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Abstract: The engineered cementitious composite (ECC) mixtures were prepared with Portland cement,
ground fly ash, silica sand, and polyvinyl alcohol (PVA) fibers. Accordingly, four mix design factors
with five levels each were designed using the Taguchi method. The engineering properties of ECC
(flow expansion, compressive strength, flexural strength, charge passed, and maximum freeze–thaw
cycle) were evaluated, and the single-response optimizations were conducted separately. Unlike other
studies assigning a relative weighting parameter to each response, the principal component analysis
(PCA) was innovatively introduced to optimize the ECC’s multiple responses so that the single principal
performance was obtained from the most objective perspective. Furthermore, the weighting parameters
for utility concept were determined by the PCA. Thereafter, an optimum mix formulation was estimated
using the PCA-based Taguchi method and the updated utility concept, which provided the most desired
balance of these engineering properties. Finally, the contribution of each mix design factor to the
principal performance of ECC was examined, and the estimated mix formulation was verified via an
additional experiment.

Keywords: engineered cementitious composite (ECC); multi-response optimization; Taguchi method;
principal component analysis; principal performance

1. Introduction

It is well known that discrete fibers can compensate for the shortcomings of ordinary cement-based
materials, such as the brittleness, low tensile strength, limited deformability, and cracking resistance.
Fiber-reinforced concrete (FRC), ultra-high-performance concrete (UHPC), and engineered cementitious
composites (ECC) generally benefit more than ordinary cement-based materials from various fiber
reinforcements. Recent investigations further indicated that polyvinyl alcohol (PVA) fibers could
effectively promote the ductility and toughness of ECC, leading to its wide application [1–3]. The excellent
dispersibility in fresh cementitious composites and unique bonding properties of PVA fibers are
not matched by other fibers such as polypropylene fibers, polyethylene fibers, and steel fibers [4].
The cementitious composites reinforced with PVA fibers exhibit high deformation capacity and pseudo
strain-hardening characteristics [5]. On the other hand, fly ash attracted increasing attention in recent
years for its eco-friendly and cement-economizing properties. Higher ductility and smaller crack width
are obtained from ECC materials incorporating PVA fibers and fly ash. The ultimate tensile strain of the
ECC can be raised to 3–7%, and all crack widths can be controlled to be less than 0.06 mm [6]. However,
the effectiveness of fly ash is normally expressed at a relatively late age due to its slow reactivity [7,8].
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Recent efforts to deal with the shortcomings of fly ash suggested that the finer particles of fly ash
contribute more to the mechanical and durability properties, as the reduced particle size means that the
pozzolanic reaction is accelerated [9–12].

On account of these facts, this investigation utilized PVA fiber and ground fly ash in order to
produce high-performance cementitious composites. The mix design procedure involving multiple
independent variables was implemented based on the Taguchi method [13]. As a systematic method to
reveal the optimum or near-optimum combinations of factors by a small number of experimental runs,
the Taguchi method provides the balance of efficiency and cost [14,15]. However, the application of the
Taguchi method alone is confined to single-objective processes. It does not match with the majority of
cases where multi-response problems arise. In severe environments such as the northeastern region of
China, vehicle loads, chloride corrosion, and frost damage are common negative actions which affect
the application of ECC materials. The major challenge is to prepare ECC materials of outstanding fresh
mix rheology and mechanical strength, as well as resistance to chloride penetration and freeze–thaw
cycles. In this investigation, several responses of ECC materials subjected to different performance
evaluation tests were simultaneously collected. The precondition for determining the desirable mix
formulations was the optimization of these responses.

