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Abstract: In this paper, we measured the fracture properties of cement mortar—which is composed
of sand and has a nearly constant diameter—using a direct tension test. Four double-notched mortar
bar specimens with different structural dimensions were assessed. The failure load, load-crack mouth
opening displacement, and elongation of the gauge length were measured under direct displacement
control. The fractured surfaces were scanned and measured so that we could calculate the tensile
strength accurately and determine the fracture energy and characteristic length. The average ratio of
total fracture energy (GF) to specific fracture energy (Gf) was 1.94; this was lower than the typical
value for concrete, of 2.5. The direct tension test showed that the double-notched mortar specimens
had a smaller fracture processing zone after the initiation of tensile cracks, so the tail portion of
the softening branch was small. This decreased the GF/Gf ratio. We verified this result based on
a nonlinear fracture mechanics simulation and found that it agreed well with our experimental
results. We also investigated the size effects of four different scaled specimens while holding the
ratio of structural dimension, d, and notch length, a is constant, so that there was no shape effect.
The traditional linear elastic fracture mechanics (LEFM) prediction and Bažant’s size effect law yield
a gradient closer to 1/2 in the case of relatively large specimens. In the case of our cement mortar
specimens, this prediction was not supported, where the value of the slope was 1/0.727. This was
unexpected because LEFM predicts strong size effects. One possible explanation for this result is that
the size effects of concrete are most often evaluated using a bending test; also, concrete has a larger
maximum aggregate size than mortar. Due to the random heterogeneities in aggregate distribution,
higher tail energies may be seen for concrete, leading to differences in the GF/Gf ratio. At the same
time, the peak tensile stress could be affected by the relationship between structural dimensions and
aggregate size.

Keywords: cement mortar; fracture energy; fractured area; size effect; characteristic length

1. Introduction

A wide variety of experiments have been carried out to explore the fracture properties of concrete,
including brittle crack initiation and propagation [1–3]. The size effect on geometrically similar
structures can be measured in terms of the nominal strength of structure with the effect of the
characteristic structure size. In early stage, the classical Weibull theory was adopted for explaining a
statistical size effect caused by randomness of material strength. If the size of a quasi-brittle structures
becomes sufficiently large compared to material inhomogeneities, the structure becomes perfectly
brittle, and if the size becomes sufficiently small, the structure becomes non-brittle because the fracture
process zone (FPZ) extends over the whole cross section of the structure [2]. The basic size effect laws
that are power laws in terms of structural dimension. In linear elastic fracture mechanics (LEFM),
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this exponent was estimated as −1/2 when the geometrically similar structures with geometrically
similar cracks or notches were considered [2]. The law of deterministic size effect provided a way
of bridging two different powers applicable into two adjacent size range. One is strength limit and
the other is LEFM limit. According to crack band theory, the FPZ is influenced by the aggregate
content and maximum aggregate size [3–5]. The structure size at which this bridging transition occurs
represents a characteristic size. Extensive research works have been made for last four decades in order
to estimate this transition size effect [2]. Since Walsh [2] introduced the doubly logarithmic plot of
nominal strength versus size and observed this transitional zone, Bažant, Kim, and Carpenteri [3,6,7]
suggested the modified exponent of that of the LEFM theory. On the other hand, the formation of an
FPZ would have a significant influence on the total fracture energy (GF) of concrete [5].

As a binding material, the fracture behavior of cement mortar may be of interest. It will enable us
to determine basic fracture properties by canceling out the inclusion effect. Numerous experimental
bending tests have been carried out [1–3,5,8–22] to assess the fracture energy and fracture toughness
of cement mortar and concrete. Cementitious materials exhibit a wide range of properties, from
relatively ductile to brittle, depending on the water-to-cement ratio, aggregate-to-cement ratio, curing
time, environmental condition (wet or dry condition of specimen), boundary condition of fixture,
eccentricity of loading [3,5,10,13–15]. When investigating the presence of size effect in the material
itself experimentally, it seems preferable to carry out uniaxial tension tests. For uniaxial tension tests,
this boundary influence has been extensively investigated for rectangular and cylindrical specimens of
different sizes using rotating boundary condition [10].

