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Abstract: The extract of honeycomb waste was studied as a corrosion inhibitor on 304 stainless steel in
H2SO4 solutions. The honeycomb waste was obtained from beekeeping at Lawang-Malang, East Java,
Indonesia. Electrochemical and scanning electron microscopy methods were used to investigate the
performance of the corrosion inhibition process. The inhibition efficiency of the inhibitor (2000 mg/L)
reached 97.29% in 0.5 M H2SO4 and decreased with the acid concentration. Kinetic parameters were
calculated to explain the effect of acid concentration on the inhibition process. The study on the
adsorption behavior of the extracts followed the Frumkin isotherm model. The adsorption of the
inhibitor on the 304 stainless steel surface was confirmed by the negative and lower values of Gibbs
free energy. The obtained scanning electron microscopy (SEM) images were confirmed by comparing
the surface of the specimens with and without inhibitor after corroding for one week. The results
indicated that the extract acted as a good inhibitor for 304 stainless steel in acid corrosion.
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1. Introduction

Honey industries generally extract honey by squeezing the honeycomb; at this point, the squeezed
honeycomb is damaged and becomes an organic waste that has no market value. This honeycomb
waste contains bees wax and honey sugars (i.e., fructose, glucose and sucrose). It has a refractive
index of 1.4398–1.4451 at 75 ◦C, a melting point of 61–65 ◦C, an acid number of 17–22, an ester number
of 70–90, and a saponication number of 87–102. Water and hydrocarbon content are less than 1%
and lower than 14.5%, respectively [1]. However, the honeycomb waste still contains relatively high
flavonoids since a small amount of the honey remains after the squeezing process [2]. It is reported that
the organic flavonoids structures have an electronegative atom, conjugated double bonds or aromatic
rings that can be exploited as a corrosion inhibitor [3–6]. Therefore, in this work, we evaluated the
potential of honeycomb waste as a corrosion inhibitor for structural steel materials.

Because of its formability and corrosion resistance, 304 SS is one of the materials which is widely
applied in industries [7–9]. The corrosion resistance property is due to the protective film of chromium
oxyhydroxide [10]. However, particularly in acid solutions, 304 SS is very susceptible to corrosion
due to the breakage of the passive film. The most effective and economical measure to overcome
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this problem is the employment of an inhibitor [9,11–14]. In the present work, we investigated the
performance of the honeycomb waste extract as a corrosion inhibitor in various concentrations of
H2SO4 solution. The performance of the inhibitor was evaluated using potentiodynamic polarization,
electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) methods.

2. Materials and Methods

2.1. Materials

The experiments were conducted on 304 SS (0.04% C, 0.52 % Si, 0.92% Mn, 0.030% P, 0.002% S,
9.58% Ni, 18.15% Cr and the balance Fe, in wt.). The dimension of the specimen was 4 cm × 1 cm × 1 mm.
All parts of the specimen were covered by epoxy resin, except for 1 cm2 on each end of the specimen.
The uncovered part was abraded using emery paper with a grade of 500 and 2000 consecutively.
Furthermore, they were washed thoroughly with demineralized water and acetone.

The acid solutions were prepared by diluting AR grade 98% H2SO4 (Merck, Darmstadt Germany).
Honeycomb waste was obtained from Rimba Raya beekeeping at Lawang-Malang, East Java, Indonesia.
Fifty grams of honeycomb powder was extracted by the maceration method using 50 mL of 99%
ethanol (Merck). This mixture was shaken for 3 h then transferred into a separating funnel. The organic
extract from bees wax propolis was obtained by evaporating the bees wax propolis waste.