So far, the desirability function [16,17], genetic algorithm [18,19], response surface methodology [20,21],
and utility concept [22,23] were presented for multi-response optimization. These optimization techniques
rely on either the assumption that the responses are independent, or engineering experience to assign
weighting factors. However, the different performance characteristics of ECC materials have varying
degrees of correlations, and the assignment of weights varies in different cases. To overcome these
drawbacks, this investigation makes full use of principal component analysis (PCA) to transform
possibly correlated responses into uncorrelated principal components. PCA is an effective technique
for identifying patterns in correlated data and for expressing the data to highlight their similarities
and differences [24]. The principle of PCA is detecting the original data and then compressing
them into principal components of fewer dimensions. Thus, the sophisticated multivariate problems
can be simplified from the most informative viewpoint. It is a matter of determination as to how
many components should be chosen through the statistical analysis. One of the most common
criteria proposed in the existing literature for screening the principal components is based on the
desired precision. The desired precision is usually between 80% and 90% of the total variance [25].
The cumulative percentages of variance owned by the selected principal components should not
be less than the desired precision. Another criterion is Kaiser’s rule which preserves the principal
components with an eigenvalue greater than one [26]. Those principal components with eigenvalues
less than one are recommended to be filtered out because they contain redundant information [27].
Typically, Kaiser’s rule is considered for formal criteria; thus, it is frequently used to select the principal
components. The precision of these principal components can be subsequently assessed by calculating
their cumulative percentages of variances. In this regard, the difficulties in unifying the diverse
measurement units, identifying the relationships among variables, and assuming the weights can
be addressed with the support of PCA. Thereafter, the optimum set of mix design factors can be
achieved by applying the Taguchi method to the single response. Although the combination of PCA
and the Taguchi method attracted much interest in industrial manufacturing process [28–30], it was
seldom applied to the preparation of cementitious composites for improving the multiple engineering
properties. The successful practice of the PCA-based Taguchi method in many other multi-response
optimization cases demonstrates its potential to find the optimum ECC mix formulation.

2. Experimental Work

2.1. Materials

Portland cement (P.O. 42.5) and fly ash were used as the binders. A milling procedure was
performed to produce finer particles of fly ash as it is more active in the pozzolanic reaction. The chemical
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compositions of Portland cement and ground fly ash are summarized in Table 1. The silica sand with
particle diameter ranging from 0.075 mm to 0.150 mm was used as the fine aggregate. Additionally,
polycarboxylic superplasticizer was also added during the mixing procedure to provide the ECC
mixtures with desired fresh mix workability. Discrete PVA fibers of 39 µm diameter and 13 mm length
were employed in this investigation. These PVA fibers manufactured by Kuraray Co., Ltd. (Tokyo,
Japan) complement high levels of tensile strength (1600 MPa) and elastic modulus (42 GPa) with
desired ductility (7% strain at failure in tension).

Table 1. Chemical compositions of binders.

Hydraulic Binders
Chemical Analysis of Basic Oxides (wt. %)

SiO2 Al2O3 Fe2O3 CaO MgO SO3

Portland cement 21.08 5.47 3.96 62.28 1.73 2.63
Ground fly ash 55.70 25.63 5.65 6.93 2.25 0.60

2.2. Mix Design

The mix proportions were designed based on the Taguchi method. The content of fly ash (FA),
sand-to-binder ratio (S/B), water-to-binder ratio (W/B), and volume fraction of PVA fiber (VPVA) were
selected as the mix design factors. The combinations of these mix factors with five levels were reduced
from 625 (25 × 25) possible trials to 25 mix proportions using an orthogonal array (L25), as summarized
in Table 2. The mass fraction of superplasticizer for each mix proportion is also presented in Table 2.

Table 2. The mix proportions of engineered cementitious composites (ECCs) using the L25 orthogonal
array. FA—fly ash content; S/B—sand-to-binder ratio; W/B—water-to-binder ratio; VPVA—volume
fraction of polyvinyl alcohol.

Mixture Labels
Factors & Levels

Superplasticizer (%)
A(FA) B(S/B) C(W/B) D(VPVA)

1 A1B1C1D1 0 0.250 0.2500 0 0.82
2 A1B4C3D2 0 0.625 0.3750 0.005 0.38
3 A1B2C5D3 0 0.375 0.5000 0.010 0.09
4 A1B5C2D4 0 0.750 0.3125 0.015 1.07
5 A1B3C4D5 0 0.500 0.4375 0.020 0.94
6 A2B4C2D1 0.175 0.625 0.3125 0 0.22
7 A2B2C4D2 0.175 0.375 0.4375 0.005 0.05
8 A2B5C1D3 0.175 0.750 0.2500 0.010 1.51
9 A2B3C3D4 0.175 0.500 0.3750 0.015 0.30

