a manner which is more similar to the effect of shear and turbulence occurring
in the field.
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In high-temperature systems, calcium carbonate precipitation becomes more critical because the
solubility of this salt decreases with increasing temperature. Therefore, higher dosages of inhibitors
are then expected to be required in both systems (filter and capillary) for calcium carbonate inhibition.

Structurally, the difference between the inhibitors is in the number of phosphonic groups, and
only due to the replacement of a phosphonic group by a hydroxymethylene group with the HMPA
inhibitor. It is known that the higher number of phosphonic groups in the molecule, the better their
inhibition efficiency. However, it is yet to be confirmed because that the AAPA inhibitor has only
one phosphonic group and obtained the best inhibition efficiency among the inhibitors. According to
Shaw et al. [33] considering the rings formed in the reaction with calcium, 5–6 atom rings (including
Ca2+) are more thermodynamically stable than larger rings; therefore, the higher the number of these
rings the chelate forms, the higher the inhibition efficiency. Rings of 5–6 atoms formed for the HMPA
and ATMP inhibitors when their protons were 50% dissociated are shown in Figure 8.Materials 2019, 12, x FOR PEER REVIEW 11 of 14 
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The ATMP inhibitor has more phosphonic groups and forms chelates with three rings of five atoms,
whereas the HMPA inhibitor forms only two, thus, it would be expected that the HMPA inhibitor
would have increased inhibition efficiency. However, this observation is contrary to the results obtained
by Shaw et al. [33]. A possible explanation for the result obtained here is in the relationship between
nitrogen and phosphorus in each molecule of inhibitor. The relationship is shown in Table 3, and it can
be observed that as the N/P ratio decreases in the inhibitor molecules, the inhibition efficiency increased.

Carbonate crystals not adhered can act as a secondary nucleus to potentiate other types of
deposition, as in the case of calcium naphthenates. Therefore, in fields where there is a risk of mixed
deposition of naphthenates and carbonates, the determination of the MIC through dynamic filter
systems can prevent this type of nucleation, but the same prevention cannot be obtained with the MIC
determined in the conventional tube-blocking system.

4.2. Case Study

Calcium naphthenates form as micelles through interaction of the carboxylate (deprotonated
naphthenic acid) with two calcium ions in one single step. Because calcium ions are not likely to
penetrate the hydrophobic core of the micelle, only reactions of calcium ions with external carboxylate
groups of the molecule proceed. In the petroleum field, calcium naphthenate deposition can be
aggravated by the presence of inorganic scale such as calcium carbonate. Carbon crystals function as
seeds to induce naphthenate deposition. The heterogeneous nucleation reduces the energy necessary
for the formation of an initial surface for deposition growth. This phenomenon is better observed
when there is an increased contact time between fluids containing precipitating ions (RCOO− and
Ca2+) and solids (CaCO3) suspended and/or adhered to a surface. The naphthenic acids interact with
the calcium retained in the crystalline carbonate by modifying the initial carbonate structure.

The dynamic calcium carbonate inhibition efficiency tests using a porous filter are able to detect
carbonate precipitation, rather than only assessing the scale adhesion on the capillary surface, according
to conventional dynamic systems. The results obtained can reduce costs associated with remediation
of organic and inorganic depositions incorporated into the crystalline network of calcium carbonate.

5. Conclusions

The use of a sintered metal filter allowed the presence of calcium carbonate crystals in suspension
to be evaluated, making the determination of the inhibition efficiency of carbonate precipitation
possible. This approach is important in terms of considering the impact of the presence of calcium
carbonate crystals on the aggravation of other types of fouling in the oil and gas production system, as
in the case of calcium naphthenates. In TBTs, the MIC is only effective for adhering the crystals to metal
surfaces, not considering flow solids. Therefore, a methodology that allows the inhibition of carbonate
precipitation is more advantageous in terms of mixed-scale remediation costs than a methodology
based only on adherence to metal surfaces.
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Figure S1: Schematic of naphthenate flow rig, Figure S2: Determination of MIC of calcium carbonate to scale
inhibitor DETPMP in dynamic systems at 80 ◦C and 44 psi: (a) in loop, (b) in filter, Figure S3: Determination of
MIC of calcium carbonate to scale inhibitor AAPA in dynamic systems at 80 ◦C and 44 psi: (a) in loop, (b) in filter,
Figure S4: Determination of MIC of calcium carbonate to scale inhibitor HMPA in dynamic systems at 80 ◦C and
44 psi: (a) in loop, (b) in filter, Figure S5: Determination of MIC of calcium carbonate to scale inhibitor ATMP in
dynamic systems at 80 ◦C and 44 psi: (a) in loop, (b) in filter.
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