2.2. Characterization of Honeycomb Waste Extract

The extract was characterized by Fourier-transform infrared spectroscopy (FT-IR; Shimadzu
IR Prestige-21, Kyoto, Japan) using the KBr-disk technique. The extract was also analyzed using
an ultra-high-performance liquid chromatography (UHPLC)-ACCELLA 1250 System (Thermo Scientific,
Pasadena, CA, USA). The separation was performed using a Hypersil Gold analytical column, Pasadena,
CA, USA (50 mm × 2.1 mm, 1.9 µm particle size) at 30 ◦C with a flowrate of 300 µL/min. Gradient
elution was carried out with a binary system consisting of (A) 0.1% formic acid in bi-distilled water and
(B) 0.1% formic acid in acetonitrile. The gradient elution setting was adjusted as follows: 0–0.6 min,
15% B; 2–4 min 100% B; 4 min 15% B; 6 min 20% B; 10 min 45%; 20 min 25% B. A 2 µL of sample was
injected for analysis.

The tandem mass spectrometry (MS/MS) triple quadrupole mass spectrometer (TSQ QUANTUM
ACCESS MAX from Thermo Finnigan, Stanford, UK) with an electrospray ionization source (ESI)
operating in negative ionization mode equipped with TSQ Tune software (Stanford, UK) was used for
compound identification. The operational conditions of ESI ionization were as follows: spray voltage,
3 kV; evaporation temperature, 250 ◦C; capillary temperature, 300 ◦C; pressure of sheath gas, 40 psi;
and aux gas pressure, 10 psi. The relative amount of each compound in the extracts was also calculated.
Identification of the compounds was conducted by evaluating the chromatogram and mass spectra
with the standard library.

2.3. Electrochemical Measurement

Electrochemical experiments were carried out using three-electrode-cell system with platinum as
the counter electrode (CE), Ag/AgCl (3 M KCl) as the reference electrode (RE) and the 304 SS specimen
as the working electrode (WE). The test solution was prepared by dissolving 0, 1000, 2000, 3000 and
4000 mg/L inhibitor in each acid solution, that is, 0.5, 1.0, 1.5 and 2.0 M H2SO4 solution. All tests were
carried out at 25 ◦C.

The electrode was immersed in the test solution at open-circuit potential (OCP) to stable conditions
before measurement. All experiments were carried out using Autolab PGSTAT128N (Herisau,
Switzerland) equipped with Nova 1.11 software. The potentiodynamic polarization was measured at
±200 mV from Ecorr with a scan rate of 1 mV/s [15]. The Tafel plots obtained were extrapolated to get the
corrosion parameters. Inhibition efficiency (IE %) was defined as:
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IE (%) =
Icorr − Icorr(i)

Icorr
× 100 (1)

where Icorr and Icorr(i) represented the corrosion current density with and without inhibitor, respectively.
Electrochemical impedance spectroscopy (EIS) was performed at open-circuit potential (OCP) in

the frequency range of 1000 to 0.1 Hz using the signal amplitude of 15 mA. IE% from the EIS method
was calculated using the following equation (Equation (2)):

IE (%) =
Rct(i) −Rct

Rct(i)
× 100 (2)

where Rct and Rct(i) were the charge transfer resistance with and without inhibitor, respectively.

2.4. Surface Analysis

The specimens were immersed in 1.0 M, 1.5 M and 2.0 M H2SO4 solution with and without
inhibitor (2000 mg/L) for one week at ambient temperature. Then, the specimens were washed with
demineralized water and dried at room temperature. The morphological structure of the 304 SS surface
was observed using a scanning electron microscope (SEM; FEI Inspect S-50, Tokyo, Japan). Before
observation, all specimens were sputtered with a 10 nm layer of gold.

3. Results

3.1. Characterization of Honeycomb Waste Extract

Figure 1 shows the characteristic of the flavonoid wavenumber. It includes a carbonyl group
(C=O, ketone) at λ = 1712.67 cm−1, O–H group at λ = 3367.48 cm−1 and aromatic group (C=C–C=C) at
λ = 1649.02; 1514.02; and 1460.01 cm−1.
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Figure 1. Fourier-Transform Infrared (FTIR) spectra of honeycomb waste extract.