10 A2B1C5D5 0.175 0.250 0.5000 0.020 0.50
11 A3B2C3D1 0.350 0.375 0.3750 0 0.63
12 A3B5C5D2 0.350 0.750 0.5000 0.005 0.06
13 A3B3C2D3 0.350 0.500 0.3125 0.010 0.48
14 A3B1C4D4 0.350 0.250 0.4375 0.015 0
15 A3B4C1D5 0.350 0.625 0.2500 0.020 1.52
16 A4B5C4D1 0.525 0.750 0.4375 0 0.48
17 A4B3C1D2 0.525 0.500 0.2500 0.005 0.68
18 A4B1C3D3 0.525 0.250 0.3750 0.010 0.10
19 A4B4C5D4 0.525 0.625 0.5000 0.015 0.05
20 A4B2C2D5 0.525 0.375 0.3125 0.020 0.59
21 A5B3C5D1 0.700 0.500 0.5000 0 0
22 A5B1C2D2 0.700 0.250 0.3125 0.005 0.67
23 A5B4C4D3 0.700 0.625 0.4375 0.010 0.04
24 A5B2C1D4 0.700 0.375 0.2500 0.015 1.42
25 A5B5C3D5 0.700 0.750 0.3750 0.020 0.87
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2.3. Test Method

The flow expansion of each mixture was determined per ASTM C230/C230 M [31] to assess the
fresh mix rheology of ECC materials. The flow table used in the test is shown in Figure 1. After a flow
specimen was spread by the operation of this table, the lengths along two diameters at right angles to
each other were measured. The average value was treated as the flow expansion.
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Cubic specimens 100 mm × 100 mm × 100 mm in size were demolded after 28 days, and then
subjected to the compression tests per GB/T 50,081 [32], as shown in Figure 2. The peak load was
divided by the bearing area to calculate the compressive strength. As shown in Figure 3, flexure tests
were performed on prismatic specimens 100 mm × 100 mm × 400 mm in size via four-point loading on
a span of 300 mm per GB/T 50,081 [32]. A servo valve-controlled hydraulic test system was operated
at a displacement rate of 0.02 mm/s. Load and deflection data were collected using a load cell and a
displacement transducer connected to a data acquisition system. The flexural stress–deflection curves
and maximum flexural stress were obtained.Materials 2019, 12, x FOR PEER REVIEW 5 of 20 
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The standard test method for electrical indication covers the determination of the electrical
conductance of ECC specimens to provide a rapid indication of their resistance to the penetration
of chloride ions [33]. The total charge passed during a 6-h period can reflect the ECC’s ability to
resist chloride ion penetration. Cylindrical specimens 100 mm in diameter and 50 mm in height
were demolded 24 h after casting and then cured for 28 days. The specimens were subjected to the
vacuum saturation before electrical indication test. The electrical indication apparatus (NEL-PEU)
was used in the test, which maintained a potential difference of 60 V across the ends of a cylindrical
specimen. The two ends of the specimen were immersed in a sodium chloride solution (3.0% by mass
in distilled water) and a sodium hydroxide solution (0.3 mol/L in distilled water). The electrical current
was recorded at 10-min intervals by a data acquisition system. The electrical indication test set-up is
illustrated in Figure 4.
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A rapid determination of the ECC’s frost resistance was performed on prismatic specimens
(100 mm × 100 mm × 400 mm) per GB/T 50082-2009 and ASTM C666 [34,35]. Specimens were cured
for 24 days and then subjected to the vacuum saturation for four days. The test was performed using
the rapid freezing-and-thawing apparatus (TDR-1) consisting of a chamber in which the specimens
were subjected to automatic and reproducible freeze–thaw cycles produced by the refrigerating and
heating procedures, as shown in Figure 5. The fundamental transverse frequency tests were carried
out, and the relative dynamic modulus of elasticity (RDME) was calculated after every 25 cycles to
detect the internal damage of ECC specimens. The freeze–thaw test was terminated when the RDME
dropped below 60%, and the maximum freeze–thaw cycles were recorded.
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3. Results and Discussion

3.1. Engineering Properties of ECC

The Taguchi method uses the signal-to-noise (S/N) ratio as the statistical measure of performance.
The S/N ratio depends on the original performance characteristics and generally presents as three
types, i.e., nominal-the-best, smaller-the-better, and larger-the-better [15]. Since the higher observed
values indicate the better fresh mix rheology, compressive strength, flexural strength, and freeze–thaw
resistance, larger-the-better is suitable for measuring these engineering properties. On the contrary, the
charge passed is expected to be as low as possible. Hence, smaller-the-better is used to measure the
chloride ion penetration resistance of the ECC. The two types of S/N ratios are defined as follows:

