Stress Concentration Induced by the Crystal Orientation in the Transient-Liquid-Phase Bonded Joint of Single-Crystalline Ni3Al
Abstract
:1. Introduction
2. Simulation Methods and Details
3. Results and Discussion
3.1. Mechanical Properties of Ni3Al
3.2. Stress Concentration Induced by the State of Crystal Orientation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Caron, P.; Khan, T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerosp. Sci. Technol. 1999, 8, 513–523. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, C.; Ding, C.G.; Zhu, Q.; Qin, H.Y. Plastic deformation behavior and processing maps of a Ni-based superalloy. Mater. Des. 2015, 65, 575–584. [Google Scholar] [CrossRef]
- Smith, T.M.; Rao, Y.; Wang, Y.; Ghazisaeidi, M.; Mills, M.J. Diffusion processes during creep at intermediate temperatures in a Ni-based superalloy. Acta. Mater. 2017, 141, 261–272. [Google Scholar] [CrossRef]
- Paulonis, D.F.; Duvall, D.S.; Owczarski, W.A. Diffusion bonding utilizing transient liquid phase. U.S. Patent 3678570, 25 July 1972. [Google Scholar]
- Khakian, M.; Nategh, S.; Mirdamadi, S. Effect of bonding time on the microstructure and isothermal solidification completion during transient liquid phase bonding of dissimilar nickel-based superalloys In738lc and nimonic 75. J. Alloys Compd. 2015, 653, 386–394. [Google Scholar] [CrossRef]
- Cook, G.O.; Sorensen, C.D. Overview of transient liquid phase and partial transient liquid phase bonding. J. Mater. Sci. 2011, 46, 5305–5323. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.W.; Lian, J.; Cai, X.Q.; Wang, Y.; Wang, D.P.; Liu, Y.C. Microstructure and mechanical properties of Ni3Al-based alloy joint transient liquid phase bonded using Ni/Ti interlayer. Intermetallics 2019, 109, 179–188. [Google Scholar] [CrossRef]
- Ai, C.; Li, S.S.; Zhao, X.B.; Zhou, J.; Guo, Y.J.; Sun, Z.P.; Song, X.D.; Gong, S.K. Influence of solidification history on precipitation behavior of TCP phase in a completely heat-treated Ni3Al based single crystal superalloy during thermal exposure. J. Alloys Compd. 2017, 722, 740–745. [Google Scholar] [CrossRef]
- Luan, X.H.; Qin, H.B.; Liu, F.M.; Dai, Z.B.; Yi, Y.Y.; Li, Q. The mechanical properties and elastic anisotropies of cubic Ni3Al from first principles calculations. Crystals 2018, 8, 307. [Google Scholar] [CrossRef]
- Shah, D.M. Orientation dependence of creep behavior of single crystal γ′ (Ni3Al). Scripta Metal. 1983, 17, 997–1002. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, C.B.; Lu, K. Deformation behavior of Ni3Al single crystals during nanoindentation. Acta Mater. 2003, 51, 6169–6180. [Google Scholar] [CrossRef]
- Wen, Z.X.; Zhang, D.X.; Li, S.W.; Yue, Z.F.; Gao, J.Y. Anisotropic creep damage and fracture mechanism of nickel-base single crystal superalloy under multiaxial stress. J. Alloys Compd. 2017, 692, 301–312. [Google Scholar] [CrossRef]
- Reed, R.C.; Tao, T.; Warnken, N. Alloys-by-design: Application to nickel-based single crystal superalloys. Acta Mater. 2009, 57, 5898–5913. [Google Scholar] [CrossRef]
- Fleischmann, E.; Miller, M.K.; Affeldt, E.; Glatzel, U. Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys. Acta Mater. 2015, 87, 350–356. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Zhu, J. An overview of rhenium effect in single-crystal superalloys. Rare Metals 2016, 35, 127–139. [Google Scholar] [CrossRef]
- Ghoneim, A.; Ojo, O.A. On the influence of boron-addition on tlp bonding time in a Ni3Al-based intermetallic. Intermetallics 2010, 18, 582–586. [Google Scholar] [CrossRef]
- Ojo, O.A.; Ghoneim, O.J.; Hunedy, J. Transient liquid phase bonding of single crystal Ni3Al-based intermetallic alloy. In Proceedings of the International Brazing and Soldering Conference, Las Vegas, NV, USA, 22–25 April 2012. [Google Scholar]
- Chai, L.; Huang, J.H.; Hou, J.B.; Lang, B.; Wang, L. Effect of holding time on microstructure and properties of transient liquid-phase-bonded joints of a single crystal alloy. J. Mater. Eng. Perform. 2015, 24, 2287–2293. [Google Scholar] [CrossRef]
