Synthesis, Characterization, and Crystal Structures of Imides Condensed with p-Phenylamino(Phenyl) Amine and Fluorescence Property
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Description of Crystal Structures
3.2. Infrared Spectra
3.3. Thermogravimetric Analyses
3.4. UV-Vis Absorption and Fluorescence Spectra
3.5. Differential Pulse Voltammetry (DPV) and Cyclic Voltammogram (CV)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pron, A.; Gawrys, P.; Zagorska, M.; Djurado, D.; Demadrille, R. Electroactive materials for organic electronics: Preparation strategies, structural aspects and characterization techniques. Chem. Soc. Rev. 2010, 39, 2577–2632. [Google Scholar] [CrossRef] [PubMed]
- Bjorgaard, J.A.; Köse, M.E. Simulations of singlet exciton diffusion in organic semiconductors. RSC Adv. 2015, 5, 8432–8445. [Google Scholar] [CrossRef]
- Wang, C.; Dong, H.; Jiang, L.; Hu, W. Organic semiconductor crystals. Chem. Soc. Rev. 2018, 47, 422–500. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Zhu, X.; Chen, X.; Pan, L.; Peng, S.; Wu, Y.; Shang, J.; Liu, G.; Yan, Q.; Li, R. A multilevel memory based on proton-doped polyazomethine with an excellent uniformity in resistive switching. J. Am. Chem. Soc. 2012, 134, 17408–17411. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Stolte, M.; Würthner, F. Air-stable n-channel organic single crystal field-effect transistors based on microribbons of core-chlorinated naphthalene diimide. Adv. Mater. 2013, 25, 6951–6955. [Google Scholar] [CrossRef]
- Jones, B.A.; Facchetti, A.; Marks, T.J.; Wasielewski, M.R. Cyanonaphthalene diimide semiconductors for air-stable, flexible, and optically transparent n-channel field-effect transistors. Chem. Mater. 2007, 19, 2703–2705. [Google Scholar] [CrossRef]
- O’Driscoll, L.J.; Hamill, J.M.; Grace, I.; Nielsen, B.W.; Almutib, E.; Fu, Y.; Hong, W.; Lambert, C.J.; Jeppesen, J.O. Electrochemical control of the single molecule conductance of a conjugated bis(pyrrolo)tetrathiafulvalene based molecular switch. Chem. Sci. 2017, 8, 6123–6130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbst, S.; Soberats, B.; Leowanawat, P.; Stolte, M.; Lehmann, M.; Würthner, F. Self-assembly of multi-stranded perylene dye J-aggregates in columnar liquid-crystalline phases. Nat. Commun. 2018, 9, 2646. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Zhao, J.; Chow, P.C.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem. Rev. 2018, 118, 3447–3507. [Google Scholar] [CrossRef]
- Chen, D.; Avestro, A.; Chen, Z.; Sun, J.; Wang, S.; Xiao, M.; Erno, Z.; Algaradah, M.M.; Nassar, M.S.; Amine, K.; et al. A rigid naphthalenediimide triangle for organic rechargeable lithium-ion batteries. Adv. Mater. 2015, 27, 2907–2912. [Google Scholar] [CrossRef]
- Song, Z.; Zhan, H.; Zhou, Y. Polyimides: Promising energy-storage materials. Angew. Chem. Int. Ed. 2010, 49, 8444–8448. [Google Scholar] [CrossRef] [PubMed]
- Vadehra, G.S.; Maloney, R.P.; Garcia-Garibay, M.A.; Dunn, B. Naphthalene diimide based materials with adjustable redox potentials: Evaluation for organic lithium-ion batteries. Chem. Mater. 2014, 26, 7151–7157. [Google Scholar] [CrossRef]