These was an effort to decouple a mix of material behavior and structural effects when fixed
boundary condition was applied. This wise experimental setup using rotating boundary condition
were also proven by a series of lattice analysis for test specimen [10]. The size effect of concrete and
sandstone was reported by van Vliet and van Mier [10,14,15]. The tests were carried out on specimens
of six different sizes in a scale range of 1:32. In the smallest specimens, failure stress was governed by
the aggregates. With increasing size of the specimen, the role of the statistical strength distribution
increased as well. The presence of flaws in the specimens determined the ultimate stress if stress/strain
gradients of a structural is not overwhelmed [10,14,15]. The basic hypothesis of the cohesive crack
model is that for mode I, an FPZ of finite width can be described by a fictitious line crack that transmits
normal stress, where this stress is a function of the separation, w. This hyper-elastic type of softening
first shows a very steep descending curve and then, at roughly 0.15~0.33 ft

’, a gentler slope [4,5,9].
The tail of the descending curve is very long. This poses severe problems for the measurement of
GF, which corresponds to the area under the entire curve [5]. As this measurement is designed for
concrete material, this tail of the descending branch differs to that of mortar specimens due to the lack
of major inclusion.

When discussing scaling and size effects, it is important to consider that the fracture energy and
material strength imply the existence of a characteristic fracture length as a material property. The
expression of the characteristic length, lch, in the context of the FPZ, was introduced by Irwin [3,5].
The ratio of the GF and the Gf is approximately 2.5 for concrete, and crack bandwidth, wf, can be
defined as 14Gf/ft

’ or 5.6GF/ft
’, and wo = (1/7)wf for the intercept of the initial tangent with axis of w [5].

These three fracture parameters, GF, Gf, and ft
’ (or lch, l1, and ft

’) are sufficient to generate a cohesive
model of concrete material. Similar measurements for evaluating the fracture energy and lch have been
reported by many researchers [23–31].

In this paper, since the fracture parameter measure of cement mortar mostly have been done
under three-point bending test, we attempted to determine these three fracture parameters for cement
mortar under direct tension test. To this end, it is also important to measure the fracture surface
area when estimating tensile strength, rather than using the overall surface area of the specimen.
According to van Vliet et al. [3,15], the size effect on strength cannot be fully understood unless the
material composition and the specimen geometry, as well as the presence and magnitude of stress/strain
gradients is considered. In our case, the statistical aggregate distribution that causes stress/strain
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gradients, material composition issue was relatively minimized by using cement mortar specimen
(material inhomogeneity only considered aside from the specimen shape, load eccentricity, and rotating
boundary condition of fixture devices). This may lead that material size effect could not be overruled
by these possible influences. Some experimental studies [32] have attempted to use the fracture
surface area to calculate fracture energy more precisely. This is essential to quantify the three fracture
parameters discussed above. The purpose of this paper is to devise a basic model of cement mortar
fractures that considers size effects and to assess fracture properties using uniaxial tensile tests. To this
end, we carried out direct tensile tests of cement mortar bar specimens with different structural sizes.
The load-crack mouth opening displacement (CMOD) was recorded, in addition to the elongation
of the gauge length, using linear variable differential transformers (LVDTs). We then assessed the
size effect, based on the tensile strength and fracture energy, in terms of the final CMOD at failure.
To accurately measure the fracture energy of the test specimens, each failure surface was scanned
using three-dimensional (3D) scanning equipment. This enabled us to quantify the lch, which can be
expressed as the surface energy on the cracked surface with respect to the elastic strain energy on the
crack band volume.