- Guo, W.; Wang, H.Y.; Jia, Q.; Peng, P.; Zhu, Y. Transient liquid phase bonding of nickel-base single crystal alloy with a novel Ni-Cr-Co-Mo-W-Ta-Re-B amorphous interlayer. High Temp. Mat Pr-isr. 2017, 36, 677–682. [Google Scholar] [CrossRef]
- Sheng, N.C.; Liu, J.D.; Jin, T.; Sun, X.F.; Hu, Z.Q. Precipitation behaviors in the diffusion affected zone of tlp bonded single crystal superalloy joint. J. Mater. Sci. Technol. 2015, 31, 129–134. [Google Scholar] [CrossRef]
- Polkowski, W.; Pęczek, E.; Zasada, D.; Komorek, Z. Differential speed rolling of Ni3Al based intermetallic alloy—effect of applied processing on structure and mechanical properties anisotropy. Mater. Sci. Eng. A 2015, 647, 170–183. [Google Scholar] [CrossRef]
- Mohan Rao, P.V.; Suryanarayana, S.V.; Satyanarayana Murthy, K.; Nagender Naidu, S.V. The high-temperature thermal expansion of Ni3Al measured by X-ray diffraction and dilation methods. J. Phys. Condens. Mat. 1989, 1, 5357–5361. [Google Scholar]
- Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Mat. 2002, 14, 2717–2744. [Google Scholar] [CrossRef]
- Ceperley, D.M.; Alder, B.J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566–569. [Google Scholar] [CrossRef]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895. [Google Scholar] [CrossRef] [PubMed]
- Pfrommer, B.G.; Côté, M.; Louie, S.G.; Cohen, M.L. Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 1997, 131, 233–240. [Google Scholar] [CrossRef]
- Kayser, F.X.; Stassis, C. The elastic constants of Ni3Al at 0 and 23.5 °C. Phys. Status Solidi A 1981, 64, 335–342. [Google Scholar] [CrossRef]
- Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 1952, 65, 349. [Google Scholar] [CrossRef]
- Prikhodko, S.V.; Yang, H.; Ardell, A.J.; Carnes, J.D.; Isaak, D.G. Temperature and composition dependence of the elastic constants of Ni3Al. Metall. Mater. Trans. A 1999, 30, 2403–2408. [Google Scholar] [CrossRef]
- Yoo, M.H.; Liu, C.T. Effect of prestress on tensile yield strength of a Ni3Al alloy. J. Mater. Res. 2011, 3, 845–847. [Google Scholar] [CrossRef]
- Pugh, S.F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Dublin Philos. Mag. J. Sci. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Aoki, K.; Izumi, O. On the ductility of the intermetallic compound Ni3Al. J. Jpn. Inst. Met. 1977, 41, 170–175. [Google Scholar] [CrossRef]
- Kolupaev, V.A. Equivalent Stress Concept For Limit State Analysis; Springer: Darmstad, Germany, 2018; Volume 86, pp. 16–18. [Google Scholar]
- Lemaitre, J. A Course On Damage Mechanics, 2nd ed.; Springer: Berlin, Germany, 2012; pp. 39–46. [Google Scholar]
Elastic Constant | D1111 | D1122 | D1133 | D2222 | D2233 | D3333 | D1212 | D1313 | D2323 |
---|---|---|---|---|---|---|---|---|---|
Present work | 240.10 | 160.03 | 160.03 | 240.10 | 160.03 | 240.10 | 123.83 | 123.83 | 123.83 |
Experiment [27] | 224.3 | 148.6 | 148.6 | 224.3 | 148.6 | 224.3 | 125.8 | 125.8 | 125.8 |
Elastic Constant | S1111 | S1122 | S1133 | S2222 | S2233 | S3333 | S1212 | S1313 | S2323 |
---|---|---|---|---|---|---|---|---|---|
Present work | 0.009 | −0.004 | −0.004 | 0.009 | −0.004 | 0.009 | 0.008 | 0.008 | 0.008 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, H.; Kuang, T.; Li, Q.; Yue, X.; Gao, H.; Liu, F.; Yi, Y. Stress Concentration Induced by the Crystal Orientation in the Transient-Liquid-Phase Bonded Joint of Single-Crystalline Ni3Al. Materials 2019, 12, 2765. https://doi.org/10.3390/ma12172765
Qin H, Kuang T, Li Q, Yue X, Gao H, Liu F, Yi Y. Stress Concentration Induced by the Crystal Orientation in the Transient-Liquid-Phase Bonded Joint of Single-Crystalline Ni3Al. Materials. 2019; 12(17):2765. https://doi.org/10.3390/ma12172765
Chicago/Turabian StyleQin, Hongbo, Tianfeng Kuang, Qi Li, Xiong Yue, Haitao Gao, Fengmei Liu, and Yaoyong Yi. 2019. "Stress Concentration Induced by the Crystal Orientation in the Transient-Liquid-Phase Bonded Joint of Single-Crystalline Ni3Al" Materials 12, no. 17: 2765. https://doi.org/10.3390/ma12172765
APA StyleQin, H., Kuang, T., Li, Q., Yue, X., Gao, H., Liu, F., & Yi, Y. (2019). Stress Concentration Induced by the Crystal Orientation in the Transient-Liquid-Phase Bonded Joint of Single-Crystalline Ni3Al. Materials, 12(17), 2765. https://doi.org/10.3390/ma12172765