- Renault, S.; Mihali, V.A.; Edström, K.; Brandell, D. Stability of organic Na-ion battery electrode materials: The case of disodium pyromellitic diimidate. Electrochem. Commun. 2014, 45, 52–55. [Google Scholar] [CrossRef]
- Beaujuge, P.M.; Reynolds, J.R. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268–320. [Google Scholar] [CrossRef] [PubMed]
- Amb, C.M.; Dyer, A.L.; Reynolds, J.R. Navigating the color palette of solution-processable electrochromic polymers. Chem. Mater. 2011, 23, 397–415. [Google Scholar] [CrossRef]
- Balan, A.; Baran, D.; Toppare, L. Benzotriazole containing conjugated polymers for multipurpose organic electronic applications. Polym. Chem. 2011, 2, 1029–1043. [Google Scholar] [CrossRef]
- Zhan, X.; Facchetti, A.; Barlow, S.; Marks, T.J.; Ratner, M.A.; Wasielewski, M.R.; Marder, S.R. Rylene and related diimides for organic electronics. Adv. Mater. 2011, 23, 268–284. [Google Scholar] [CrossRef]
- Hu, Z.; Arrowsmith, R.L.; Tyson, J.A.; Mirabello, V.; Ge, H.; Eggleston, I.M.; Botchway, S.W.; Pantos, G.D.; Pascu, S.I. A fluorescent Arg-Gly-Asp (RGD) peptide-naphthalenediimide (NDI) conjugate for imaging integrin αvβ3in vitro. Chem. Commun. 2015, 51, 6901–6904. [Google Scholar] [CrossRef]
- Mutoh, K.; Sliwa, M.; Fron, E.; Hofkens, J.; Abe, J. Fluorescence modulation by fast photochromism of a [2.2]paracyclophane-bridged imidazole dimer possessing a perylene bisimide moiety. J. Mater. Chem. C 2018, 6, 9523–9531. [Google Scholar] [CrossRef]
- Guha, S.; Saha, S. Fluoride ion sensing by an anion-π interaction. J. Am. Chem. Soc. 2010, 132, 17674–17677. [Google Scholar] [CrossRef]
- Pandeeswar, M.; Govindaraju, T. Green-fluorescent naphthalene diimide: Conducting layered hierarchical 2D nanosheets and reversible probe for detection of aromatic solvents. RSC Adv. 2013, 3, 11459–11462. [Google Scholar] [CrossRef]
- Zong, L.; Zhang, M.; Song, Y.; Xie, Y.; Feng, J.; Li, Q.; Li, Z. A red fluorescence probe based on naphthalene diimide for selective detection of sulfide by displacement strategy. Sens. Actuators B Chem. 2017, 257, 882–888. [Google Scholar] [CrossRef]
- Lin, M.; Jiménez, Á.; Burschka, C.; Würthner, F. Bay-substituted perylene bisimide dye with an undistorted planar scaffold and outstanding solid state fluorescence properties. Chem. Commun. 2012, 48, 12050–12052. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhang, S.; Liu, Y.; Ju, M.; Chen, S.; Lu, P.; Qin, A.; Ma, Y.; Sun, J.; Tang, B. Tetraphenylethenyl-modified perylene bisimide: Aggregation-induced red emission, electrochemical properties and ordered microstructures. J. Mater. Chem. 2012, 22, 7387–7394. [Google Scholar] [CrossRef]
- Kulkarni, C.; George, S.J. Carbonate linkage bearing naphthalenediimides: Self-assembly and photophysical properties. Chem. Eur. J. 2014, 20, 4537–4541. [Google Scholar] [CrossRef] [PubMed]
- Pandeeswar, M.; Khare, H.; Ramakumar, S.; Govindaraju, T. Biomimetic molecular organization of naphthalene diimide in the solid state: Tunable (chiro-) optical, viscoelastic and nanoscale properties. RSC Adv. 2014, 4, 20154–20163. [Google Scholar] [CrossRef]
