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Abstract: In this paper, a research activity, focused on the investigation of new reinforcements able to
improve the toughness of composite materials systems, is introduced. The overall aim is to delay the
delamination propagation and, consequently, to increase the carrying load capability of composite
structures by exploiting the fiber bridging effects. Indeed, the influence of fiber bridging related
Mode I fracture toughness (GIc) values on the onset and propagation of delaminations in stiffened
composite panels, under three-point bending loading conditions, have been experimentally and
numerically studied. The investigated stiffened panels have been manufactured by using epoxy
resin/carbon fibers material systems, characterized by different GIc values, which can be associated
with the material fiber bridging sensitivity. Experimental data, in terms of load and delaminated
area as a function of the out-of-plane displacements, have been obtained for each tested sample.
Non-Destructive Inspection (NDI) has been performed to identify the debonding extension and
position. To completely understand the evolution of the delamination and its dependence on the
material characteristics, experiments have been numerically simulated using a newly developed
robust numerical procedure for the delamination growth simulation, able to take into account the
influence of the fracture toughness changes, associated with the materials’ fiber bridging sensitivity.
The combined use of numerical results and experimental data has allowed introducing interesting
considerations of the capability of the fiber bridging to substantially slow down the evolution of the
debonding between skin and reinforcements in composite stiffened panels.

Keywords: fracture toughness; delamination; ultrasonic inspection; numerical simulations;
carbon fibers

1. Introduction

When composite materials are applied to aerospace, one of the main, safety-driven, design
objectives is to increase the capability of the structures to withstand the operating loads when accidental
damages occur. The improvement of this capability, actually, can be achieved by adopting a Damage
Tolerant Design approach [1].

Indeed, laminated structures often are characterized by inter-laminar failures (delaminations and
debonding), arising from pre-existing manufacturing defects, stress concentration, impact with foreign
objects, and which can rapidly evolve towards structural collapse due to global or local buckling
phenomena [2–7]. A suitable study of the delamination phenomenon must take into account all the
parameters governing the delamination behavior, including the toughening mechanisms, such as
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the fiber bridging, which can play an important role in the delamination growth. According to the
fiber bridging phenomenon, the fibers cross the crack faces and slow down the delamination growth.
Mode I fracture toughness (GIc) trend as a function of the crack length, also known as resistance curve
(R-curves), can give a measure of the fiber bridging phenomenon. Indeed, an increase of Critical Energy
Release Rate with crack length is representative of the effects of the bridging in terms of toughening.

Therefore, as for the fiber-reinforced concrete [8–10], taking advantages in design from the fiber
bridging phenomenon as tailored through-the-thickness reinforcement could represent a new frontier
for research on damage tolerance of carbon fiber reinforced epoxy resin and could lead to the significative
reduction of classical metal joints [11–13]. The fiber bridging phenomenon and the correlated R-curve
behavior have been extensively studied in the literature. Bao et al. in [14] demonstrate that the
fibers interactions with the crack edges have the desirable effect of suppressing delamination. In [15],
an experimental campaign to study the role of the fiber bridging in the delamination evolution
retardation in composite laminates is presented. The R-curves behavior, due to the bridging, has been
experimentally investigated by Sørensen and Jacobsen in [16] for unidirectional carbon fiber/epoxy
resin composite specimens. In [16], the effects of fiber bridging are shown to be dependent on the
specimen geometry. Such dependence has been also assessed in [17] for unidirectional composite
Double Cantilever Beam (DCB) specimens. Indeed, the experimental results confirm that, even if
the initial energy release rate value can be considered as a material characteristic, the shape of the
R-curve strongly depends on the geometrical parameters. The influence of the fibers’ orientation at
the delamination interface on the Mode I fracture toughness of multidirectional composite laminates,
with special stacking sequences, able to maintain the whole elastic behavior of the specimens, has been
studied in [18]. Large scale bridging phenomenon has been found in the specimens with 45◦//45◦ crack
interface, concerning the 0◦//0◦ interface. Such results have been confirmed in [19], where the plateau
value of the GIc for the 45◦//45◦ plies interface has been found 70% higher than the one found for 0◦//0◦

plies interface. As a matter of fact, in literature, the dependence of the fiber bridging phenomenon on
geometric parameters and stacking sequence of the laminate have been extensively studied. However,
limited works are available on the relation between the fiber bridging phenomenon related and the
inherent resin properties and composite manufacturing process.

