Evaluation of Engineering Properties of Calcium Sulfoaluminate Cement-based Concretes Reinforced with Different Types of Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Materials
2.2. Concrete Mix Proportions and Mixing Procedure
2.3. Testing Methods
3. Results and Discussions
3.1. Compressive Strength
3.2. Splitting Tensile Strength
3.3. Modulus of Elasticity
3.4. Flexural Behavior
3.4.1. Flexural Load-CMOD Curves
3.4.2. Residual Flexural Tensile Strength
3.5. Dimensional Stability
3.6. SEM Observations
4. Conclusions
- The results indicate that the addition of fibers causes an increase in the compressive strength of concrete, irrespective of fiber type. The compressive strength improvement of FRC at a water-cement ratio of 0.35 varied from 1% to 13%, while this improvement at a water-cement ratio of 0.28 ranged from 2% to 20%, depending on fiber type and testing age.
- The inclusion of 1% fibers and particularly DHE steel fibers in CSA cement-based mixes results in an increase in the splitting tensile and flexural strength of FRC. Introducing DHE steel fibers in CSA concrete results in a deflection-hardening behavior in concrete, while concretes reinforced either with HE steel fibers or PVA fibers exhibit a deflection-softening response. The improved post-cracking behavior of the FRC can be explained by the fact that the DHE steel fibers inhibit the development of macro-cracks through the anchoring mechanism.
- The addition of fibers in concrete has no important influence on the elastic modulus of FRC.
- Introducing discrete fibers in CSA cement-based concretes reduces the shrinkage deformation of FRC, irrespective of the water-cement ratio and fiber type. CSA-PVA1 shows the lowest shrinkage among different mixes and its final shrinkage was decreased by 25% and 27% at water-cement ratios of 0.35 and 0.28, respectively.
- The prismatic ettringite crystals with 0.29–0.7 µm wide, and 2–6 µm length are the primary hydration products of CSA mix with a water-cement ratio of 0.35. The results further indicate that the size of ettringite crystals is reduced by decreasing the water-cement ratio, and crystals with 0.1–0.5 µm wide, and 2–6 µm length were developed. The SEM results also confirms that the chemical cohesion between the cement matrix and fibers has been improved.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, J.Y.; Chen, Z.Z.; Wu, K. Properties of calcium sulfoaluminate cement made ultra-high performance concrete: Tensile performance, acoustic emission monitoring of damage evolution and microstructure. Constr. Build. Mater. 2019, 208, 767–779. [Google Scholar] [CrossRef]
- Celik, K.; Meral, C.; Mancio, M.; Mehta, P.K.; Monteiro, P.J. A comparative study of self-consolidating concretes incorporating high-volume natural pozzolan or high-volume fly ash. Constr. Build. Mater. 2014, 67, 14–19. [Google Scholar] [CrossRef]
- Mehta, P.K.; Monteiro, P.J. Microstructure, Properties and Materials; McGraw-Hill Professional: New York, NY, USA, 2006. [Google Scholar]
- Hanein, T.; Galvez-Martos, J.L.; Bannerman, M.N. Carbon footprint of calcium sulfoaluminate clinker production. J. Clean. Prod. 2018, 172, 2278–2287. [Google Scholar] [CrossRef] [Green Version]
- Juenger, M.C.G.; Winnefeld, F.; Provis, J.L.; Ideker, J.H. Advances in alternative cementitious binders. Cem. Concr. Res. 2011, 41, 1232–1243. [Google Scholar] [CrossRef]
- Bye, G.C. Portland Cement: Composition, Production and Properties; Thomas Telford: London, UK, 1999; p. 206. [Google Scholar]
- Zhang, L.; Su, M.; Wang, Y. Development of the use of sulfo-and ferroaluminate cements in China. Adv. Cem. Res. 1999, 11, 15–21. [Google Scholar] [CrossRef]
- Péra, J.; Ambroise, J. New applications of calcium sulfoaluminate cement. Cem. Concr. Res. 2004, 34, 671–676. [Google Scholar] [CrossRef]
- Sharp, J.H.; Lawrence, C.D.; Yang, R. Calcium sulfoaluminate cements—low-energy cements, special cements or what? Adv. Cem. Res. 1999, 11, 3–13. [Google Scholar] [CrossRef]