Larger-the-better, S/N = −10× log10(
1
n

n∑
i = 1

1
y2

i

), (1)

Smaller-the-better, S/N = −10× log10(
1
n

n∑
i = 1

y2
i ), (2)

where n indicates the number of observations and y represents the results of the observed data.
After the original performance characteristics were transformed into the S/N ratios, their average

values at different levels of each factor were calculated. For example, the average S/N ratio at A1
was the arithmetic mean of those ratios for Mix. A1B1C1D1, Mix. A1B4C3D2, Mix. A1B2C5D3, Mix.
A1B5C2D4, and Mix. A1B3C4D5. The optimal levels of individual mix design factors were obtained
with the highest average S/N ratios. The dependence of average S/N ratios on the varying factors and
levels is plotted in Figure 6.
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It is evident from Figure 6a that the flow expansion increases with the ascending FA and W/B,
while simultaneously decreasing with the increasing S/B and VPVA. Despite the possible shape change
in fly ash particles resulting from the milling procedure [36], the degeneration of flowability is not
observed for ECC mixtures containing ground fly ash. The possible reason is the higher packing
density brought about by the ground fly ash that releases the water to lubricate the particles [37,38].
Meanwhile, the micro fly ash particles tend to bind with water, leading to the formation of compounds
with a larger volume than the water itself. Therefore, the inter-particle spacing between the rough
cement grains is increased [39]. The maximum flow expansion was obtained with A5B1C5D1 (FA:
0.700, S/B: 0.250, W/B: 0.5000, VPVA: 0).

The positive effect of ground fly ash and PVA fibers with proper content (FA: 0.175–0.525; VPVA:
0.005–0.015) on the compressive strength is exhibited in Figure 6b. The most significant improvement
in the compressive strength was achieved with FA ranging from 0.375 to 0.525, which could be the
result of relatively early pozzolanic reaction between the fly ash and calcium hydroxide. In terms
of the PVA fiber reinforcement, the bridging effect acts as the lateral constraint for the specimens
subjected to the vertical loading. While the ECC specimen split into parts and experienced spalling
due to the absence of fibers (Figure 7a), the specimen reinforced with PVA fibers did not disintegrate
even at the stage of failure in compression (Figure 7b). However, there is a risk of strength degradation
resulting from the increase in fiber content, as shown in Figure 6b. The pores induced by excessive
fibers are likely to worsen the density of specimens. Additionally, the compressive strength of ECC can
obviously benefit from the moderate S/B (around 0.500) and low W/B (0.2500–0.3125). The maximum
compressive strength was obtained with A3B3C2D3 (FA: 0.350, S/B: 0.500, W/B: 0.3125, VPVA: 0.010).
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structures. Another promotion for the impermeability was found in the presence of PVA fibers with 
0.5–1.5 vol.%. The specific surface properties of PVA fibers facilitate their dispersion in fresh 
cementitious composites and bonding with the matrix. Therefore, a stable reinforcement is formed 
inside the ECC materials which can bridge the micro-cracks and control the crack width. It should be 
noted that the chloride ion penetration is very sensitive to the volume fraction of PVA fiber. The decline 
in S/N ratio was observed at VPVA = 2.0% (lower than the S/N ratio at VPVA = 0) due to the difficulties in 
providing a homogeneous distribution of numerous fibers in the ECC mixtures. Moreover, the ECC 

Figure 7. Examples of failed engineered cementitious composite (ECC) compression test specimens
with different polyvinyl alcohol (PVA) fiber reinforcement conditions: (a) without fiber; (b) 1.0 vol.%
PVA fiber.

