Effect of Pre-Corrosion Pits on Residual Fatigue Life for 42CrMo Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Specimen Preparation
2.2. Pre-Corrosion Pit Measurements and Fatigue Test
2.3. FE Model
3. Results and Discussion
3.1. Corrosion Surface Characterization
3.2. Fatigue Test Results and Discussion
3.3. FE Investigations
3.4. Regression Formula of the Stress Intensity Factor
4. Recommendation for Future Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- El-Bagoury, N.; Ahmed, S.I.; Ahmed Abu Ali, O.; El-Hadad, S.; Fallatah, A.M.; Mersal, G.A.M.; Ibrahim, M.M.; Wysocka, J.; Ryl, J.; Boukherroub, R.; et al. The Influence of Microstructure on the Passive Layer Chemistry and Corrosion Resistance for Some Titanium-Based Alloys. Materials 2019, 12, 1233. [Google Scholar] [CrossRef]
- Orlikowski, J.; Ryl, J.; Jarzynka, M.; Krakowiak, S.; Darowicki, K. Instantaneous Impedance Monitoring of Aluminum Alloy 7075 Corrosion in Borate Buffer with Admixed Chloride Ions. Corrosion 2015, 71, 828–838. [Google Scholar] [CrossRef]
- Figueira, R. Electrochemical Sensors for Monitoring the Corrosion Conditions of Reinforced Concrete Structures: A Review. Appl. Sci. 2017, 7, 1157. [Google Scholar] [CrossRef]
- Li, W.; Xu, C.; Ho, S.C.M.; Wang, B.; Song, G. Monitoring concrete deterioration due to reinforcement corrosion by integrating acoustic emission and FBG strain measurements. Sensors 2017, 17, 657. [Google Scholar] [CrossRef] [PubMed]
- Ryl, J.; Arutunow, A.; Tobiszewski, M.T.; Wysocka, J. Aspects of intergranular corrosion of AISI 321 stainless steel in high-carbon-containing environments. Anti-Corros. Method. Mater. 2014, 61, 328–333. [Google Scholar] [CrossRef]
- Huang, Y.; Gang, T.; Chen, L. Interacting effects induced by two neighboring pits considering relative position parameters and pit depth. Materials 2017, 10, 398. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhang, T.; Wang, Y.; Qiao, J.; Wang, Z. Corrosion Failure Mechanism of Associated Gas Transmission Pipeline. Materials 2018, 11, 1935. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Lu, Y.; Xie, Q.; Li, D.; Gao, N. Mechanical properties and dynamic constitutive model of 42CrMo steel. Mater. Des. 2017, 119, 171–179. [Google Scholar] [CrossRef]
- Sola, R.; Poli, G.; Veronesi, P.; Giovanardi, R. Effects of Surface Morphology on the Wear and Corrosion Resistance of Post-Treated Nitrided and Nitrocarburized 42CrMo4 Steel. Metall. Mater. Trans. A 2014, 45, 2827–2833. [Google Scholar] [CrossRef]
- Du, G.; Kong, Q.; Wu, F.; Ruan, J.; Song, G. An experimental feasibility study of pipeline corrosion pit detection using a piezoceramic time reversal mirror. Smart Mater. Struct. 2016, 25, 037002. [Google Scholar] [CrossRef]
- Ryl, J.; Wysocka, J.; Cieslik, M.; Gerengi, H.; Ossowski, T.; Krakowiak, S.; Niedzialkowski, P. Understanding the origin of high corrosion inhibition efficiency of bee products towards aluminium alloys in alkaline environments. Electrochim. Acta 2019, 304, 263–274. [Google Scholar] [CrossRef]
- Fang, B.; Eadie, R.; Chen, W.; Elboujdaini, M. Passivation/immersion method to grow pits in pipeline steel and a study of pit nucleation and growth resulting from the method. Brit. Corros. J. 2013, 44, 32–42. [Google Scholar] [CrossRef]