Chromatograph of the extract displays nine peaks, which indicates nine different compounds
(Figure 2). A major compound is found at a retention time of 3.59 min (peak 3) with an area of
43.90%, which is identified as quercetin (Figure 3). Identification of the other peaks gives the following
results: luteolin, 1; vitexin, 2; fisetin, 4; isohamnetin, 5; isoferulic, 6; apigenin, 7; pinobanksin, 8; and
kaempferol, 9. The detailed analysis of these compounds is summarized in Table 1.
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Figure 2. Chromatogram of honeycomb waste extract.
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Figure 3. Molecule structure of quercetin.

Table 1. Identification of the honeycomb waste extracts using liquid chromatography-mass spectrometry
(LC-MS).

Peak RT (min) Area (uV s) Height (uV) Area (%) Molecular
Weight

Molecular
Formula Compound

1 2.90 16,787.68 2813.08 1.17 286.24 C15H10O6 Luteolin
2 3.42 214,035.89 34,555.55 14.96 432.00 C21H20O10 Vitexin
3 3.59 628,240.32 95,418.53 43.90 301.90 C15H10O7 Quercetin
4 3.76 35,082.10 5569.59 2.45 287.00 C15H10O6 Fisetin
5 3.96 25,177.60 4213.24 1.76 315.00 C16H12O7 Isohamnetin
6 5.60 13,670.09 2334.22 0.96 194.00 C10H10O4 Isoferulic
7 17.50 39,787.95 4860.57 2.78 270.24 C15H10O5 Apigenin
8 19.1 241,347.00 29,633.18 16.87 272.00 C15H12O5 Pinobanksin
9 20.3 216,906.26 20,458.26 15.16 286.00 C15H10O6 Kaempferol

The active sites of the main compound in the extract can interact with the vacant d orbital of
Fe and form a thin protective layer [16,17]. The presence of an inhibitor gives two specific adsorbed
intermediates to determine the anodic dissolution of Fe by the following mechanism:

Fe + H2O↔ FeH2Oads (3a)

FeH2Oads + M↔ FeOH−ads + H+ + M (3b)

FeH2Oads + M↔ FeMads + H2O (3c)

FeOH−ads
rds
→ FeOHads + e (3d)

FeMads ↔ FeM+
ads + e (3e)

FeOHads + FeM+
ads ↔ FeMads + FeOH+ (3f)
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FeOH+ + H+
↔ Fe2+H2O (3g)

where M represents the inhibitor species.
There are some active sites on the surface of corroded metal that are able to absorb activation energy.

In this case, the inhibitors molecule can be adsorbed easily on the active sites of the surface with matched
adsorption enthalpies. According to Equation (3a–g), water molecules on the metal surface are replaced
to yield the adsorption of intermediate FeMads by inhibitor species (Equation (3e)). This reduces the
amount of the species FeOHads which causes retardation of Fe anodic dissolution [16,18,19].

3.2. Potentiodynamic Polarization

The Ecorr of 304 SS shifts to a higher potential with a similar pattern in all acid concentrations in
comparison with the blank. The 2000 mg/L inhibitor gives the maximum shift difference (Figure 4)
with the shift to the blank, which are 28.5 mV, 98.0 mV, 115.0 mV and 104 mV in 0.5 M, 1.0 M, 1.5 M
and 2.0 M H2SO4 solutions, respectively. It confirms that the inhibitor acts as an anodic inhibitor in
1.0 M, 1.5 M and 2.0 M H2SO4 solutions (the displacement of the Ecorr is more than 85.0 mV) but in
0.5 M the inhibitor acts as a mixed inhibitor [20]. This is also confirmed by the value of the anodic
current density, which is lower than the cathodic.
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Figure 4. Tafel plots for 304 SS with and without inhibitor in 0.5 M (a), 1.0 M (b), 1.5 M (c), and 2.0 M
H2SO4 solution (d).