2. Uniaxial Tension Test of Size Effects

Each specimen was prepared with a 50% water-to-cement ratio and 53% cement-to-sand ratio. A
12 min mixing process was used: 7 min of dry-mixing, the addition of water over 4 min, and then
dynamic compaction for 1 min. The specimens were demolded after 1 day of curing under room
temperature and placed in water for 27 days. All specimens were tested using the direct tension setup
illustrated in Figure 1. The experiments were performed on a hydraulic testing machine with a capacity
of 50 kN. The channels for loading both ends of the specimen are made of hardened steel and have
polished surfaces. A double-notched tension bar was used to measure the failure load associated with
the CMOD. The purpose of this tension test was to quantify the fracture energy (mode I fracture).
We also investigated the size dependency of the scaled specimens (T-10, T-20, T-30, and T-40). The
ratio of initial notched length to the maximum dimension of a specimen, a/d (d = w2), was set to 0.25,
as indicated in Table 1. Four group specimens, with ligament areas of 10, 20, 30, and 40 mm2, were
cast. Each specimen group contained nine sub-specimens. Two LVDTs and two clip gauges (range:
±2.5 mm) were installed to measure the total displacement of the bar and the CMOD at the notched
length. The axial deformation referred to in this paper is the average value of the two LVDTs. The
CMOD values on either side of the notched part of the specimen showed significant bias when cracks
developed in the notched sections, probably due to the instant rotation of the specimen when the crack
developed. Therefore, the CMOD referred to in this paper represents the superior result between the
two CMODs measured. The average compressive strengths of specimens T-10, T-20, T-30, and T-40
were 66.6, 55.3, 52.4, and 56.7 MPa, respectively, after 28 days of curing. Each specimen was in the
form of a 50-mm cube. Failure stress-CMOD plots are depicted in Figure 2 for the T-series specimens.
The stresses were calculated based on the initial test area, given by Ao = w2·b.
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Figure 1. (a) Generic geometry of the specimens and (b) test apparatus.

Table 1. Specimen dimensions in mm (Note: structural dimension, d = w2).

Specimen Label h0 h1 h2 h3 h4 w0 w1 w2 a b Ao (mm2)

T-10 165.0 42.5 20.0 17.5 5.0 30.0 15.0 10.0 2.5 10.0 100

T-20 330.0 85.0 40.0 35.0 10.0 60.0 30.0 20.0 5.0 20.0 400

T-30 495.0 127.5 60.0 52.5 15.0 90.0 45.0 30.0 7.5 30.0 900

T-40 660.0 170.0 80.0 70.0 20.0 120.0 60.0 40.0 10.0 40.0 1600
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Figure 2. Plot of the Piola-Krichhoff (PK) stress versus the crack mouth opening displacement (CMOD).

3. Uniaxial Cauchy Stress According to 3D Image Analysis

As the fractured area, An, differs from the initial test area, Ao, for each fractured specimen, 3D
image analyses were carried out to measure the actual An. A light-emitting diode (LED)-type remote
3D scanner (smartSCAN; AICON, 2016, Breuckmann, Germany) based on the miniaturized projection
technique was used with three different projection angles. The An of each T-series specimen was
measured on a 5.0-M resolution digital image with a minimum precision of 7 µm. The actual fractured
surfaces were larger than the initial section, so the fracture stresses were calculated according to the
Cauchy stress principle, as indicated in Figure 3. It is important to quantify the mode I fracture
energy based on experimental test data. Smaller specimens show relatively larger differences between
fractured and initial sections, as indicated in Figure 3e,f.



Materials 2019, 12, 1850 5 of 15

Materials 2018, 12, x FOR PEER REVIEW  5 of 15 

 

mode I fracture energy based on experimental test data. Smaller specimens show relatively larger 

differences between fractured and initial sections, as indicated in Figure 3e,f. 

 

  
(a) (b) 

  
(c) (d) 

  

(e) (f) 

Figure 3. Scanned fractured sections. (a)–(d) Scanned images; (a). T-10 (An = 144.67 mm2); (b). T-20 

(An = 554.05 mm2); (c). T-30 (An = 1158.09 mm2); (d). T-40 (An = 2,217.54 mm2); (e) measured fractured 

surface areas by specimen size; (f) deviation ratios between fractured and initial sections. 

4. Size Effect of Mortar Specimens Under Uniaxial Tension 

The fracture stress-CMOD graph obtained based on the initial section in Figure 2 was replotted 

in Figure 4 for a fractured section. The peak values of the fractured surfaces were adjusted to yield 

lower values. The gauge lengths of specimens T-10, T-20, T-30, and T-40 were 35, 70, 105, and 140 

mm, respectively. The tensile strength-CMOD relationships, based on the (a) clip gages and (b) 

LVDTs with gauge length Lg, are plotted in Figure 4. The results were similar, indicating that the 

FPZ was located nearby to the notched zone. The peak strain ranged from 4.18 × 10−5 to 8.81 × 10−5. 

The failure strain finally saturated at approximately 1.25 × 10−3. The CMODs at failure were 0.0333, 

0.091, 0.145, and 0.245 mm for specimens T-10, T-20, T-30, and T-40, respectively. 