As shown in Figure 6c, the low W/B (0.2500–0.3125), moderate FA (0.350–0.525), and S/B (around
0.500) favored the flexural strength of ECC. In addition, the flexural strength was improved by
0.5–2 vol.% PVA fiber reinforcement. It was attributed to the notable role of PVA fiber in mitigating
micro-cracking. The fibrous ECC specimens (e.g., Mix. 9, 13, 22, and 25) exhibited superior load
capacity and energy dissipation capacity (areas underneath the flexural stress–deflection curves) to the
plain specimens (e.g., Mix. 21), as shown in Figure 8. Nevertheless, excessive fibers are detrimental to
the flowability and density as discussed above. Consequently, the flexural strength decreased when
VPVA > 1.5% (Figure 6c) and the relatively poor post-cracking performance of Mix. 25 was observed
(Figure 8). The maximum flexural strength was obtained with A3B3C1D4 (FA: 0.350, S/B: 0.500, W/B:
0.2500, VPVA: 0.015).
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By the characteristics of average S/N ratios shown in Figure 6d, the resistance to chloride ion
penetration was greatly enhanced around FA = 0.375. The fine fly ash can make up for the defect of
pore structures. Another promotion for the impermeability was found in the presence of PVA fibers
with 0.5–1.5 vol.%. The specific surface properties of PVA fibers facilitate their dispersion in fresh
cementitious composites and bonding with the matrix. Therefore, a stable reinforcement is formed
inside the ECC materials which can bridge the micro-cracks and control the crack width. It should be
noted that the chloride ion penetration is very sensitive to the volume fraction of PVA fiber. The decline



Materials 2019, 12, 2402 11 of 20

in S/N ratio was observed at VPVA = 2.0% (lower than the S/N ratio at VPVA = 0) due to the difficulties
in providing a homogeneous distribution of numerous fibers in the ECC mixtures. Moreover, the
ECC became obviously more permeable with the ascending W/B. Both the hydration progress and the
evaporation of free water induce some deficiencies in the paste and the interfaces, thereby weakening
the resistance to chloride ion penetration. It can be observed from Figure 6d that the A3B3C1D3 (FA:
0.350, S/B: 0.500, W/B: 0.2500, VPVA: 0.010) provided the minimum amount of charge passed.

As shown in Figure 6e, it is explicit that the freeze–thaw resistance faded with the increasing
W/B. Extensive mixing of water normally leads to a porous internal structure. The maximum
freeze–thaw cycles increased drastically as a result of PVA fiber reinforcement. The air-entraining
and pressure-release effects of PVA fibers inhibit the development of micro-cracks and enable ECC
specimens to work under the frost exposure for a relatively long period [40]. The volume fraction
of PVA fibers should be well controlled as the reduction in S/N ratio was observed at VPVA = 2.0%.
Reasonable S/B also helps the ECC materials gain adequate density and strength prior to the frost
exposure. Nevertheless, higher sand content is against the freeze–thaw resistance since the paste
ratio is simultaneously decreased. Furthermore, the ground fly ash was found to be beneficial to the
freeze–thaw resistance, especially at a replacement rate of 35%. The optimum condition under the frost
exposure was A3B3C1D4 (FA: 0.350, S/B: 0.500, W/B: 0.2500, VPVA: 0.015).

3.2. Principal Component Analysis of Test Data

Five engineering properties were evaluated before the multi-response optimization. The optimum
mix formulations for these responses were not coincident. Principal component analysis (PCA)
was introduced as a powerful statistical method to convert the original responses into a set of
lower-dimensional variables. These variables were the preserved principal components carrying the
most amount of original information. During the decision-making process, those principal components
accounting for most of the variance were prioritized. In the application of PCA, all the S/N ratios were
arranged into the initial multi-response array {M}:

M = {R1,R2, . . . ,Rp} =


R1,1 · · · R1,p

...
. . .

...
Rq,1 · · · Rq,p

, (3)

where Ri,j (i = 1, 2, . . . , q; j = 1,2, . . . , p) is the S/N ratio of the jth response collected from the ith trial, q
is the number of trials under each test condition, and p is the number of responses. The S/N ratios were
normalized as follows to eliminate the difference among units:

Ni, j =
Ri, j −R j,min

R j,max −R j,min
, (4)

where Ni,j is the normalized S/N ratio, Rj,max is the maximum S/N ratio of the jth response, and Rj,min

is the minimum S/N ratio of the jth response. Thus, the normalized multi-response array can be
expressed by

N = {N1, N2, . . . , Np} =


N1,1 · · · N1,p

...
. . .

...
Nq,1 · · · Nq,p

. (5)

The correlation array {C} was generated by calculating the elements Cl,k as follows:

Cl,k =
Cov(Ni,l, Ni,k)√
Var(Ni,l)Var(Ni,k

) , l, k = 1, 2, . . . , p, (6)
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C =


C1,1 . . . C1,p

...
. . .