- Sharland, S.M.; Jackson, C.P.; Diver, A.J. A finite-element model of the propagation of corrosion crevices and pits. Corros. Sci. 1989, 29, 1149–1166. [Google Scholar] [CrossRef]
- Wang, W.; Sun, H.; Sun, L.; Song, Z.; Zang, B. Numerical simulation for crevice corrosion of 304 stainless steel in sodium chloride solution. Chem. Res. Chin. Univ. 2010, 26, 822–828. [Google Scholar]
- Xu, L.; Cheng, Y.; Xu, L. Development of a finite element model for simulation and prediction of mechanoelectrochemical effect of pipeline corrosion. Corros. Sci. 2013, 73, 150–160. [Google Scholar] [CrossRef]
- Ishihara, S.; Saka, S.; Nan, Z.Y.; Goshima, T.; Sunada, S. Prediction of corrosion fatigue lives of aluminium alloy on the basis of corrosion pit growth law. Fatigue Fract. Eng. Mater. 2006, 29, 472–480. [Google Scholar] [CrossRef]
- Pidaparti, R.M.; Koombua, K.; Rao, A.S. Corrosion pit induced stresses prediction from SEM and finite element analysis. Int. J. Comput. Meth. Eng. Sci. Mech. 2009, 10, 117–123. [Google Scholar] [CrossRef]
- Huang, Y.; Ye, X.; Hu, B.; Chen, L. Equivalent crack size model for pre-corrosion fatigue life prediction of aluminum alloy 7075-T6. Int. J. Fatigue 2016, 88, 217–226. [Google Scholar] [CrossRef]
- Zheng, X.; Xie, X.; Li, X. Estimation model for steel wire crack propagation and its application in calculation of pre-corrosion fatigue life. Chin. Civil. Eng. J. 2017, 50, 101–107. [Google Scholar]
- Apostolopoulos, C.A. The influence of corrosion and cross-section diameter on the mechanical properties of b500 c steel. J. Mater. Eng. Perform 2009, 18, 190–195. [Google Scholar] [CrossRef]
- Li, W.; Ho, S.C.M.; Song, G. Corrosion detection of steel reinforced concrete using combined carbon fiber and fiber Bragg grating active thermal probe. Smart Mater. Struct. 2016, 25, 045017. [Google Scholar] [CrossRef]
- Huo, L.; Li, C.; Jiang, T.; Li, H. Feasibility study of steel bar corrosion monitoring using a piezoceramic transducer enabled time reversal method. Appl. Sci. 2018, 8, 2304. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, G.; Wang, S.; Cheng, Y.; Yang, S.; Sun, X. Flexural characteristics evaluation for reinforced concrete affected by steel corrosion based on an acoustic emission technique. Appl. Sci. 2019, 9, 1640. [Google Scholar] [CrossRef]
- Tang, M.; Li, J.; Li, Z.; Fu, L.; Zeng, B.; Lv, J. Mannich Base as Corrosion Inhibitors for N80 Steel in a CO2 Saturated Solution Containing 3 wt % NaCl. Materials 2019, 12, 449. [Google Scholar] [CrossRef]
- Paris, P.C.; Gomez, M.P.; Anderson, W.P. A rational analytic theory of fatigue. Trends Eng. 1961, 13, 9–14. [Google Scholar]
- Japanese Industrial Standard. Methods of corrosion resistance test for metallic coatings. In JIS H 8502; Japanese Standards Association: Tokyo, Japan, 1999. [Google Scholar]
- Venkatraman, M.S.; Cole, I.S.; Emmanuel, B. Model for corrosion of metals covered with thin electrolyte layers: Pseudo-steady state diffusion of oxygen. Electrochim. Acta 2011, 56, 7171–7179. [Google Scholar] [CrossRef]
- Nagarajan, S.; Karthega, M.; Rajendran, N. Pitting corrosion studies of super austenitic stainless steels in natural sea water using dynamic electrochemical impedance spectroscopy. J. Appl. Electrochem. 2007, 37, 195–201. [Google Scholar] [CrossRef]