- Basak, S.; Nandi, N.; Paul, S.; Banerjee, A. Luminescent naphthalene diimide-based peptide in aqueous medium and in solid state: Rewritable fluorescent color code. ACS Omega 2018, 3, 2174–2182. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, P.; Chen, S.; Lam, J.W.Y.; Wang, Z.; Liu, Y.; Kwok, H.S.; Ma, Y.; Tang, B. Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission: Development of highly efficient light emitters in the solid state. Adv. Mater. 2010, 22, 2159–2163. [Google Scholar]
- Nayab, P.S.; Pulaganti, M.; Chitta, S.K.; Abid, M.; Uddin, R. Evaluation of DNA binding, radicals scavenging and antimicrobial studies of newly synthesized N-substituted naphthalimides: Spectroscopic and molecular docking investigations. J. Fluoresc. 2015, 25, 1905–1920. [Google Scholar] [CrossRef]
- Tian, Z.; Cui, H.; Liu, H.; Dong, J.; Dong, H.; Zhao, L.; Li, X.; Zhang, Y.; Huang, Y.; Song, L. Study on the interaction between the 1,4,5,8-naphthalene diimide-spermine conjugate (NDIS) and DNA using a spectroscopic approach and molecular docking. MedChemComm 2017, 8, 2079–2092. [Google Scholar] [CrossRef]
- Doria, F.; Oppi, A.; Manoli, F.; Botti, S.; Kandoth, N.; Grande, V.; Manet, I.; Freccero, M. A naphthalene diimide dyad for fluorescence switch-on detection of G-quadruplexes. Chem. Commun. 2015, 51, 9105–9108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panunzi, B.; Concilio, S.; Diana, R.; Shikler, R.; Nabha, S.; Piotto, S.; Sessa, L.; Tuzi, A.; Caruso, U. Photophysical properties of luminescent Zinc(II)‒pyridinyloxadiazole complexes and their glassy self-assembly networks. Eur. J. Inorg. Chem. 2018, 23, 2709–2716. [Google Scholar] [CrossRef]
- Diana, R.; Caruso, U.; Concilio, S.; Piotto, S.; Tuzi, A.; Panunzi, B. A real-time tripodal colorimetric/fluorescence sensor for multiple target metal ions. Dyes Pigments 2018, 155, 249–257. [Google Scholar] [CrossRef]
- Wang, L.; Goodloe, G.W.; Stallman, B.J.; Cammarata, V. Synthesis, electrooxidation, and characterization of bis(diphenylamine)naphthalene diimide. Chem. Mater. 1996, 8, 1175–1181. [Google Scholar] [CrossRef]
- Wang, L.; Cammarata, V. Electropolymers based on diphenylamine π-Stacking in cationic benzidine units. Thin Solid Films 1996, 284, 297–300. [Google Scholar] [CrossRef]
- Dharmadhikari, A.K.; Thakur, M.; Wang, L.; Cammarata, V. Spectral narrowing in a perylene dye. Appl. Phys. Lett. 2003, 83, 1066–1067. [Google Scholar] [CrossRef]
- Li, Y.; Patil, R.; Wei, S.; Guo, Z. Electron transfer and trapping in natural p–n bipolar polymer-based bilayer films. J. Phys. Chem. C 2011, 115, 22863–22869. [Google Scholar] [CrossRef]
- Wei, H.; Yan, X.; Li, Y.; Wu, S.; Wang, A.; Wei, S.; Guo, Z. Hybrid electrochromic fluorescent poly(DNTD)/CdSe@ZnS composite films. J. Phys. Chem. C 2012, 116, 4500–4510. [Google Scholar] [CrossRef]