In the present manuscript, epoxy resin/carbon fibers coupons, manufactured using different curing
processes, able to emphasize the fiber bridging sensitivity, have been inspected under flexural loading
conditions. The analyzed samples are characterized by the same elastic mechanical properties but
different resistance curve (R-curve) behavior, which changes according to the fiber bridging sensitivity.
Each coupon is made of a skin panel bonded to a stringer foot. Experimental three-point bending
tests [20–22] have been performed to assess the fiber bridging effects on the separation between the
skin and the reinforcement. After the mechanical test, the damaged specimens have been inspected by
adopting an ultrasonic Non-Destructive Technique (NDT) [23,24] to measure the delaminated area
and assess the depth of the damages. Finally, the experimental tests have been numerically simulated
using a robust finite elements procedure able to mimic the delaminations propagation by taking into
account the changes in critical energy release rate with the crack length and, hence, the fiber bridging
phenomenon [25]. The experimental and numerical results have been found very useful to improve the
understanding of the effect of the materials’ fiber bridging sensitivity on the skin-stringer separation
phenomenon in stiffened composite panels.

In Section 2, the material model, adopted to numerically simulate the fiber bridging phenomenon, is
described; while experimental and numerical procedures for the delamination growth investigation are
introduced in Section 3. Finally, in Section 4, the results and comparisons are presented and discussed.

2. Material Model Description

Epoxy resin/carbon fibers material systems, characterized by different resistance curves (R-curves),
are analyzed in this paper. More in detail, the elastic mechanical properties of the investigated material
systems are the same, except for the Mode I fracture toughness, which changes according to the fiber
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bridging sensitivity. Fiber bridging is an intrinsic phenomenon of the fiber-reinforced composite
materials, which develops from delaminations, as shown in Figure 1. Many factors can influence the
onset and the development of the fiber bridging, including geometric characteristics of the specimen
(such as the thickness), the dimensions, and the orientation of the fibers at the delamination interface.
However, also material characteristics and cure process parameters can strongly influence the fiber
bridging toughening effects: actually, this is the focal point of the present paper.
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Figure 1. Fiber bridging schematic representation.

As literature studies have widely recognized, fiber bridging can increase the Mode I critical energy
release rate, GIc, during the crack propagation. The curve representing the crack growth resistance as a
function of the crack length (∆a), named R-curve, is characterized by a “flat” trend for brittle materials
when no energy-dissipating phenomena, such as fiber bridging and/or delamination migration, occur.
On the other hand, in materials with “growing” R-curves, the resistance to the crack growth increases,
and higher energy is needed to achieve crack propagation. This R-curve trend is representative of the
fiber bridging phenomenon, which leads to a more stable delamination propagation (see Figure 2). In
such materials, the GIc value asymptotically reaches a steady-state value.
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Figure 2. Effects of fiber bridging on GIc vs. Crack length curves.

According to the chart in Figure 2, the cases of interest investigated in the frame of this paper are:

• material with low sensitivity to the fiber bridging, characterized by quasi-constants values of GIc;
• material with high sensitivity to the fiber bridging, characterized by values of GIc increasing with

the crack length up to the asymptotic value of 0.737 kJ/m2.

The elastic mechanical properties of the investigated material systems are listed in Table 1. The
differences in Mode I fracture toughness values are reached by using different curing processes, related
to the desired sensitivity to the fiber bridging phenomenon.
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Table 1. Elastic mechanical properties of the investigated material systems.

Elastic Mechanical Properties Values Unit

E11 147 GPa
E22 8.5 GPa

G12 = G13 4.5 GPa
G23 4 GPa

ν12 = ν13 0.36 -
ν23 0.45 -

GIIc = GIIIc 0.514 kJ/m2

3. Experimental and Numerical Procedure for Delamination Propagation

As already remarked, this paper is focused on the assessment of the fiber bridging induced
toughening effect on skin stringer in composite stiffened panels manufactured with material systems
with respectively, low and high sensitivity to the fiber bridging phenomenon. In this Section, the
experimental and numerical procedures adopted for investigating the skin stringer debonding evolution
in such specimen are introduced.

3.1. Experimental Procedure

Three-point bending flexural tests have been performed on fiber-reinforced composite coupons,
to emphasize the Mode I driven skin stringer debonding. The mechanical test procedure has been
based on the ASTM D7264, which is the standard test method for flexural properties of polymer matrix
composite materials [20]. The tested samples can be considered representative of a stiffened composite
panel, consisting of a skin panel bonded to a foot stringer. The geometrical description of the specimens
is shown in Figure 3a. As already remarked, the specimens are made of epoxy resin reinforced with
carbon fibers. The stacking sequence (the same for skin and the foot stringer) is (+45, 0, −45, 90) s, with
a layer thickness of 0.1875 mm and a 45◦//45◦ skin-stringer interface. A picture representative of the
tested specimen is shown in Figure 3b.
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tested specimen.