...
Cp,1 . . . Cp,p

, (7)

where Cov(Ni,l, Ni,k) denotes the covariance of Ni,l and Ni,k; Var (Ni,l) and Var (Ni,k) are the variance of
Ni,l and Ni,k, respectively. The eigenvalues and eigenvectors can be defined as follows:

(C− λE)V = 0, (8)

where λ and [V] = [a1, a2, . . . , ap]T refer to the eigenvalues and eigenvectors of correlation array {C},
respectively. The jth eigenvector [Vj] = [a1j, a2j, . . . , apj]T meets the condition (a1j)2 + (a2j)2 + . . . +

(apj)2 = 1. The jth principal components [Pj] are formulated as

P j =

p∑
l = 1

al j ×Nl. (9)

Given q observations with p responses to be analyzed, then the number of acquired principal
components is min (q − 1, p). All the eigenvalues add up to the number of responses. It should
be noted that the sum of the variances remains unchanged through the transformation from the
original responses into principal components. The percentage of variance owned by each principal
component interprets its relative role. These principal components were ranked in such a way that
the first principal component had the largest eigenvalue/percentage of variance, and each succeeding
component, in turn, had a descending eigenvalue/percentage of variance, as presented in Figure 9.
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Differing from the possibly correlated initial variables, each component was not affected by the 
others. The five principal components were the pending targets for the multi-response optimization. 
Hence, it was a matter to determine which principal component should be selected. Based on Kaiser’s 
rule, the principal components with eigenvalues greater than one were meaningful. Consequently, the 
initial five-dimensional responses were reduced into the current principal components of two 
dimensions (first and second principal components). The top two principal components in lieu of the 
original responses kept the most useful information since they had the predominant percentage of 
variance (88.88% in total). The eigenvectors for the first and second principal components were [−0.298, 
0.449, 0.489, 0.456, 0.513] and [0.764, 0.400, −0.179, 0.454, −0.139], respectively. The elements of each 
eigenvector were the coefficients for the mathematical function transforming the original responses into 
the corresponding principal components. Figure 10 exhibits the distribution of numbered ECC mixtures 
in the space represented by the top two principal components. Actually, the principal component could 
be regarded as the “generalized engineering property” of ECC materials. Therefore, the difference in 
the performance characteristics could be embodied by the two principal components. 
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Differing from the possibly correlated initial variables, each component was not affected by the
others. The five principal components were the pending targets for the multi-response optimization.
Hence, it was a matter to determine which principal component should be selected. Based on Kaiser’s
rule, the principal components with eigenvalues greater than one were meaningful. Consequently,
the initial five-dimensional responses were reduced into the current principal components of two
dimensions (first and second principal components). The top two principal components in lieu of the
original responses kept the most useful information since they had the predominant percentage of
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variance (88.88% in total). The eigenvectors for the first and second principal components were [−0.298,
0.449, 0.489, 0.456, 0.513] and [0.764, 0.400, −0.179, 0.454, −0.139], respectively. The elements of each
eigenvector were the coefficients for the mathematical function transforming the original responses
into the corresponding principal components. Figure 10 exhibits the distribution of numbered ECC
mixtures in the space represented by the top two principal components. Actually, the principal
component could be regarded as the “generalized engineering property” of ECC materials. Therefore,
the difference in the performance characteristics could be embodied by the two principal components.Materials 2019, 12, x FOR PEER REVIEW 13 of 20 
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Figure 10. The distribution of ECC mixtures in the two-dimensional space represented by the top two
principal components.

These two principal components needed to be integrated into a comprehensive performance
characteristic index for further analysis. The term coefficient of determination η was defined as
follows [28]:

η j =
λ j

p
, j = 1, 2, . . . , p. (10)

Then, the comprehensive performance characteristic index was equal to the sum of the principle
component statistics multiplied by the coefficient of determination.