- Wei, H.; Yan, X.; Li, Y.; Gu, H.; Wu, S.; Ding, K.; Wei, S.; Guo, Z. Electrochromic poly(DNTD)/WO3 nanocomposite films via electorpolymerization. J. Phys. Chem. C 2012, 116, 16286–16293. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Würthner, F.; Ahmed, S.; Thalacker, C.; Debaerdemaeker, T. Core-substituted naphthalene bisimides: New fluorophors with tunable emission wavelength for FRET studies. Chem. Eur. J. 2015, 8, 4742–4750. [Google Scholar] [CrossRef]
- Baumgartner, B.; Svirkova, A.; Bintinger, J.; Hametner, C.; Marchetti-Deschmann, M.; Unterlass, M.M. Green and highly efficient synthesis of perylene and naphthalene bisimides in nothing but water. Chem. Commun. 2016, 53, 1229–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, I.S.; Komiyama, H.; Yasuda, T. Pyrimidine-based twisted donor-acceptor delayed fluorescence molecules: A new universal platform for highly efficient blue electroluminescence. Chem. Sci. 2017, 8, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.P.; Ferreira, P.J.; Duarte, D.J.; Miranda, M.S.; Silva, J.C. Structural, energetic and UV-Vis spectral analysis of UVA filter 4-tert-butyl-4′-methoxydibenzoylmethane. J. Phys. Chem. A 2014, 118, 1511–1518. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Han, K. Hydrogen bonding in the electronic excited state. Acc. Chem. Res. 2012, 45, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Abbel, R.; Grenier, C.; Pouderoijen, M.J.; Stouwdam, J.W.; Leclère, P.E.; Sijbesma, R.P.; Meijer, E.W.; Schenning, A.P. White-light emitting hydrogen-bonded supramolecular copolymers based on π-conjugated oligomers. J. Am. Chem. Soc. 2009, 131, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Burattini, S.; Greenland, B.W.; Merino, D.H.; Weng, W.; Seppala, J.; Colquhoun, H.M.; Hayes, W.; Mackay, M.E.; Hamley, I.W.; Rowan, S.J. A healable supramolecular polymer blend based on aromatic π-π stacking and hydrogen-bonding interactions. J. Am. Chem. Soc. 2010, 132, 12051–12058. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.J.; Chung, J.W.; Gierschner, J.; Kim, K.S.; Choi, M.G.; Kim, D.; Park, S. Multistimuli two-color luminescence switching via different slip-stacking of highly fluorescent molecular sheets. J. Am. Chem. Soc. 2010, 132, 13675–13683. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, B.; Liu, Y.; Zhou, C.; Ding, X.; Liu, Y. Fluorescence study on the interaction of bovine serum albumin with p-aminoazobenzene. J. Fluoresc. 2008, 18, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Viglianti, L.; Nlc, L.; Xie, N.; Gu, X.; Hhy, S.; Miao, Q.; Williams, I.D.; Licandro, E.; Tang, B. Aggregation-induced emission: Mechanistic study of the clusteroluminescence of tetrathienylethene. Chem. Sci. 2017, 8, 2629–2639. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Yuan, Y.; Ni, S.; Tong, Q.; Wong, F.; Lee, C. Achieving efficient violet-blue electroluminescence with CIEy < 0.06 and EQE > 6% from naphthyl-linked phenanthroimidazole-carbazole hybrid fluorophores. Chem. Sci. 2017, 8, 3599–3608. [Google Scholar] [PubMed]
- Rajamalli, P.; Senthilkumar, N.; Huang, P.; Ren-Wu, C.; Lin, H.; Cheng, C. New molecular design concurrently providing superior pure blue thermally activated delayed fluorescent and optical outcoupling efficiencies. J. Am. Chem. Soc. 2017, 139, 10948–10951. [Google Scholar] [CrossRef] [PubMed]