The maximum concentration that gives the highest number in IE% is 2000 mg/L (Table 2). The corrosion
rate of 304 SS decreases with an inhibitor of 1000–2000 mg/L and increases with a 3000–4000 mg/L inhibitor.
It can be attributed to the adsorption behavior of the inhibitor on 304 SS/acid solution interface [9,21].
The increase of inhibitor concentration beyond 2000 mg/L leads to diminished corrosion protection. This may
be caused by the withdrawal of inhibitor back into the bulk solution when the inhibitor concentration is
close to or beyond the critical concentration. This leads to a weakening of the metal-inhibitor interactions
and causes the replacement of the inhibitor with water or SO4

2−, reducing its IE% [21].
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Table 2. Corrosion parameters for 304 SS in several H2SO4 concentrations with and without inhibitor.

[H2SO4] Cinh
(mg/L) βa (V/dec) βc (V/dec) Ecorr (V) Icorr

(A/cm2)
CR

(mmpy) IE (%)

0.5 M

0 0.059 −7.958 −0.286 2.19 × 10−5 0.228 –
1000 0.224 −0.794 −0.033 2.67 × 10−6 0.028 87.79
2000 0.103 0.172 −0.001 5.93 × 10−7 0.006 97.29
3000 0.062 0.359 −0.278 7.97 × 10−6 0.083 63.60
4000 0.082 −0.707 −0.280 8.32 × 10−6 0.087 61.99

1.0 M

0 0.073 −0.422 −0.382 8.83 × 10−4 9.186 –
1000 0.056 −0.111 −0.346 2.03 × 10−4 2.116 76.96
2000 0.075 0.442 −0.284 3.10 × 10−5 0.323 96.49
3000 0.072 −0.138 −0.354 3.38 × 10−4 3.513 61.75
4000 0.063 −0.168 −0.365 4.21 × 10−4 4.376 52.36

1.5 M

0 0.101 −0.238 −0.372 1.62 × 10−3 16.793 –
1000 0.074 −0.119 −0.335 2.94 × 10−4 3.053 81.82
2000 0.098 −0.181 −0.257 7.17 × 10−5 0.745 95.56
3000 0.053 −0.103 −0.362 6.55 × 10−4 6.807 59.46
4000 0.087 −0.166 −0.364 8.59 × 10−4 8.929 46.82

2.0 M

0 0.165 0.360 −0.403 3.97 × 10−3 41.311 –
1000 0.066 0.069 −0.359 6.26 × 10−4 6.509 84.24
2000 0.118 −0.189 −0.299 2.14 × 10−4 2.227 94.61
3000 0.068 −0.345 −0.376 2.15 × 10−3 22.325 45.96
4000 0.649 0.129 −0.375 2.70 × 10−3 28.086 32.01

3.3. Electrochemical Impedance Spectroscopy (EIS) Measurement

The performance of honeycomb waste extract as an inhibitor at corroding 304 SS in sulfuric acid
was also studied by electrochemical impedance spectroscopy (EIS). Figure 5 shows the Nyquist plots
of 304 SS with and without inhibitor. According to Figure 5, there is a semicircle at high frequencies
and a straight line at low frequencies. High frequency semicircles are generally associated with the
charge transfer at the electrode/electrolyte interface, such as an electrical double layer. A straight line
at low frequencies indicate Warburg impedance (W) [22]. W attributed to the anodic diffusion process
of oxygen transport from the bulk solution to the electrode surface [23].