- ASTM E468–90. Standard Practice for Presentation of Constant Amplitude Fatigue Tests Results for Metallic Materials; American Society for Testing and Materials: West Conshohocken, PA, USA, 2004. [Google Scholar]
- Xu, S.; Wang, Y. Estimating the effects of corrosion pits on the fatigue life of steel plate based on the 3D profile. Int. J. Fatigue 2015, 72, 27–41. [Google Scholar] [CrossRef]
- Qian, J.; Zhang, Y.; Zhao, H. A fast sweeping method for static convex hamilton–jacobi equations. J. Sci. Comput. 2007, 31, 237–271. [Google Scholar] [CrossRef]
- Min, C.K.; Kim, K.Y.; Lee, K.J. Electrical impedance imaging of phase boundary in two-phase systems with adaptive mesh regeneration technique. Int. Commun. Heat. Mass. 2005, 32, 954–963. [Google Scholar]
- Wang, J.; Wang, J.; Shao, H. The corrosion and electrochemical behavior of pure aluminum in additive-containing alkaline methanol–water mixed solutions. Mater. Corros. 2015, 60, 269–273. [Google Scholar] [CrossRef]
- Li, X.; Fan, C.; Wu, Q.; Dong, L.; Yin, Y.; Wang, C. Effect of solution pH, Cl− concentration and temperature on electrochemical behavior of ph13-8mo steel in acidic environments. J. Iron. Steel. Res. Int. 2017, 24, 1238–1247. [Google Scholar] [CrossRef]
- Wen, Z.; Lan, W.; Zhao, S.; Cao, X.; Deng, H. Corrosion Behavior of 42CrMo Steel in Chloride Solution. Surf. Technol. 2017, 42, 216–220. [Google Scholar]
- Duddu, R. Numerical modeling of corrosion pit propagation using the combined extended finite element and level set method. Comput. Mech. 2014, 54, 613–627. [Google Scholar] [CrossRef]
- Lin, H.; Zhao, Y.; Ožbolt, J. The bond behavior between concrete and corroded steel bar under repeated loading. Eng. Struct. 2017, 140, 390–405. [Google Scholar] [CrossRef]
- Perez, M.R.; Domínguez, A.G.; Palin, T.; Bathias, C. Very high cycle fatigue analysis of high strength steel with corrosion pitting. Key Eng. Mat. 2010, 449, 104–113. [Google Scholar] [CrossRef]
- Gamboa, E.; Atrens, A. Material influence on the stress corrosion cracking of rock bolts. Eng. Fail. Anal. 2005, 12, 201–235. [Google Scholar] [CrossRef]
- Jang, C. Approximation method for the calculation of stress intensity factors for the semi-elliptical surface flaws on thin-walled cylinder. J. Mech. Sci. Technol. 2006, 20, 319–328. [Google Scholar] [CrossRef]
- Soh, C.K.; Annamdas, V.G.M.; Bhalla, S. Applications of structural health monitoring technology in Asia. Struct. Struct. Health Monit. 2015, 16, 324–346. [Google Scholar]
- Song, G.; Li, W.; Wang, B.; Ho, S.C.M. A review of rock bolt monitoring using smart sensors. Sensors 2017, 17, 776. [Google Scholar] [CrossRef]
- Annamdas, V.G.; Radhika, M.A. Electromechanical impedance of piezoelectric transducers for monitoring metallic and non-metallic structures: a review of wired, wireless and energy-harvesting methods. J. Intel. Mater. Syst. Str. 2013, 24, 1021–1042. [Google Scholar] [CrossRef]
- Song, G.; Wang, C.; Wang, B. Structural health monitoring (SHM) of civil structures. Appl. Sci. 2017, 7, 789. [Google Scholar] [CrossRef]