The experimental tests have been performed using a universal testing machine Lonos Test
TENSO-TEST 100 (TT100, Lonos Test Srl, Monza, Italy). The test rig is shown in Figure 4. The
samples have been positioned on two lateral cylindrical supports, with a spacing span of 100 mm
and with the stringer foot facing down. At the center of the skin, a controlled displacement of
1 mm/min has been applied using a cylinder actuated by a hydraulic system with a high-precision
load cell of 20 kN. In Figure 5a, the experimental set-up is displayed, while in Figure 5b, the boundary
conditions are schematized. Two laser displacement sensors have been used to measure the out-of-plane
displacements in the stringer foot location, corresponding to point A and B in Figure 5c.
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After the test execution, ultrasonic inspections have been performed with an OmniScan® SX
(Olympus Italia S.r.l., Segrate, Italy) ultrasonic testing device to assess the delamination extension and
position. The calibration of the scanner has been carried out by considering the material parameters
and the thickness of the samples, necessary to determine the velocity of the ultrasonic wave. After
setting the parameters, the ultrasonic scan has been performed in water film, by moving a Phased
Array (PA) probe, connected to an encoder, on the sample.

3.2. Numerical Procedure

The numerical tool adopted to perform the simulations presented in this paper, called “SMart-time
XB” (SMXB), has been developed and preliminarily validated in [25]. This tool, based on a combination
of the Virtual Crack Closure Technique (VCCT) and the Fail release procedure (FR), has been included
in the ANSYS® Finite Element Analysis (Version 2018, ANSYS, Inc., Canonsburg, PA, USA) platform
by using the Ansys Parametric Design Language (APDL). The SMXB is capable of mimicking the
delamination development, including the fiber bridging phenomenon by avoiding mesh and time-step
dependency issues. According to the numerical procedure implemented in the SMXB tool, an initial
debonded region must be considered, as for the standard VCCT-based crack simulation models. Indeed,
the structure is split into two sub-laminates with a propagation region defined at their interface. The
propagation area is modeled by introducing specific fracture conditions and contact elements at the
interface of the two sub-laminates, as shown in Figure 6.
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The Virtual Crack Closure Technique equations are used to evaluate the strain energy release
rate (SERR) on the delamination front. Relations for four-noded solid elements are described in
Equation (1). The growth criterion considered for the delamination propagation is the Linear
Power Law (Equation (2)), which allows releasing the constraints between the pairs of nodes, in the
delamination propagation area.

G j =
F j∆u j

2∆A
(1)

Ed =
GI

GIc
+

GII

GIIc
+

GIII

GIIIc
≥ 1 (2)

In Equation (1), Gj (with j = I, II, III) is the energy release rate associated with the fracture mode j,
Fj is the force acting at the crack tip for the fracture mode j, ∆uj is the displacement at crack tip for the
fracture mode j, and ∆A is the released area. In Equation (2), Ed represents the failure index, GIc, GIIc,
and GIIIc are the critical energy release rates associated, respectively, with fracture mode I, II, and III,
which are determined by standardized experimental tests [26–28].

The SMXB numerical tool simulates the delamination propagation by combining four separated
and interacted moduli. The first modulus iteratively changes the size of the load step to equate the
area numerically computed, ANUM in Equation (3), and the area that should be released to achieve the
unit value of Ed, AES in Equation (4).

ANUM =
N∑

i=1

∆AD
i (3)

AES =
N∑

i=1

∆A∗i =
N∑

i=1

 3∑
j=1

F ji∆u ji

2G jC

 (4)

According to Equations (3) and (4), N is the number of node couples characterized by Ed = 1 ·∆AD
i =

f · ∆Ae with f ≥ 1, and ∆Ae is defined as element size at the crack tip. The equivalence between areas
(Equation (5)) is continuously checked at each load-step.

AES � ANUM (5)

In the frame of the second modulus, the local coordinates systems are defined according to the
instantaneous delamination front shape, to evaluate the delaminated area. Indeed, when delamination
starts to grow, the delamination front shapes are modified, and the local normal direction for each
node needs to be changed. According to this modulus, eight vectors (R1, . . . , R8) are introduced in
each node of the delamination front. From (R1, . . . , R8), Re, and Rb, boundary vectors between bonded
and debonded nodes can be evaluated. Such vectors allow to define the eight points, denoted as
“XB points”, in the natural coordinates system, used to calculate the virtually closed area related to
each node. Figure 7 shows an example of XB points position and boundary vectors, for a certain
delamination front shape.
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Figure 7. XB points and virtually closed area definition for the node N.