100

1000

10000

0 2 4 6 8 10

Fr
ac

tu
re

d
 A

re
a 

(m
m

2
),

 L
o
g
-s

ca
le

d

No. of Sample

T10 (10mm x 10mm)
T20 (20mm x 20mm)
T30 (30mm x 30mm)
T40 (40mm x 40mm)
T10 (scanned area)
T20 (scanned area)
T30 (scanned area)
T40 (scanned area)

0

0.1

0.2

0.3

0.4

0.5

0.6

T10 T20 T30 T40

D
ev

ia
ti

o
n

 R
at

o
 f

ro
m

 A
n

 

Specimen Size (mm)

Figure 3. Scanned fractured sections. (a–d) Scanned images; (a). T-10 (An = 144.67 mm2); (b). T-20
(An = 554.05 mm2); (c). T-30 (An = 1158.09 mm2); (d). T-40 (An = 2,217.54 mm2); (e) measured fractured
surface areas by specimen size; (f) deviation ratios between fractured and initial sections.

4. Size Effect of Mortar Specimens under Uniaxial Tension

The fracture stress-CMOD graph obtained based on the initial section in Figure 2 was replotted
in Figure 4 for a fractured section. The peak values of the fractured surfaces were adjusted to yield
lower values. The gauge lengths of specimens T-10, T-20, T-30, and T-40 were 35, 70, 105, and 140 mm,
respectively. The tensile strength-CMOD relationships, based on the (a) clip gages and (b) LVDTs with
gauge length Lg, are plotted in Figure 4. The results were similar, indicating that the FPZ was located
nearby to the notched zone. The peak strain ranged from 4.18 × 10−5 to 8.81 × 10−5. The failure strain
finally saturated at approximately 1.25 × 10−3. The CMODs at failure were 0.0333, 0.091, 0.145, and
0.245 mm for specimens T-10, T-20, T-30, and T-40, respectively.
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The experimental results for the peak Piolar-Kirchhoff (PK) stresses and Cauchy stresses, for
different structural dimensions, d (from 10–40 mm), are shown in Figure 5a,b. To measure the size
effect [4,5,9], we linearized Equation (1) so that the projected reference strength, f ∗t = B f ′t could be
evaluated by intersecting the σN

−2-axis in the form of f ∗t = 1/
√

C. Furthermore, the characteristic
measure of specimen size, λo can be calculated as C/A. The results of this linear fitting of the PK
and Cauchy stress data are plotted in Figure 5c,d, where B f ′t = 2.24 Mpa and λo = 7.55 mm for PK
stress; B f ′t = 3.16 Mpa and λo = 5.24 mm were retrieved. The minimum stress value for each group of
specimens was used in the calculations of these parameters based on experimental data. The maximum
and average stress data tend to have a negative C value, which is not rational in the case of tensile stress.

σN
−2 =

1(
B f ′t

)2 +
1(

B f ′t
)2
λo

λ = C + Aλ (1)
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Figure 5. Peak stresses versus specimen size: (a) PK, and (b) Cauchy stresses, and linearized stresses
versus different specimen sizes: (c) PK, and (d) Cauchy stresses.

After determining the empirical parameters, B f ′t and λo, a double log-scale plot of the strength by
structural size was generated, as shown in Figure 6. In the case of the Cauchy stress, the gradient was
slightly less than 1:2 based on linear elastic fracture mechanics (LEFM) for the 10–30-mm specimens.
However, an abruptly descending branch was observed in the case of the 40-mm specimen group.
Thus, a significant drop in strength occurred in the case of the 40-mm specimens; this can be seen in
Figure 5c,d. The reduction was extremely large in the context of linear fracture mechanics, where the
gradient decreases proportionally to the square root.
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Based on the work of Bažant [5,9], a linear softening branch was used to formulate the GF. Herein,
a bilinear softening branch was used by modifying the area underneath the stress-strain curve in
Figure 7. Thus, GF can be rewritten as follows:
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Figure 7. Fracture process. (a) Fracture process zone (FPZ) and (b) bilinear softening model for mortar.