- Georgin, J.F.; Ambroise, J.; Péra, J.; Reynouard, J.M. Development of self-leveling screed based on calcium sulfoaluminate cement: Modelling of curling due to drying. Cem. Concr. Compos. 2008, 30, 769–778. [Google Scholar] [CrossRef]
- Winnefeld, F.; Lothenbach, B. Hydration of calcium sulfoaluminate cements—experimental findings and thermodynamic modelling. Cem. Concr. Res. 2010, 40, 1239–1247. [Google Scholar] [CrossRef]
- Sirtoli, D.; Wyrzykowski, M.; Riva, P.; Tortelli, S.; Marchi, M.; Lura, P. Shrinkage and creep of high-performance concrete based on calcium sulfoaluminate cement. Cem. Concr. Compos. 2019, 98, 61–73. [Google Scholar] [CrossRef]
- Glasser, F.P.; Zhang, L. High-performance cement matrices based on calcium sulfoaluminate–belite compositions. Cem. Concr. Res. 2001, 31, 1881–1886. [Google Scholar] [CrossRef]
- Mehdipour, I.; Khayat, K.H. Enhancing the performance of calcium sulfoaluminate blended cements with shrinkage reducing admixture or lightweight sand. Cem. Concr. Compos. 2018, 87, 29–43. [Google Scholar] [CrossRef]
- Yanmou, W.; Jun’an, D.; Muzen, S. An investigation into cement CaO-SiO2-Al2O3-Fe2O3-SO3 system. In Proceedings of the 8th International Congress, Rio de Janeiro, Brazil, 22–27 September 1986. [Google Scholar]
- Winnefeld, F.; Barlag, S. Calorimetric and thermogravimetric study on the influence of calcium sulfate on the hydration of ye’elimite. J. Therm. Anal. Calorim. 2010, 101, 949–957. [Google Scholar] [CrossRef]
- Winnefeld, F.; Barlag, S. Influence of calcium sulfate and calcium hydroxide on the hydration of calcium sulfoaluminate clinker. Zem. Kalk Gips 2009, 62, 42–53. [Google Scholar]
- Hameed, R.; Turatsinze, A.; Duprat, F.; Sellier, A. A study on the reinforced fibrous concrete elements subjected to uniaxial tensile loading. KSCE J. Civ. Eng. 2010, 14, 547–556. [Google Scholar] [CrossRef]
- Kaufmann, W. Strength and Deformations of Structural Concrete Subjected to in-Plane Shear and Normal Forces; Birkhäuser: Basel, Switzerland, 2013. [Google Scholar]
- Shah, S.P. Do fibers increase the tensile strength of cement-based matrix? ACI Mater. J. 1992, 88, 595–602. [Google Scholar]
- Park, J.J.; Yoo, D.Y.; Park, G.J.; Kim, S.W. Feasibility of reducing the fiber content in ultra-high-performance fiber-reinforced concrete under flexure. Materials 2017, 10, 118. [Google Scholar] [CrossRef]
- Afroughsabet, V.; Biolzi, L.; Ozbakkaloglu, T. High-performance fiber-reinforced concrete: A review. J. Mater. Sci. 2016, 51, 6517–6551. [Google Scholar] [CrossRef]
- Biolzi, L.; Cattaneo, S.; Guerrini, G.L. Fracture of plain and fiber-reinforced high strength mortar slabs with EA and ESPI monitoring. Appl. Compos. Mater. 2000, 7, 1–12. [Google Scholar] [CrossRef]
- Tóth, M.; Bokor, B.; Sharma, A. Anchorage in steel fiber reinforced concrete–concept, experimental evidence and design recommendations for concrete cone and concrete edge breakout failure modes. Eng. Struct. 2019, 181, 60–75. [Google Scholar] [CrossRef]
- Enfedaque, A.; Alberti, M.G.; Gálvez, J.C. Influence of Fiber Distribution and Orientation in the Fracture Behavior of Polyolefin Fiber-Reinforced Concrete. Materials 2019, 12, 220. [Google Scholar] [CrossRef] [PubMed]
- Afroughsabet, V.; Geng, G.; Lin, A.; Biolzi, L.; Ostertag, C.P.; Monteiro, P.J. The influence of expansive cement on the mechanical, physical, and microstructural properties of hybrid-fiber-reinforced concrete. Cem. Concr. Compos. 2019, 96, 21–32. [Google Scholar] [CrossRef]
- Biolzi, L.; Cattaneo, S. Response of steel fiber reinforced high strength concrete beams: Experiments and code predictions. Cem. Concr. Compos. 2017, 77, 1–13. [Google Scholar] [CrossRef]
- Li, Z.; Lara, M.A.P.; Bolander, J.E. Restraining effects of fibers during non-uniform drying of cement composites. Cem. Concr. Res. 2006, 36, 1643–1652. [Google Scholar] [CrossRef]