Point P0 in Figure 7 can be calculated using the Shoelace formula, in Equation (6). Indeed, A1 + A2

is the virtually released area related to node N.
Since the delamination propagation can result in a non-smooth delamination front, the third

modulus of the procedure has been introduced to guarantee that the growth criterion is satisfied for
the node and for the segments belonging to the node, to avoid peaks in the Strain Energy Release Rate.

Finally, the fourth modulus, which is related to the fiber bridging evaluation, takes into account
the entire R-curve (critical energy release rate as a function of the crack length) trend, with no empirical
formulas or analytical approximations, to assign to each couple the nodes of the correct Mode I critical
strain energy release rate value, needed for the debonding propagation, as schematized in Figure 8.
According to the fourth modulus introduction, the growth criterion considered for the delamination
propagation, in Equation (2), should be rewritten as a function of the crack length a, as described
in Equation (6).

Ed(a) =
GI

GIc(a)
+

GII

GIIc
+

GIII

GIIIc
≥ 1 (6)
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Figure 8. Fiber bridging modulus.

The finite element model, representing the tested specimen, is shown in Figure 9. Twenty-node
solid hexahedral layered elements, with 3 degrees of freedom per node, have been used. The cylindrical
supports, adopted during the experimental tests, have been neglected in the FEM model and substituted
by equivalent boundary conditions (suppression of the out-of-plane displacements along the lines of
nodes, on the lower side of the skin, positioned at the centerline of the two cylinders). A perpendicular
displacement has been applied at the mid side of the panel on the upper side of the skin to simulate
the application of the bending load.
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Figure 9. Finite element model.

4. Results, Discussion, and Comparison

In this Section, the experimental data and the numerical results are compared to assess the
capability of the fiber bridging phenomenon to delay the damage evolution and to increase the
maximum attained load of the tested composite specimens. For the sake of clarity, the tested specimens
have been labeled as in Table 2, according to fiber bridging sensitivity.

Table 2. Samples denomination.

Low Bridging Sensitivity High Bridging Sensitivity

LB#1 LB#2 LB#3 HB#1 HB#2 HB#3

The results of the three-point bending experimental tests, in terms of the load as a function of
the applied displacement, are presented in Figure 10a,b, respectively, for the specimens with low and
high sensitivity to the bridging phenomenon. Materials fiber bridging sensitivity leads to significant
variations in terms of maximum load. Indeed, an increase of about 31.6% among the average values of
the experimental measured ultimate loads has been found passing from low bridging sensitivity to
high bridging sensitivity materials, as remarked by the chart in Figure 10c, where the data range of
variation is pointed out.
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Figure 10. Experimental Load vs. Applied displacements in (a) low bridging sensitivity case, (b) high
bridging sensitivity case; (c) max loads comparison. LB: low bridging; HB: high bridging.
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As an example of the flexural behavior of the analyzed panels, pictures, taken during the
experimental tests on a specimen with high sensitivity to the fiber bridging phenomenon, are shown in
Figure 11. A detail of fiber bridging can be observed in Figure 11d (zoom view).
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In Figure 12a,b, the Load vs. Out-of-plane displacements curves, experimentally obtained by laser
sensors readings, have been compared to numerical results, respectively, for the material with low
and high sensitivity to fiber bridging. Since the laser displacement sensors have been positioned as
in Figure 5c, the discrepancy between the experimental laser 1 and laser 2 measurements, in terms
of out-of-plane displacements, can be observed in Figure 12, particularly for the specimen with high
sensitivity to the fiber bridging. Indeed, only one of the laser displacement sensors is located on the
opening side, such as LB#1-LASER 2, LB#2-LASER 1, LB#3-LASER 2, HB#1-LASER 1, HB#2-LASER 2,
HB#3-LASER 2. In such locations, the laser sensors readings could be distorted because of a specimen
slip on the cylindrical supports, given by the debonding propagation. The numerical out-of-plane
displacements have been extrapolated considering the position of the laser displacement sensors
located on the side opposite the opening side.

For the material with low sensitivity to fiber bridging (Figure 12a), the bending stiffness well
predicted by the code and the scattering between the sets of experimental data is acceptable. The
maximum displacement before the complete debonding of the skin is again well predicted by the
SMXB routine, but the maximum load is underestimated. The numerically predicted propagation
is overestimated before the complete debonding occurs inducing an overestimated reduction of the
bending stiffness if compared to the experimental data. On the other hand, the behavior of the material
with high sensitivity to fiber bridging (Figure 12b) is very well predicted in terms of bending stiffness,
maximum load, and maximum displacement at complete debonding of the stringer.