Figure 6a,b are equivalent circuits used for the EIS spectra for 304 SS in both the absence and the
presence of inhibitor, respectively. Figure 6a is the standard equivalent circuit with 4 parameters, that is,
Rs, Rct, CPE and W. Rs represents the solution resistance, Rct is correlated with the charge transfer
resistance of metal, CPE is the constant phase element and W is the Warburg impedance. A more
complicated equivalent circuit occurred with the addition of the inhibitor (Figure 6b). According to
Figure 6b, there are two parts of equivalent circuit when the first part (Rs, Rct and CPE) is the standard
and the second part (R1, R2, C1 and C2) is the additional circuit. The first part indicates that the inhibitor
attaches to the metal surface, which is shown by the increasing in the value of Rct. The Rct increases
along with the increased inhibitor concentration which is up to 2000 mg/L; a further increase of the
concentration leads to a decrease in the value of Rct (Table 3). The Rct is inversely proportional to the
corrosion rate and related to IE% [21,23]. The higher Rct, the lower the 304 SS corrosion rate. Therefore,
the inhibition process is more efficient. It is in line with the result of potentiodynamic polarization.
Moreover, additional parameters appeared in the second part of the equivalent circuit that give more
information about the effect of the inhibitor. These parameters are related to the formation of the other
passive films on the metal surface [24]. It is probably due to the reaction between the inhibitor and the
metal surface. The fitting results for electrochemical impedance spectroscopy (EIS) data for 304 SS in
several H2SO4 concentration with and without inhibitor was summarized in Table 3.

The Bode plots consist of a one loop capacitive (Figure 7a–d). It indicates that the inhibitor is
adsorbed on the 304 SS surface by the gradual replacement of water molecules and ions. Figure 7
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shows that increasing inhibitor concentration up to 2000 mg/L results in a more negative value of the
phase angle. It showed that there is greater surface coverage and transfer charge resistance [25–27].Materials 2019, 12, x FOR PEER REVIEW 7 of 15 
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Figure 5. Nyquist plots for 304 SS with and without inhibitor in 0.5 M (a), 1.0 M (b), 1.5 M (c), and
2.0 M H2SO4 solution (d).
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Figure 6. Equivalent circuit used to the EIS spectra for the absence (a) and the presence (b) of inhibitor
in 304 SS corrosion at sulfuric acid solution.
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Table 3. Fitting results of electrochemical impedance spectroscopy (EIS) data for 304 SS in several H2SO4 concentration with and without inhibitor.

[H2SO4] Cinh (mg/L) Rs (Ω cm2) Rct (Ω cm2) CPE (F/cm2) n R1 (kΩ cm2) R2 (kΩ cm2) C1 (F) C2 (F) W YW (Ω−1 cm−2 sn) χ2

0.5 M

0 7.307 27.961 8.30 × 10−4 0.8599 – – – – 0.0839 0.0378
1000 7.584 252.100 9.91 × 10−5 1.0099 −3.896 3.846 3.70 × 10−4 9.00 × 10−13 0.0032 0.2389
2000 2.797 389.97 1.80 × 10−4 0.8855 −33.827 33.744 4.10 × 10−4 9.00 × 10−13 0.0026 0.1319
3000 5.406 350.37 1.40 × 10−4 0.9418 −2.036 1.966 4.30 × 10−4 9.00 × 10−13 0.0029 0.1011
4000 4.511 315.58 1.40 × 10−4 0.9560 −6.998 9.00 × 10−16 4.40 × 10−4 9.00 × 10−13 0.0032 0.1058

1.0 M

0 7.342 25.654 7.60 × 10−4 0.8674 – – – – 0.0915 0.0163
1000 12.339 227.180 1.90 × 10−4 0.8939 −14.090 −40.123 9.00 × 10−13 5.50 × 10−4 0.0045 0.6122
2000 −2.207 340.760 1.30 × 10−4 0.9109 −70.889 2.082 3.60 × 10−4 8.70 × 10−8 0.0034 0.4138
3000 −1.421 271.340 1.80 × 10−4 0.8847 −82.736 45.708 5.60 × 10−4 9.00 × 10−13 0.0049 0.6476
4000 1.064 140.780 1.50 × 10−4 0.9336 −59.671 43.807 8.70 × 10−4 9.00 × 10−13 0.0115 0.1446