- Kong, Q.; Robert, R.H.; Silva, P.; Mo, Y.L. Cyclic crack monitoring of a reinforced concrete column under simulated pseudo-dynamic loading using piezoceramic-based smart aggregates. Appl. Sci. 2016, 6, 341. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, Y.; Wang, L.; Zhang, L.; Song, G. Monitoring fatigue damage of modular bridge expansion joints using piezoceramic transducers. Sensors 2018, 18, 3973. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Huo, L.; Song, G. A piezoelectric active sensing method for quantitative monitoring of bolt loosening using energy dissipation caused by tangential damping based on the fractal contact theory. Smart Mater. Struct. 2017, 27, 015023. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Xiao, J.; Jiang, J. A PZT-based electromechanical impedance method for monitoring the soil freeze–thaw process. Sensors 2019, 19, 1107. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Ho, S.C.M.; Huo, L.; Song, G. A novel fractal contact-electromechanical impedance model for quantitative monitoring of bolted joint looseness. IEEE Access 2018, 6, 40212–40220. [Google Scholar] [CrossRef]
- Annamdas, V.G.M.; Yang, Y. Practical implementation of piezo-impedance sensors in monitoring of excavation support structures. Struct. Control. Health Monit. 2012, 19, 231–245. [Google Scholar] [CrossRef]
- Lu, G.; Li, Y.; Song, G. A delay-and-Boolean-ADD imaging algorithm for damage detection with a small number of piezoceramic transducers. Smart Mater. Struct. 2016, 25, 095030. [Google Scholar] [CrossRef]
- Lu, G.; Li, Y.; Zhou, M.; Feng, Q.; Song, G. Detecting damage size and shape in a plate structure using PZT transducer array. J. Aerosp. Eng. 2018, 31, 04018075. [Google Scholar] [CrossRef]
wt.% | C | S | P | Cr | Ni | Mn | Si | Cu | Mo |
---|---|---|---|---|---|---|---|---|---|
42CrMo | 0.42 | 0.002 | 0.022 | 1.08 | 0.02 | 0.69 | 0.28 | 0.02 | 0.18 |
GB/T3077-2015 | 0.38–0.45 | ≤0.035 | 0.90–1.20 | ≤0.30 | 0.50–0.80 | 0.17–0.37 | ≤0.25 | 0.15–0.25 |
Pre-Corroded Time (h) | Fatigue Life (×105 Cycles) | ||
---|---|---|---|
100 MPa | 200 MPa | 300 MPa | |
0 | 11.26 | 9.95 | 7.29 |
24 | 9.81 | 7.91 | 5.47 |
48 | 7.52 | 6.21 | 4.09 |
96 | 5.03 | 3.91 | 2.61 |
Corrosion Pit Size (μm) | Load (Stress/MPa) | Experimental Values (×105 Cycles) | Predicted Values (×105 Cycles) | Errors (%) |
---|---|---|---|---|
62 | 100 | 9.82 | 10.13 | 3.15 |
200 | 7.53 | 7.85 | 4.08 | |
300 | 5.02 | 5.31 | 5.46 | |
147 | 100 | 8.24 | 8.73 | 5.61 |
200 | 6.32 | 6.75 | 6.37 | |
300 | 4.21 | 4.53 | 7.06 | |
255 | 100 | 5.62 | 6.61 | 8.17 |
200 | 4.43 | 5.24 | 8.85 | |
300 | 2.95 | 3.25 | 9.23 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Li, Y.; Xie, X.; Zhao, J. Effect of Pre-Corrosion Pits on Residual Fatigue Life for 42CrMo Steel. Materials 2019, 12, 2130. https://doi.org/10.3390/ma12132130
Liu D, Li Y, Xie X, Zhao J. Effect of Pre-Corrosion Pits on Residual Fatigue Life for 42CrMo Steel. Materials. 2019; 12(13):2130. https://doi.org/10.3390/ma12132130
Chicago/Turabian StyleLiu, Dezheng, Yan Li, Xiangdong Xie, and Jing Zhao. 2019. "Effect of Pre-Corrosion Pits on Residual Fatigue Life for 42CrMo Steel" Materials 12, no. 13: 2130. https://doi.org/10.3390/ma12132130
APA StyleLiu, D., Li, Y., Xie, X., & Zhao, J. (2019). Effect of Pre-Corrosion Pits on Residual Fatigue Life for 42CrMo Steel. Materials, 12(13), 2130. https://doi.org/10.3390/ma12132130