- Barr, B.; Hoseinian, S.B.; Beygi, M.A. Shrinkage of concrete stored in natural environments. Cem. Concr. Compos. 2003, 25, 19–29. [Google Scholar] [CrossRef]
- Sivakumar, A.; Santhanam, M. Mechanical properties of high strength concrete reinforced with metallic and non-metallic fibres. Cem. Concr. Compos. 2007, 29, 603–608. [Google Scholar] [CrossRef]
- Trauchessec, R.; Mechling, J.M.; Lecomte, A.; Roux, A.; Le Rolland, B. Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends. Cem. Concr. Compos. 2015, 56, 106–114. [Google Scholar] [CrossRef]
- Hu, C.; Hou, D.; Li, Z. Micro-mechanical properties of calcium sulfoaluminate cement and the correlation with microstructures. Cem. Concr. Compos. 2017, 80, 10–16. [Google Scholar] [CrossRef]
- Telesca, A.; Marroccoli, M.; Pace, M.L.; Tomasulo, M.; Valenti, G.L.; Monteiro, P.J.M. A hydration study of various calcium sulfoaluminate cements. Cem. Concr. Compos. 2014, 53, 224–232. [Google Scholar] [CrossRef]
- Bhutta, A.; Borges, P.H.; Zanotti, C.; Farooq, M.; Banthia, N. Flexural behavior of geopolymer composites reinforced with steel and polypropylene macro fibers. Cem. Concr. Compos. 2017, 80, 31–40. [Google Scholar] [CrossRef]
- Berrocal, C.G.; Hornbostel, K.; Geiker, M.R.; Löfgren, I.; Lundgren, K.; Bekas, D.G. Electrical resistivity measurements in steel fibre reinforced cementitious materials. Cem. Concr. Compos. 2018, 89, 216–229. [Google Scholar] [CrossRef] [Green Version]
- Chalioris, C.E.; Kosmidou, P.M.K.; Karayannis, C.G. Cyclic Response of Steel Fiber Reinforced Concrete Slender Beams; an Experimental Study. Materials 2019, 12, 1398. [Google Scholar] [CrossRef] [PubMed]
- ACI 211.1. Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete; ACI: Farmington Hills, MI, USA, 2009. [Google Scholar]
- ASTM C143/C 143M-15a. Standard Test Method for Slump of Hydraulic-Cement Concrete; ASTM: West Conshohocken, PA, USA, 2015. [Google Scholar]
- ASTM C39/C 39M-03. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens; ASTM: West Conshohocken, PA, USA, 2003. [Google Scholar]
- ASTM C496/C 496M-11. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens; ASTM: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM C 469/C 469M-14. Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression; ASTM: West Conshohocken, PA, USA, 2014. [Google Scholar]
- BSEN 14651. Test Method for Metallic Fibre Concrete-Measuring the Flexural Tensile Strength (Limit of Proportionality (LOP), Residual); BSEN: Brussels, Belgium, 2007. [Google Scholar]
- Teng, S.; Afroughsabet, V.; Ostertag, C.P. Flexural behavior and durability properties of high performance hybrid-fiber-reinforced concrete. Constr. Build. Mater. 2018, 182, 504–515. [Google Scholar] [CrossRef]
- Song, P.S.; Hwang, S. Mechanical properties of high-strength steel fiber-reinforced concrete. Constr. Build. Mater. 2004, 18, 669–673. [Google Scholar] [CrossRef]
- Noushini, A.; Samali, B.; Vessalas, K. Effect of polyvinyl alcohol (PVA) fibre on dynamic and material properties of fibre reinforced concrete. Constr. Build. Mater. 2013, 49, 374–383. [Google Scholar] [CrossRef]
- Beigi, M.H.; Berenjian, J.; Omran, O.L.; Nik, A.S.; Nikbin, I.M. An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete. Mater. Des. 2013, 50, 1019–1029. [Google Scholar] [CrossRef]
- Simões, T.; Octávio, C.; Valença, J.; Costa, H.; Dias-da-Costa, D.; Júlio, E. Influence of concrete strength and steel fibre geometry on the fibre/matrix interface. Compos. Part B Eng. 2017, 122, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Afroughsabet, V.; Biolzi, L.; Ozbakkaloglu, T. Influence of double hooked-end steel fibers and slag on mechanical and durability properties of high performance recycled aggregate concrete. Compos. Struct. 2017, 181, 273–284. [Google Scholar] [CrossRef]
- Passuello, A.; Moriconi, G.; Shah, S.P. Cracking behavior of concrete with shrinkage reducing admixtures and PVA fibers. Cem. Concr. Compos. 2009, 31, 699–704. [Google Scholar] [CrossRef]