1 | 3 | 5 | |
---|---|---|---|
Empirical formula | C38H24N4O4 ·2DMF | C40H26N4O4 | C36H28N4O4 |
CCDC | 1859060 | 1859059 | 1859058 |
Formula weight | 746.80 | 626.65 | 580.62 |
Temperature (K) | 296(2) | 296(2) | 296(2) |
λ (Å) | 0.71073 | 0.71073 | 0.71073 |
Crystal system | Monoclinic | Triclinic | Monoclinic |
Space group | P21/n | P-1 | P21/c |
a (Å) | 13.917(7) | 8.3054(19) | 9.457(10) |
b (Å) | 5.811(3) | 12.394(3) | 25.27(3) |
c (Å) | 22.797(11) | 14.874(3) | 12.610(14) |
α (°) | 90 | 103.340(4) | 90 |
β (°) | 97.101(8) | 91.546(4) | 109.546(13) |
γ (°) | 90 | 94.871(4) | 90 |
V (Å3) | 1829.7(15) | 1482.6(6) | 2840(5) |
Z | 2 | 2 | 4 |
Dcalcd (mg·m−3) | 1.356 | 1.404 | 1.358 |
μ (mm−1) | 0.092 | 0.092 | 0.090 |
F (000) | 784 | 652 | 1216 |
θ (°) | 2.913–27.570 | 2.446–25.000 | 2.285–27.618 |
Reflections /unique | 10894/4195 | 7779/5157 | 17897/6511 |
GOF on F2 | 0.959 | 0.855 | 1.042 |
R1a, wR2b [I > 2σ(I)] | 0.0665, 0.1697 | 0.0662, 0.1294 | 0.0432, 0.1090 |
Rint | 0.0621 | 0.0636 | 0.0332 |
1 | 3 | 5 | |||
---|---|---|---|---|---|
Bond Length | Bond Length | Bond Length | |||
C1–N1 | 1.385(4) | C1–N1 | 1.402(5) | C31–N1 | 1.406(2) |
C7–N1 | 1.389(3) | C7–N1 | 1.389(5) | C28–N1 | 1.408(2) |
C35–N4 | 1.417(6) | C4–N4 | 1.391(2) | ||
C32–N4 | 1.406(5) | C7–N4 | 1.398(2) | ||
C10–N2 | 1.444(3) | C10–N2 | 1.436(5) | C25–N2 | 1.434(2) |
C29–N3 | 1.440(5) | C10–N3 | 1.435(2) | ||
C–C(Ph-t)av | 1.359(0) | C–C(Ph-t)av | 1.379(4) | C–C(Ph-t)av | 1.378(3) |
C–C(Ph-a)av | 1.378(3) | C–C(Ph-a)av | 1.385(9) | C–C(Ph-a)av | 1.376(2) |
C–C(Core)av | 1.260(2) | C–C(Core)av | 1. 387(9) | ||
C–C(Ph-t)av | 1.382(8) | C–C(Ph-t)av | 1.381(6) | ||
C–C(Ph-a)av | 1.380(5) | C–C(Ph-a)av | 1.380(9) | ||
C–C(Core)av | 1. 386(8) | ||||
Torsion Angle | Torsion Angle | Torsion Angle | |||
C8–C7–N1–C1 | 177.5(3) | C12–C7–N1–C1 | 152.8(5) | C27–C28–N1–C31 | −126.89(17) |
C9–C10–N2–C17 | 115.0(3) | C11–C10–N2–C13 | 104.0(5) | C26–C25–N2–C23 | 105.76(16) |
C33–C32–N4–C35 | −140.8(5) | C8–C7–N4–C4 | −144.71(17) | ||
C34–C29–N3–C27 | 149.7(4) | C9–C10–N3–C16 | 126.76(17) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Ma, H. Synthesis, Characterization, and Crystal Structures of Imides Condensed with p-Phenylamino(Phenyl) Amine and Fluorescence Property. Materials 2019, 12, 1873. https://doi.org/10.3390/ma12111873
Zhang J, Ma H. Synthesis, Characterization, and Crystal Structures of Imides Condensed with p-Phenylamino(Phenyl) Amine and Fluorescence Property. Materials. 2019; 12(11):1873. https://doi.org/10.3390/ma12111873
Chicago/Turabian StyleZhang, Jing, and Huaibo Ma. 2019. "Synthesis, Characterization, and Crystal Structures of Imides Condensed with p-Phenylamino(Phenyl) Amine and Fluorescence Property" Materials 12, no. 11: 1873. https://doi.org/10.3390/ma12111873
APA StyleZhang, J., & Ma, H. (2019). Synthesis, Characterization, and Crystal Structures of Imides Condensed with p-Phenylamino(Phenyl) Amine and Fluorescence Property. Materials, 12(11), 1873. https://doi.org/10.3390/ma12111873