The equations of Bažant [4,5] can be rewritten as Equations (2) and (3), and are used to obtain the
elastic stored energy in the FPZ shown in Figure 7b:

∂W
∂a

= 2(2k1a + nda)b

 σ2
N

2Ec

,
∂W
∂a

= GFb (2)

GF = wc

(
1− (1− α2)

Ec

Et1
− α2 Ec

Et2

)
f ′2t

2Ec
(3)

where, k1 and n are the empirical constants derived in the experiments. According to Bažant [4,9], k1 is
close to 1 and n is 3~5, depending on the material used (3 for concrete; 5 for rocks and ceramics). a
and da are the notch length and maximum grain size, respectively. In our case, a varied among the
specimens listed in Table 1. da was 0.5 mm in the case of the sand particles used in the experiment. b is
the thickness of the specimen, as listed in Table 1. W is the work done by the FPZ, which is shown in
Figure 7b. σN is the estimated tensile stress under the size effect and f ′t is the reference tensile strength.
Ec, Et1, and Et2 are the initial elastic modulus and first and second descending softening branches,
respectively, and α is the strength retention factor at the inflection point in the descending branch. wc

is the crack band, which can also be expressed as nda. The inflection point, α f ′t in Figure 7a ranges
from 0.22–0.6 f ′t depending on the specimen size; the average experimental value is 0.4 f ′t (Figure 8).
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Figure 8. Simplified stress-strain relationship based on the average tensile stress-inelastic CMOD for
measuring specific fracture energy (Gf) and total fracture energy (GF).
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The basic expression of B in Equation (1) can be rewritten as B* using Equations (4) and (5):

B∗ =

√
1− (1− α2)

Ec

Et1
− α2 Ec

Et2
, f ∗t =

f ′t√
1 + λ

λo

, σN = B∗ f ∗2t (4)

(
f ′t
σN

)2

=
1

B∗2
+

λ

B∗2λo(λ)
, Y = C + A(λ)λ (5)

where, b = 1
B∗2 , a(λ) = 1

B∗2λO(λ)
, λO(λ) = 91.354− 1.9073λ+ 0.0109λ2, B∗ = 3.29.

As mentioned earlier, λo is not constant. Instead, we used the function λ to fit the experimental
test results more accurately. Figure 9 and Table 2 show the inverse analysis results obtained using the
size effect law defined in Equations (4) and (5), when the reference tensile strength was set to that of
specimen T-40. The results are acceptable, being that they are between those given by the size effect
law and the experimental results. However, they violated the linearized relationship of Equation (1)
and a constant value of λo.
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Figure 9. (a) The material characteristic length, λo with respect to the structural size, λ; (b) the size
effect when λo(λ).

Table 2. Strength variation by specimen.

Specimen Label Avg. Cauchy Stress (MPa) Estimated Tensile Stress (MPa)

T-10 2.577 2.327

T-20 1.591 1.583

T-30 1.088 1.085

T-40 0.719 0.723

Bažant [4,5] described the size effect in terms of the member size, maximum aggregate size, FPZ,
and crack width, wc, by first defining k1 and n. The size reduction rate depends on the 1:2 slope of
the size radical, as given by Equation (1). As this law was intended for use in models of concrete
and rock, it must be modified empirically for application to mortar. As shown in Figure 10, failure
strength decreased with a gradient of 1

2 when n = 3, k1 = 1 and m = 2. However, there are discrepancies
between this strength reduction and that shown by the experimental test data for the mortar specimen,
where the slope value was 1/0.727. As mortar contains sand grains with a maximum size of 0.5 mm, wc

would be 1.5 mm if n = 3, as proposed by Bažant and Oh [8]. Then, the constants m and k1 have to be
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changed from 2 and 1 to 0.7 and 0.273, respectively, in accordance with the measured fracture energy
(mode I fracture), as illustrated in Figure 7a. Here, λo can be defined as λo = (n/2k1)(d/a).