- Cheung, A.K.; Leung, C.K. Shrinkage reduction of high strength fiber reinforced cementitious composites (HSFRCC) with various water-to-binder ratios. Cem. Concr. Compos. 2011, 33, 661–667. [Google Scholar] [CrossRef]
- Afroughsabet, V.; Biolzi, L.; Monteiro, P.J. The effect of steel and polypropylene fibers on the chloride diffusivity and drying shrinkage of high-strength concrete. Compos. Part B Eng. 2018, 139, 84–96. [Google Scholar] [CrossRef]
- Bywalski, C.; Kamiński, M.; Maszczak, M. Influence of steel fibres addition on mechanical and selected rheological properties of steel fibre high-strength reinforced concrete. Arch. Civ. Mech. Eng. 2015, 15, 742–750. [Google Scholar] [CrossRef]
- Arjunan, P.; Silsbee, M.R.; Roy, D.M. Sulfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products. Cem. Concr. Res. 1999, 29, 1305–1311. [Google Scholar] [CrossRef]
- Mudbhatkal, G.A.; Parmeswaran, P.S.; Heble, A.S.; Pai BV, B.; Chatterjee, A.K. Non-Alitic Cement from Calcium Sulphoaluminate Clinker-Optimisation for High Strength and Low Temperature Application. In Proceedings of the 8th International Congress on the Chemistry of Cement, Rio de Janeiro, Brazil, 22–27 September 1986; pp. 364–370. [Google Scholar]
Oxide Compositions | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | Na2O | K2O | CaO | Specific Gravity (g/cm3) | 3.1 |
Weight % | 7.5 | 35.0 | 1.5 | -- | 15.5 | -- | -- | 41.0 | ||
Mineralogical Phase Compositions | C2S | C4A3$ | C11A7F | CaSO4 | Fluorellestad | Others | Specific Surface (m2/kg) | 450 | ||
Weight % | 18.0 | 60.0 | 4.4 | 9.9 | 4.5 | 3.2 |
Aggregate Type | Maximum Size Aggregate (mm) | Water Absorption (%) | Specific Gravity | Fineness Modulus |
---|---|---|---|---|
Fine aggregate | 4.75 | 1.1 | 2.65 | 2.9 |
Coarse aggregate | 19.0 | 0.96 | 2.74 | - |
Type and Shape of Fiber | Length l (mm) | Diameter d (mm) | Aspect Ratio l/d | Density (g/cm3) | Tensile Strength (N/mm2) |
---|---|---|---|---|---|
Double hooked-end steel (DHE) | 60 | 0.9 | 65 | 7.8 | 2300 |
Hooked-end steel (HE) | 35 | 0.55 | 65 | 7.8 | 1050 |
Polyvinyl alcohol (PVA) | 30 | 0.4 | 75 | 1.3 | 900 |
Mixture ID | W/C | Water | CSA | FA | CA | Fiber Volume Fraction (%) | SP (%) | Slump (cm) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
(kg/m3) | DHE | HE | PVA | DC10 | TA | ||||||
CSA | 0.35 | 157.5 | 450 | 901 | 891 | - | - | - | 1.2 | 0.2 | 20 |
CSA-DHE1 | 0.35 | 157.5 | 450 | 888 | 878 | 1 | - | - | 1.4 | 0.2 | 19 |
CSA-HE1 | 0.35 | 157.5 | 450 | 888 | 878 | - | 1 | - | 1.4 | 0.2 | 18 |
CSA-PVA1 | 0.35 | 157.5 | 450 | 888 | 878 | - | - | 1 | 1.4 | 0.2 | 15 |
CSA | 0.28 | 154.0 | 550 | 863 | 853 | - | - | - | 1.5 | 0.2 | 18 |
CSA-DHE1 | 0.28 | 154.0 | 550 | 849 | 840 | 1 | - | - | 1.7 | 0.2 | 20 |
CSA-HE1 | 0.28 | 154.0 | 550 | 849 | 840 | - | 1 | - | 1.7 | 0.2 | 18 |
CSA-PVA1 | 0.28 | 154.0 | 550 | 849 | 840 | - | - | 1 | 1.7 | 0.2 | 16 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afroughsabet, V.; Biolzi, L.; Cattaneo, S. Evaluation of Engineering Properties of Calcium Sulfoaluminate Cement-based Concretes Reinforced with Different Types of Fibers. Materials 2019, 12, 2151. https://doi.org/10.3390/ma12132151
Afroughsabet V, Biolzi L, Cattaneo S. Evaluation of Engineering Properties of Calcium Sulfoaluminate Cement-based Concretes Reinforced with Different Types of Fibers. Materials. 2019; 12(13):2151. https://doi.org/10.3390/ma12132151
Chicago/Turabian StyleAfroughsabet, Vahid, Luigi Biolzi, and Sara Cattaneo. 2019. "Evaluation of Engineering Properties of Calcium Sulfoaluminate Cement-based Concretes Reinforced with Different Types of Fibers" Materials 12, no. 13: 2151. https://doi.org/10.3390/ma12132151
APA StyleAfroughsabet, V., Biolzi, L., & Cattaneo, S. (2019). Evaluation of Engineering Properties of Calcium Sulfoaluminate Cement-based Concretes Reinforced with Different Types of Fibers. Materials, 12(13), 2151. https://doi.org/10.3390/ma12132151