P =
n∑

j = 1

η jP j, n ≤ p, (11)

where n is the number of the selected principal components. Considering that the index features the
performance of ECC materials under the influence of multiple test conditions, it was defined as the
principal performance herein. The principal performance embodied the essential integration of the
original engineering properties. Figure 11 is a bubble chart which vividly exhibits the unitless principal
performance statistics of the 25 ECC mixtures. All the bubbles distributed in the two-dimensional
space were labeled as “the number of mixtures: the corresponding principle performance statistics”.
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3.3. Estimation of the Optimum Mix Formulation

The multiple engineering properties were merged into the single principal performance covering
the fresh property, the hardened property, and the durability property of ECC materials. The optimum
mix formulation reaching the highest average principal performance statistics of each mix design factor
was deemed to provide the most desired balance of the five basic engineering properties. The average
principal performance statistics at different levels of each mix design factor were calculated, and
the results are presented in Figure 12. Except for the monotonic influence of W/B on the principal
performance, turning points existed in the relationships between principal performance statistics
and the other factors (FA, S/B, and VPVA). It was found that the combination of A3 (FA = 0.350),
B3 (S/B = 0.500), C1 (W/B = 0.2500), and D3 (VPVA = 0.010) constituted the optimum mix formulation.
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3.3. Estimation of the Optimum Mix Formulation 

The multiple engineering properties were merged into the single principal performance 
covering the fresh property, the hardened property, and the durability property of ECC materials. 
The optimum mix formulation reaching the highest average principal performance statistics of each 
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As an approach frequently used in the multi-response optimization for cement-based materials [41–43],
the utility concept was also applied to the multivariate analysis for comparison. In this case, the preference
numbers were calculated to measure the original responses, and the overall response (utility value)
was the sum of weighted preference numbers [44]. However, the ideal weighting values for responses
are usually based on assumption, thereby leading to a certain amount of randomness. To address this
issue, the coefficients and eigenvalues deduced by PCA were used. Considering that (a1j)2 + (a1j)2 +

. . . + (apj)2 = 1, the weighting parameter for the lth response (ωl) could be expressed by a simple linear
equation containing the squares of elements from the top two principal components’ eigenvectors.
Thus, the ωl was formulated as follows:

ωl = α1a2
l1 + α2a2

l2, l = 1, 2, . . . , p, (12)

where α1 and α2 are the coefficients of correction affected by the relative roles of principal components.
It should be a good attempt to determine each coefficient using the eigenvalue of the relevant principal
component. Since the weights comply with the condition ω1 + ω2 + . . . + ωp = 1, it can be concluded
that α1 + α2 = 1. Thus, the coefficients of correction were calculated as follows:

α1 =
λ1

λ1 + λ2

α2 =
λ2

λ1 + λ2

, (13)

where λ1 and λ2 are the eigenvalues of the first and second principal components, respectively. Thus,
the weighting parameter for the lth response (ωl) was established as follows:

ωl =
λ1

λ1 + λ2
a2

l1 +
λ2

λ1 + λ2
a2

l2, l = 1, 2, . . . , p, (14)

where al1 and al2 are the elements from the eigenvectors of the corresponding principal components.
The results are tabulated in Table 3.

Table 3. Weighting parameters assigned to each response.

Response Weighting Parameter

Flow expansion 0.203
Compressive strength 0.192

Flexural strength 0.191
Charge passed 0.207

Maximum freeze–thaw cycles 0.207

The average utility values at different levels of each mix design factor were calculated, and the
results are presented in Figure 13. The optimum mix formulation was A3B3C1D3 in this case, exactly
the same as that obtained from PCA. It could be explained that the inherent information remained
through data processing. Additionally, the mathematical expression linking these responses was
established via PCA from the most objective perspective. The weighting values were affected by the
original test data alone, free of human judgment. Given these reasons, it should be reliable to infer the
weighting parameters for the utility concept based on PCA. Furthermore, the PCA shall be of greater
accuracy in the multi-response optimization and the weight assignment for utility concept provided
that the test data have a larger sample capacity.
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3.4. Analysis of Variance

The analysis of variance (ANOVA) following the confidence level of 95% was implemented by
Minitab 17 to quantify the effect and relative importance of each mix design factor.

As presented in Table 4, the symbol “O” and “X” denote the significant and insignificant factor,
respectively. FA, W/B, and VPVA were identified as the significant factors, while S/B with an F-value
lower than the critical level (3.84) was insignificant. Furthermore, the contribution rates are plotted
in Figure 14, implying the relative importance of each mix design factor. The W/B was observed
to be the dominant factor governing the principal performance, which accounted for 47.20% of the
total contribution. The PVA fiber was indicated to be an effective reinforcement system for the ECC
materials, as it contributed up to 33.60%. Moreover, the effect of ground fly ash as a partial substitution
for Portland cement cannot be ignored, the contribution rate of which was 14.39%. It can be stated that
both PVA fiber and ground fly ash were the indispensable compositions benefiting the ECC’s overall
engineering properties.