1.5 M

0 2.779 25.607 5.30 × 10−4 0.862 – – – – 0.1009 0.0279
1000 −34.995 122.820 2.60 × 10−4 0.949 −41.686 76.859 9.00 × 10−13 9.00 × 10−13 0.0113 0.3348
2000 −2.944 342.560 2.60 × 10−4 0.895 −4616.100 4547.000 8.90 × 10−4 9.00 × 10−13 0.0039 0.0438
3000 −395.090 264.590 1.60 × 10−4 0.954 164.050 230.330 9.00 × 10−13 9.00 × 10−13 0.0044 0.7933
4000 −85.645 257.450 2.30 × 10−4 0.915 −4308.000 4385.300 9.00 × 10−13 8.35 × 10−12 0.0433 0.6357

2.0 M

0 0.865 15.330 0.87 × 10−2 0.866 – – – – 0.2329 0.0513
1000 1.173 105.700 4.00 × 10−4 0.845 −97.542 90.361 3.11 × 10−3 6.23 × 10−7 0.0284 0.0042
2000 −1.762 276.930 1.90 × 10−5 0.895 −15.848 −24.151 5.50 × 10−4 5.54 × 10−10 0.0045 0.6122
3000 −52.314 25.708 4.10 × 10−4 0.839 35.063 19.000 1.44 × 10−8 9.00 × 10−13 0.1715 0.0533
4000 3.809 17.723 1.15 × 10−3 0.777 −2.083 5.033 3.40 × 10−6 6.00 × 10−4 0.1701 0.0279
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Figure 7. Bode plots for 304 SS with and without inhibitor in 0.5 M (a), 1.0 M (b), 1.5 M (c), and 2.0 M
H2SO4 solution (d). Bode modulus (left) and Bode phase (right).

3.4. The Effect of Acid Concentration

The relationship of the corrosion rate (CR) against acid concentration (C) obeys the kinetic equation:

ln CR = ln k + BC (4)
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where k is the rate constant and B is the reaction constant. The relationship lnCR versus C gives straight
lines as shown in Figure 8. The slopes and intercept of these lines represent the B constant and lnk,
respectively.
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k can be deemed a commencing rate at zero acid concentration. Therefore, k means the corrosion
ability of acid for metal. B represents the difference of the corrosion rate at the acid concentration.
The decreased k with inhibitor (Table 4) means that the extracts inhibit the corrosion process of 304 SS [28].
The decreased B with inhibitor (Table 4) indicates that the changes of the corrosion rate in inhibited acid
are larger than in uninhibited acid [28].

Table 4. Calculation of the linear regression between lnCR and C for the 304 SS corrosion in
H2SO4 solution.

Systems R2 k (mmpy) B (M−1)

Blank 0.987 1.944 1.503
Inhibitor 0.994 0.045 1.931

3.5. Adsorption Isotherm and Thermodynamic Calculations

The corresponding plots of the adsorption isotherm are shown in Figure 9. These are the Langmuir
(Figure 9a–d), Freundlich (Figure 9e–h), Temkin (Figure 9i–l) and Frumkin isotherms (Figure 9m–p).
The best fit is shown by R–square (Table 5), for this study follows the Frumkin isotherm (Equation (5)).