Comparing the behavior of the two material systems, it is possible to notice that the increase in
fiber bridging sensitivity causes an increase in the maximum load and the maximum displacement
before the occurrence of the complete debonding of the stringer. Hence, the fiber bridging phenomenon
can delay the skin-stringer debonding propagation, allowing to increase the capability of the panel to
bear the bending load. This behavior is correctly predicted by numerical simulations.
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Figure 12. Load vs. Out-of-plane displacements comparison in (a) low bridging (LB) sensitivity and
(b) high bridging (HB) sensitivity.

The increasing of the delaminated area between skin and stringer foot has been monitored for each
analyzed configuration both experimentally and numerically during the loading process, providing an
interesting overview of the material sensitivity to the fiber bridging influence on the debonding onset
and stable/unstable evolution. The experimental delaminated area has been evaluated by multiplying
the measured crack length by the specimen width. This measure has been considered realistic, as a first
approximation, since a mostly uniform propagation along the width has been experimentally observed.
Numerical results and experimental data in terms of delamination propagation as a function of the
out-of-plane displacements are presented in Figure 13 for the two analyzed material configurations.
According to Figure 13, the delamination propagation gets more stable as the material sensitivity to the
fiber bridging increases. Indeed, the complete debonding between skin and foot stringer first occurs
for the configuration with low material sensitivity to fiber bridging. The numerical predictions help us
in understanding that for both the material configurations, after a first stable skin stringer debonding,
a highly unstable growth takes place up to the complete debonding of the stringer foot.
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This behavior is confirmed by the results shown in Figure 13, in red, the numerically predicted
delaminated area at different load steps for the two analyzed material configurations. The differences in
delamination size evolution, between the two analyzed material systems, are highlighted in Figure 14.
Indeed, considering the same applied displacement values, a decrease of the delaminated area can be
observed as the material sensitivity to fiber bridging increases.
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As already mentioned, ultrasonic inspections have been performed on the tested samples. The
ultrasonic scans reveal the debonding extension and the depth of the damages. Figure 15 shows the
comparison between the numerically determined debonded region (Figure 15a) and the experimentally
detected ultrasonic C-scan inspections (Figure 15b) for applied displacements of 4 mm, focusing on the
stringer foot region: an excellent agreement between numerical results and experimental observations,
in terms of delaminated area, has been found for the two analyzed material configuration.
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Figure 15. Non-destructive inspections: (a) numerical models, (b) C-scans, (c) S-scans.

Figure 15c shows the S-scan inspections performed for both the material systems configurations at
an applied displacement of 4 mm. The extension of the delamination along the width of the specimen
(section A-A’ in Figure 15) for both the configurations are compared confirming the differences in
delamination propagation observed due to the different fiber bridging sensitivity.

Based on the C-scan inspections, important consideration can be done on the debonding depth.
Indeed, the rise of delaminations can be observed also in interfaces different from the skin-stringer foot
interface during the loading process. This means that delamination migrates toward interfaces with
different fibers orientation, characterized by a lower inter-laminar toughness.

5. Concluding Remarks

The effects of toughness variations, due to the fiber bridging phenomenon, on the separation
between skin and reinforcement in epoxy resin/carbon fibers coupons have been, both experimentally
and numerically, investigated. Material with different sensitivity to the fiber bridging phenomenon
has been analyzed. Three-point bending tests have been carried out to assess the differences in terms
of maximum attained load and delaminated area evolution among the different investigating material
systems configurations. The experimental and numerical results have demonstrated the strong impact
of the fiber bridging toughening mechanisms on the ultimate load of the panel, which increases with the
fiber bridging sensitivity. Furthermore, a relevant delay in delamination evolution, when passing from
materials with low to high sensitivity to the fiber bridging, has been observed. In particular, numerical
simulations have allowed assessing that the increase of fiber bridging phenomenon results in more
stable skin-stringer separations. Indeed, fiber bridging has been found able to lead the investigated
structure to strongly increase its carrying load capability. Hence, fiber bridging appears to be an
effective toughening mechanism able to delay the delamination growth phenomenon without the
insertion of embedded reinforcing elements, which, usually, cause internal damages in composite
microstructure and lower the stiffness and strength material characteristics.

Finally, ultrasonic inspections have confirmed the effects of fiber bridging in terms of delamination
growth delay and have highlighted that delamination migrates toward interfaces with different fibers
orientation, characterized by a lower inter-laminar toughness.
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