σN = B · f ∗t (6)

where, f ∗t =
f ′t

m
√

1+ λ
λo

, λo =
(

n
2k1

)(
d
a

)
, B =

√
1 + Ec

−Et
, wc = nda.
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As n = 3 and d/a = 4 is constant in λo, the acceptable range of tensile strength can be calculated with
λo = 16; then, k1 is close to 0.375 rather than ~1, as in the case of concrete [4,5]. This provides a better
estimate of tensile strength with respect to specimen size, as shown in Table 3. If k1 is held constant at 1,
then n should be changed to 8. However, this value far exceeds the range of 3~5 for concrete and rock.
The lower value of k1 indicates that the FPZ in the vicinity of the notched crack would be narrower, as
illustrated in Figure 7a. This could be explained by using a finite element smeared crack model with
mode I fracture. In Figure 11b, the FPZ has a finite width (in red color) before developing into a major
crack in the direction of the shortest length, as shown in Figure 11c. Regarding the minimum mesh size,
hef (>wc), Bažant and Oh [8] assumed that the stress-strain relationship in the FPZ is linear, as follows:

wc =
2GF

f ′t
2

( 1
Ec
−

1
Et

)−1
(7)

wc =
2GF

f ′t
2

(
1
Ec
− (1− α2)

Ec

Et1
− α2 Ec

Et2

)−1

(8)
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Table 3. Log-scale data of the size effect of the T-series mortar specimens.

Specimen
Label PK Stress Cauchy

Stress LEFM Bažant
(n = 3, k1 = 1, m = 2)

Modified Bažant
(n = 3, k1 = 0.375, m = 0.727)

T-10 3.89 2.58 3.16 4.09 2.78

T-20 2.15 1.59 2.20 3.21 1.51

T-30 1.39 1.09 1.80 2.73 0.99

T-40 0.94 0.72 1.56 2.41 0.72

Materials 2018, 12, x FOR PEER REVIEW  11 of 15 

 

1

2 2

'2

1 2

2 1
(1 ) c cF

c

t c t t

E EG
w

f E E E
 



 
    

 
 (8) 

Table 3. Log-scale data of the size effect of the T-series mortar specimens. 

Specimen 

label 

PK 

Stress 

Cauchy 

Stress 
LEFM 

Bažant 

( n  = 3,
1k  = 1, m = 2) 

Modified Bažant 

( n  = 3, 
1k  = 0.375, m = 0.727) 

T-10 3.89 2.58 3.16 4.09 2.78 

T-20 2.15 1.59 2.20 3.21 1.51 

T-30 1.39 1.09 1.80 2.73 0.99 

T-40 0.94 0.72 1.56 2.41 0.72 

 

   
(a) (b) (c) 

Figure 11. llustration of the FPZ and failure simulation performed with ATENA software: (a) FE 

model of T-series specimen with the rigid fixtures at the ends, (b), (c) crack distribution and FPZ 

across the notches with different crack width. 

5. Measurement of Mode I Fracture Energy Based on the Cauchy Stress 

We developed a crack model based on the crack-opening law and fracture energy. This is 

suitable for modeling the propagation of cracks through concrete and was used in conjunction with 

the crack band. The crack opening function was derived experimentally by Hordijk [33], as shown in 

Equation (9). 

'
5.14 F

f

t

G
w

f
  or  

'
2.06

f

f

t

G
w

f
  where, 2.5F

f

G

G
 (9) 

In our case, as shown in Table 5, the Gf is not affected by specimen size. The GF/Gf ratio showed 

that the mortar specimens were less brittle than other types of materials. Typically, this ratio is 

approximately 2.5 in the case of concrete [3,5]. The value of α, which links wf and GF, is 

approximately 5.14 for concrete, whereas for mortar it is 3.71, and the average GF/Gf ratio is 1.94, as 

shown in Equation (10) and Table 4. Figure 12 shows the post-failure behavior of mortar according 

to specimen size. The definition of wf proposed in Equation (10) was validated based on a nonlinear 

finite element simulation with a smeared crack model generated in ATENA software [34], as shown 

in Figure 13. Good agreement regarding the force and CMOD was seen between the simulation and 

experiment. 

' ' '
2.55 4.51 3.71F F F

f

t t t

G G G
w

f f f
    where, 1.65 2.23 1.94F

f

G

G
  (10) 

Figure 11. Llustration of the FPZ and failure simulation performed with ATENA software: (a) FE
model of T-series specimen with the rigid fixtures at the ends, (b,c) crack distribution and FPZ across
the notches with different crack width.