Frumkin equation:

log
{

θ

(1− θ)C

}
= log Kads + aθ (5)

where C is the inhibitor concentration, θ is the surface coverage, Kads is the adsorption equilibrium
constant and a is an interaction parameter. The value of a indicates attraction or repulsion between
adsorbed species for a > 0 and a < 0, respectively. When a = 0, it means no interaction and it becomes
equivalent to the Langmuir isotherm [29]. The Frumkin isotherm considers lateral interactions between
adsorbed inhibitor molecules indicating that the inhibitor displaces the water molecules from the 304 SS
surface [30]. The interaction parameters were calculated from the slope of Figure 9m–p. The positive
value of a (Table 6) indicates highly attractive lateral interactions in the adsorbed layer. The increase of
the inhibitor concentration probably induces desorption of the inhibitor, which is already adsorbed at
the 304 SS surface and then it dissolves into solution. It makes the interactions stronger between the
inhibitor in the solution and leads to secondary desorption [29,30].
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Figure 9. Langmuir (a–d), Freundlich (e–h), Temkin (i–l) and Frumkin isotherm (m–p) for the adsorption
of the inhibitor on 304 SS surface in 0.5 M, 1.0 M, 1.5 M and 2.0 M H2SO4, respectively.

Table 5. R–Square of various isotherm for the adsorption of the inhibitor on 304 SS surface in 0.5 M,
1.0 M, 1.5 M and 2.0 M H2SO4, respectively.

Systems Isotherm R2

in 0.5 H2SO4

Langmuir 0.9706
Freundlich 0.5882

Temkin 0.7285
Frumkin 0.9979

in 1.0 M H2SO4

Langmuir 0.9515
Freundlich 0.4410

Temkin 0.6193
Frumkin 0.9884

in 1.5 M H2SO4

Langmuir 0.9443
Freundlich 0.5890

Temkin 0.7574
Frumkin 0.9922

in 2.0 M H2SO4

Langmuir 0.9186
Freundlich 0.6936

Temkin 0.8691
Frumkin 0.9973
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Table 6. The thermodynamic parameters for inhibitor adsorption on the 304 SS surface at ambient
temperature (25 ◦C).

Systems a |log Kads|
∆G

◦

ads
(kJ/mol)

∆H
◦

ads
(kJ/mol)

∆S
◦

ads
(J/mol K)

in 0.5 H2SO4 4.586 3.191 −35.301 −18.195 57.40
in 1 M H2SO4 3.976 2.650 −32.216 −15.110 57.40

in 1.5 M H2SO4 3.613 2.383 −30.694 −13.588 57.40
in 2 M H2SO4 3.086 1.932 −28.123 −11.016 57.41

Kads is related to the Gibbs free energy of adsorption (∆G
◦

ads) by the Equation (6) [14].

∆G
◦

ads = −RT ln(Kads ×A) (6)

where A is the concentration of water (55.5 in M or 1000 in g/L), T is the absolute temperature and R is
the universal gas constant.

The thermodynamic parameters are summarized in Table 6. The negative and lower values of
∆G

◦

ads indicate the inhibition process of the inhibitor on the 304 SS surface, which is spontaneous, and
physisorption [13,31]. The more negative value follows the order 0.5 M H2SO4 > 1.0 M H2SO4 > 1.5 M
H2SO4 > 2.0 M H2SO4.

The heat of adsorption (∆H
◦

ads) is calculated using the Van’t Hoff equation:

ln Kads =
−∆H

◦

ads

RT
(7)

The entropy of adsorption (∆S
◦

ads) can be obtained using Equation (8).

∆Gads = ∆H
◦

ads − T∆S
◦

ads (8)

The negative value of ∆H
◦

ads confirms the exothermic nature of the metal dissolution process
with the inhibitor [31]. The positive value of ∆S

◦

ads means the adsorption process is accompanied by
an increase in entropy [18].

3.6. Surface Analysis

In order to provide physical evidence, SEM analysis was conducted. The impact of the inhibitor
on the microstructure of the top surface of 304 SS is depicted in Figure 10. The surface of 304 SS is
relatively smooth before the corrosion process (Figure 10a). After being corroded in acid solutions in
the absence of the inhibitor, some cracks and pits appear on the 304 SS surface (Figure 10b); meanwhile,
in the presence of the inhibitor, there is less damage (Figure 10c–f). It shows that the inhibitor works
well at protecting against corrosion.
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