Table 4. Results of ANOVA for the principal performance.

Mix Design Factor DF SS MS F-Value Contribution (%) Significance

A 4 105.75 26.44 16.05 14.39 O
B 4 22.19 5.55 3.37 3.02 X
C 4 346.93 86.73 52.64 47.20 O
D 4 246.92 61.73 37.47 33.60 O

Error 8 13.18 1.65 - 1.79 -
Total 24 734.97 - - 100.00 -

Notes: DF, degree of freedom; SS, sum of squares; MS, mean of squares.
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3.5. Confirmation Experiment

It was necessary to verify the estimated optimum mix formulation. Since the optimum mix
formulation inferred by the PCA-based Taguchi method was not included in the L25 orthogonal array,
the confirmation experiment was carried out to obtain the actual responses of Mix. A3B3C1D3 (FA:
0.350, S/B: 0.500, W/B: 0.2500, and VPVA: 0.010). The flow expansion test, compression test, flexure
test, electrical indication test, and cyclic freeze–thaw test were performed on the ECC specimens
prepared following A3B3C1D3. The test results were compared with the estimated value computed by
Equation (15) [45].

QE = Q + (A3 −Q) + (B3 −Q) + (C1 −Q) + (D3 −Q), (15)

where Q is the mean of the experimental performance characteristic statistics, A3, B3, C1, and D3 are the
average experimental performance characteristic statistics at the optimal levels of mix design factors,
and QE is the estimated value of the performance characteristic. Assuming the confidence level of 95%,
the confidence interval could be calculated by Equation (16) [45].

CICE = [F0.05(1, fe)Ve((1 + Tdo f )/N + (1/S))](1/2), (16)

where F0.05(1, f e) is the F-value corresponding to the confidence level of 95%, and f e refers to the
errors’ degrees of freedom; Ve is the variance of errors; S is the number of replications for confirmation
experiments, N is the total number of experiments, and Tdof is the total degrees of freedom related to
the estimated value. The estimated values and verified results are summarized in Table 5. It can be
seen that all of the experimental values were within the estimated ranges.

Table 5. Results verified by the additional experiment.

Optimum Combination (A3B3C1D3) Estimated Value Experimental Value

Flow expansion (cm) 15.84 ± 3.64 17.00
Compressive strength (MPa) 63.16 ± 8.51 60.50

Flexural strength (MPa) 13.00 ± 1.83 12.17
Charge passed (C) 219.43 ± 281.43 359.77

Maximum freeze–thaw cycles 414 ± 73.99 425

4. Conclusions

In this investigation, the Taguchi method combined with PCA was used as the first attempt to extract
the most useful information from the multivariate test data, thereby accomplishing multi-response
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optimization for ECC materials. Material testing and statistical analysis were conducted to reach the
following conclusions:

1. The original five engineering properties, including flow expansion, compressive strength, flexural
strength, charge passed, and maximum freeze–thaw cycles, can be integrated into the single
principal performance by the PCA without loss of important information. The principal
performance embodies the essential integration of the original responses.

2. A new approach based on the PCA was devised to help determine the weighting parameters
for utility concept. The optimization results obtained from the updated utility concept were
consistent with the PCA-based Taguchi method.

3. The analyses of each engineering property and the principal performance indicated that PVA
fibers and ground fly ash with proper content (VPVA: 0.010–0.015; FA: 0.350–0.525) can significantly
improve the fresh, hardened, and durability properties of ECC materials. Moreover, the analysis
of variance points to the considerable contribution of PVA fiber reinforcement (33.60%) to the
principal performance.

4. An optimum ECC mix formulation (FA: 0.350, S/B: 0.500, W/B: 0.2500, and VPVA: 0.010) is
recommended through statistical analysis of the principal performance. This mix formulation
provides the most desired balance of flowability, compressive strength, flexural strength,
chloride ion penetration resistance, and freeze–thaw resistance, which was verified by the
additional experiment. This hybrid method provides a reliable reference for the ECC’s
multi-performance-oriented mix design.
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