5. Measurement of Mode I Fracture Energy Based on the Cauchy Stress

We developed a crack model based on the crack-opening law and fracture energy. This is suitable
for modeling the propagation of cracks through concrete and was used in conjunction with the
crack band. The crack opening function was derived experimentally by Hordijk [33], as shown in
Equation (9).

w f = 5.14
GF

f ′t
or w f ' 2.06

G f

f ′t
where,

GF

G f
' 2.5 (9)

In our case, as shown in Table 4, the Gf is not affected by specimen size. The GF/Gf ratio showed
that the mortar specimens were less brittle than other types of materials. Typically, this ratio is
approximately 2.5 in the case of concrete [3,5]. The value of α, which links wf and GF, is approximately
5.14 for concrete, whereas for mortar it is 3.71, and the average GF/Gf ratio is 1.94, as shown in Equation
(10) and Table 4. Figure 12 shows the post-failure behavior of mortar according to specimen size.
The definition of wf proposed in Equation (10) was validated based on a nonlinear finite element
simulation with a smeared crack model generated in ATENA software [34], as shown in Figure 13.
Good agreement regarding the force and CMOD was seen between the simulation and experiment.

w f = α
GF

f ′t
= 2.55 ∼ 4.51

GF

f ′t
' 3.71

GF

f ′t
where,

GF

G f
= 1.65 ∼ 2.23 ' 1.94 (10)
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Table 4. Value of parameter α used for calculating crack bandwidth, wf.

Specimen
Label ft

’(MPa) wf (mm) Gf (N/mm) GF (N/mm) GF/Gf α

T-10 2.58 0.0333 0.02 0.0337 1.685 2.55

T-20 1.59 0.0910 0.01945 0.0321 1.650 4.51

T-30 1.09 0.1450 0.01946 0.0434 2.230 3.64

T-40 0.72 0.2450 0.01962 0.0427 2.176 4.13
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Figure 12. Fracture energies: (a) specific and total fracture energies, Gf and GF, (b) measured fracture
energies from T-series specimens.
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Figure 13. ATENA simulation results using the measured values of Gf and GF for specimens (a) T-10,
(b) T-20, (c) T-30, and (d) T-40.
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Hillerborg [35] and Bažant [36] calculated lch based on the GF and Gf. As given by Equation (9),
the ratio between GF and Gf is approximately 1.94 in the case of our mortar specimen. These two
characteristic lengths have the same change with the factor of 1.94 in Equation (9). These measures of
lch represent the brittleness of the specimen in terms of its elastic energy, Uo with respect to the surface
energy released by crack development, Ws, as indicated by Equation (11). In Figure 14, we can see the
decrease in brittleness with larger specimen size.

lch =
EcGF

f ′t
2 = 1.94

EcG f

f ′t
2 =

Ws

Uo
(11)
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6. Conclusions

In this study, we investigated the fracture energy and size effect of mortar specimens under direct
uniaxial tension.

1. The fractured surfaces were scanned using a 3D scanner and we calculated Cauchy stresses
to evaluate the fracture energy precisely by using final fractured surface. The actual fractured
surfaces were larger than the initial section, so the fracture stresses were calculated according
to the Cauchy stress principle. It is important to quantify the mode I fracture energy based on
experimental test data. Smaller specimen group shows relatively larger differences between
fractured and initial sections.

2. The average GF/Gf ratio for the mortar specimens was 1.94, which is lower than the typical value
for concrete, of 2.5. The direct tension test on the double-notched mortar specimens with no major
inclusion yielded a small FPZ after tensile crack initiation, so that the tail portion of the softening
branch was also relatively small. This led to a decrease in the GF/Gf ratio. We verified this via a
nonlinear fracture mechanics simulation, which agreed well with our experimental results.

3. We investigated the size effect for four different specimens with d/a held constant, to eliminate
shape effects. The traditional LEFM-based prediction and the Bažant size effect law predict a
gradient of 1/2 in the case of relatively large specimens. Typical laboratory-scaled specimens
usually exhibit gradients below 1/2 in the case of concrete; thus, nonlinear fracture mechanics
should be used to estimate tensile strength in terms of structural dimensions. In the case of our
mortar specimens, the slope value, 1/0.727, violated either the LEFM theory and Bažant size
effect law, which was unexpected because LEFM predicts a strong size effect. More observations
are required to explore this according to variations in d/a. In order to explore this discrepancy,
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different direct tensile test specimen could be applied; (a) un-notched specimen, (b) one-side
single-notched specimen, and (c) double-notched specimen. Notch sensitivity may lead to
different extent of FPZ and tensile strength change in accordance with specimen size.
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